Most important publications
- Lee, S., Hecker, J., Vardarajan, B., Kelly, R., Prince, N., Mullin, K., Lutz, S., Hahn, G., Lasky-Su, J., Mayeux, R., Tanzi, R., Lange, C., Prokopenko D. (2025).
Uncovering Ethnicity-Specific Recessive Loci for Alzheimer's Disease in 89 Dominican Families Using Family-Based WGS Analysis.
Genet Epidemiol, 49(5):e70014.
- Jenei, K., Hahn, G., Kesselheim, A., Tibau, A. (2025).
Trends in time to withdrawal and full approval of accelerated approval cancer drug indications (1992–2024).
J Cancer Policy, 45:100597.
- Henke, K., Pelofske, E., Kenyon, G., Hahn, G. (2025).
Comparing quantum annealing and spiking neuromorphic computing for sampling binary sparse coding QUBO problems.
Nature npj Unconv Comput, 2:13.
- Hurwitz, R., Hahn, G. (2025).
Penalized Principal Component Analysis Using Smoothing.
Stat Comput, 35(80):1-15.
- Wang, S., Egilman, A., Hahn, G., Kesselheim, A. (2025).
Therapeutic Benefit of Top-Selling Oncology Drugs in Medicare.
JAMA Netw Open, 8(4):e253323.
- Hahn, G., Prokopenko, D., Hecker, J., Lutz, S., Mullin, K., Tanzi, R., Lange, C. (2025).
Polygenic hazard score models for the prediction of Alzheimer's free survival using the lasso for Cox's proportional hazards model.
Genet Epidemiol, 49(1):e22581.
- Ngai, T., Willett, J., Waqas, M., Fishbein, L., Choi, Y., Hahn, G., Mullin, K., Lange, C., Hecker, J., Tanzi, R., Prokopenko, D. (2024).
Assessing polyomic risk to predict Alzheimer's disease using a machine learning model.
Alzheimer's & Dementia, 20(12):8700-8714.
- Nopsopon, T., Brown, A., Hahn, G., Rank, M., Huybrechts, K., Akenroye, A. (2024).
Temporal variation in the effectiveness of biologics in asthma: Effect modification by changing patient characteristics.
Respir Med, 234:107802.
- Wang, S., Hahn, G., Kesselheim, A. (2024).
Impact of Priority Review Voucher Eligibility on Research and Development of Medical Countermeasures.
Clin Pharmacol Ther, 116(6):1554-1559.
- Hahn, G., Prokopenko, D., Hecker, J., Lutz, S., Mullin, K., Sejour, L., Hide, W., Vlachos, I., DeSantis, S., Tanzi, R., Lange, C. (2024).
Prediction of disease-free survival for precision medicine using cooperative learning on multi-omic data.
Briefings in Bioinformatics, 25(4):bbae267.
- Voorhies, K., Young, K., Hsu, F., Palmer, N., McDonald, M., Lee, S., Hahn, G., Hecker, J., Prokopenko, D., Wu, A.,
Regan, E., DeMeo, D., Kinney, G., Crapo, J., Cho, M., Silverman, E., Lange, C., Budoff, M., Hokanson, J., Lutz, S. (2024).
Association of PHACTR1 with Coronary Artery Calcium Differs by Sex and Cigarette Smoking.
J Cardiovasc Dev Dis, 11(7), 194.
- Voorhies, K., Hecker, J., Lee, S., Hahn, G., Prokopenko, D., McDonald, M., Wu, A., Wu, A., Hokanson, J., Cho, M., Lange, C., Hoth, K., Lutz, S. (2024).
Examining the Effect of Genes on Depression as Mediated by Smoking and Modified by Sex.
Genes, 15(5):565.
- Lee, S., Hecker, J., Hahn, G., Mullin, K., Alzheimer's Disease Neuroimaging Initiative (ADNI), Lutz, S., Tanzi, R., Lange, C., Prokopenko, D. (2024).
On the effect heterogeneity of established disease susceptibility loci for Alzheimer's disease across different genetic ancestries.
Alzheimer's & Dementia, 20(5):3397-3405.
- Hahn, G., Lutz, S., Hecker, J., Prokopenko, D., Cho, M., Silverman, E., Weiss, S., Lange, C. (2024).
Fast computation of the eigensystem of genomic similarity matrices.
BMC Bioinformatics, 25, 43.
- Hecker, J., Lee, S., Kachroo, P., Prokopenko, D., Maaser-Hecker, A., Lutz, S., Hahn, G., Irizarry, R., Weiss, S., DeMeo, D., Lange, C. (2023).
A consistent pattern of slide effects in Illumina DNA methylation BeadChip array data.
Epigenetics, 18(1):2257437.
- Hahn, G., Pelofske, E., Djidjev, H. (2023).
Posiform planting: generating QUBO instances for benchmarking.
Front Comput Sci, 5:1275948.
- Pelofske, E., Hahn, G., Djidjev, H. (2023).
Initial State Encoding via Reverse Quantum Annealing and H-gain Features.
IEEE Transactions on Quantum Engineering, 4(3102221):1-21.
- Novak, T., Crawford, J., Hahn, G., Hall, M., Thair, S., Newhams, M., Chou, J., Mourani, P., Tarquinio, K., Markovitz, B., Loftis, L., Weiss, S., Higgerson, R., Schwarz, A., Pinto, N., Thomas, N., Gedeit, R., Sanders, R., Mahapatra, S., Coates, B., Cvijanovich, N., Ackerman, K., Tellez, D., McQuillen, P., Kurachek, S., Shein, S., Lange, C., Thomas, P., Randolph, A. (2023).
Transcriptomic Profiles of Multiple Organ Dysfunction Syndrome Phenotypes in Pediatric Critical Influenza.
Front Immunol, 14:1220028.
- Hahn, G., Novak, T., Crawford, J., Randolph, A., Lange, C. (2023).
Longitudinal Analysis of Contrasts in Gene Expression Data.
Genes, 14(6):1134.
- Pelofske, E., Hahn, G., Djidjev, H. (2023).
Solving larger maximum clique problems using parallel quantum annealing.
Quantum Information Processing, 22(219):1-22.
- Pelofske, E., Hahn, G., Djidjev, H. (2023).
Noise Dynamics of Quantum Annealers: Estimating the Effective Noise Using Idle Qubits.
Quantum Science and Technology, 8(3):035005.
- Lee, S., Hahn, G., Hecker, J., Lutz, S., Mullin, K., Alzheimer's Disease Neuroimaging Initiative (ADNI), Hide, W., Bertram, L., DeMeo, D., Tanzi, R., Lange, C., Prokopenko, D. (2023).
A comparison between similarity matrices for principal component analysis to assess population stratification in sequenced genetic data sets.
Briefings in Bioinformatics, 24(1):bbac611.
- Voorhies, K., Bie, R., Hokanson, J., Weiss, S., Wu, A., Hecker, J., Hahn, G., DeMeo, D., Silverman, E., Cho, M., Lange, C., Lutz, S. (2022).
Covariate adjustment of spirometric and smoking phenotypes: The potential of neural network models.
PLoS ONE, 17(5):e0266752.
- Hahn, G., Lee, S., Prokopenko, D., Abraham, J., Novak, T., Hecker, J., Cho, M., Khurana, S., Baden, L., Randolph, A., Weiss, S., Lange, C. (2022).
Unsupervised outlier detection applied to SARS-CoV-2 nucleotide sequences can identify sequences of common variants and other variants of interest.
BMC Bioinformatics, 23, 547.
- Pelofske, E., Hahn, G., O'Malley, D., Djidjev, H., Alexandrov, B. (2022).
Quantum annealing algorithms for Boolean tensor networks.
Sci Rep, 12, 8539.
- Pelofske, E., Hahn, G., Djidjev, H. (2022).
Parallel quantum annealing.
Sci Rep, 12, 4499.
- Hahn, G., Prokopenko, D., Lutz, S., Mullin, K., Tanzi, R., Cho, M., Silverman, E., Lange, C. (2022).
A Smoothed Version of the Lassosum Penalty for Fitting Integrated Risk Models Using Summary Statistics or Individual-Level Data.
Genes, 13(1):112.
- Pelofske, E., Hahn, G., Djidjev, H. (2022).
Inferring the Dynamics of the State Evolution During Quantum Annealing.
IEEE T Parall Distr, 33(2):310-321.
- Hahn, G. (2022).
Online multivariate changepoint detection with type I error control and constant time/memory updates per series.
Stat Probabil Lett, 181:109258.
- Hahn, G., Wu, C., Lee, S., Lutz, S., Khurana, S., Baden, L., Haneuse, S., Qiao, D., Hecker, J., DeMeo, D., Tanzi, R., Choudhary, M., Etemad, B., Mohammadi, A., Esmaeilzadeh, E., Cho, M., Li, J., Randolph, A., Laird, N., Weiss, S., Silverman, E., Ribbeck, K., Lange, C. (2021).
Genome-wide association analysis of COVID-19 mortality risk in SARS-CoV-2 genomes identifies mutation in the SARS-CoV-2 spike protein that colocalizes with P.1 of the Brazilian strain.
Genet Epidemiol, 45(7):685-693.
- Barbosa, A., Pelofske, E., Hahn, G., Djidjev, H. (2021).
Using machine learning for quantum annealing accuracy prediction.
Algorithms, 14(6), 187.
- Hahn, G., Lutz, S., Laha, N., Cho, M., Silverman, E., Lange, C. (2021).
A fast and efficient smoothing approach to LASSO regression and an application in statistical genetics: polygenic risk scores for chronic obstructive pulmonary disease (COPD).
Stat Comput, 31(35):1-11.
- Hahn, G., Lee, S., Weiss, S., Lange, C. (2021).
Unsupervised cluster analysis of SARS-CoV-2 genomes reflects its geographic progression and identifies distinct genetic subgroups of SARS-CoV-2 virus.
Genet Epidemiol, 45(3):316-323.
- Hahn, G., Lutz, S., Hecker, J., Prokopenko, D., Cho, M., Silverman, E., Weiss, S., Lange, C. (2021).
locStra: Fast analysis of regional/global stratification in whole genome sequencing (WGS) studies.
Genet Epidemiol, 45(1):82-98.
- Pelofske, E., Hahn, G., Djidjev, H. (2021).
Decomposition Algorithms for Solving NP-hard Problems on a Quantum Annealer.
J Sign Process Syst, 93:405-420.
- Hahn, G., Fearnhead, P., Eckley, I. (2020).
BayesProject: Fast computation of a projection direction for multivariate changepoint detection.
Stat Comput, 30:1691-1705.
- Hahn, G. (2020).
On the expected runtime of multiple testing algorithms with bounded error.
Stat Probabil Lett, 165:108844.
- Gandy, A., Hahn, G., Ding, D. (2019).
Implementing Monte Carlo Tests with P-value Buckets.
Scand J Stat, 47(3):950-967.
- Ding, D., Gandy, A., Hahn, G. (2019).
A simple method for implementing Monte Carlo tests.
Computation Stat, 35:1373-1392.
- Hahn, G. (2019).
Optimal allocation of Monte Carlo simulations to multiple hypothesis tests.
Stat Comput, 30:571-586.
- Djidjev, H., Hahn, G., Mniszewski, S., Negre, C., Niklasson, A. (2019).
Using Graph Partitioning for Scalable Distributed Quantum Molecular Dynamics.
Algorithms, 12(9), 187. Invited article for the Special Issue on Graph Partitioning: Theory, Engineering, and Applications.
- Chapuis, G., Djidjev, H., Hahn, G., Rizk, G. (2019).
Finding Maximum Cliques on the D-Wave Quantum Annealer.
J Sign Process Syst, 91(3-4):363-377.
- Hahn, G. (2018).
Closure properties of classes of multiple testing procedures.
AStA Adv Stat Anal, 102(2):167-178.
- Ghale, P., Kroonblawd, M., Mniszewski, S., Negre, C., Pavel, R., Pino, S., Sardeshmukh, V., Shi, G., Hahn, G. (2017).
Task-based Parallel Computation of the Density Matrix in Quantum-based Molecular Dynamics using Graph Partitioning.
SIAM J Sci Comput, 39(6):C466-C480.
- Gandy, A., Hahn, G. (2017).
QuickMMCTest: quick multiple Monte Carlo testing.
Stat Comput, 27:823-832.
- Gandy, A., Hahn, G. (2016).
A framework for Monte Carlo based multiple testing.
Scand J Stat, 43(4):1046-1063.
- Gandy, A., Hahn, G. (2014).
MMCTest -- A Safe Algorithm for Implementing multiple Monte Carlo tests.
Scand J Stat, 41(4):1083-1101.
- Hahn, G., Lee, S., Prokopenko, D., Novak, T., Hecker, J., Khurana, S., Baden, L., Randolph, A., Weiss, S., Lange, C. (2022).
Unsupervised genome-wide cluster analysis: nucleotide sequences of the omicron variant of SARS-CoV-2 are similar to sequences from early 2020.
bioRxiv:2021.12.29.474469.
- Hahn, G., Cho, M., Weiss, S., Silverman, E., Lange, C. (2020).
Unsupervised cluster analysis of SARS-CoV-2 genomes indicates that recent (June 2020) cases in Beijing are from a genetic subgroup that consists of mostly European and South(east) Asian samples, of which the latter are the most recent.
bioRxiv:2020.06.22.165936.
- Hahn, G., Banerjee, M., Sen, B. (2017).
Parameter Estimation and Inference in a Continuous Piecewise Linear Regression Model.
arXiv:2503.06303.
- Djidjev, H., Chapuis, G., Hahn, G., Rizk, G. (2016).
Efficient Combinatorial Optimization Using Quantum Annealing.
Los Alamos National Laboratory Report. arXiv:1801.08653.
- Hahn, G. (2015).
Statistical Methods for Monte-Carlo based Multiple Hypothesis Testing.
Doctoral thesis at Imperial College London.
- Hahn, G. (2011).
Polynomielle Primzahltests mit elliptischen Kurven.
Master thesis at the University of Mainz
(translation: "Polynomial primality tests with elliptic curves").
- Hahn, G. (2010).
Block-Sorting Data Compression.
Cambridge Part III Essay.
- Hahn, G. (2008).
Parallelisierte Faktorisierung mit dem Quadratischen Sieb.
Bachelor thesis at the University of Mainz
(translation: "Parallelised factorisation using the quadratic sieve").
- Henke, K., Pelofske, E., Hahn, G., Kenyon, G. (2023).
Sampling binary sparse coding QUBO models using a spiking neuromorphic processor.
Proceedings of the 2023 International Conference on Neuromorphic Systems (ICONS'23), 38:1–5.
- Pelofske, E., Hahn, G., O'Malley, D., Djidjev, H., Alexandrov, B. (2021).
Boolean Hierarchical Tucker Networks on Quantum Annealers.
13th International Conference on Large-Scale Scientific Computing LSSC 2021 and
arXiv:2103.07399.
- Pelofske, E., Hahn, G., Djidjev, H. (2021).
Reducing quantum annealing biases for solving the graph partitioning problem.
Proceedings of the 18th ACM International Conference on Computing Frontiers CF'21 and
arXiv:2103.04963.
- Barbosa, A., Pelofske, E., Hahn, G., Djidjev, H. (2020).
Optimizing embedding-related quantum annealing parameters for reducing hardware bias.
PAAP 2020: Parallel Architectures, Algorithms and Programming and
arXiv:2011.00719.
- Pelofske, E., Hahn, G., Djidjev, H. (2020).
Advanced unembedding techniques for quantum annealers.
2020 International Conference on Rebooting Computing (ICRC), Atlanta, GA, USA and
arXiv:2009.05028.
- Pelofske, E., Hahn, G., Djidjev, H. (2020).
Advanced anneal paths for improved quantum annealing.
IEEE Quantum Week QCE20 and
arXiv:2009.05008.
- Pelofske, E., Hahn, G., Djidjev, H. (2019).
Peering into the Anneal Process of a Quantum Annealer.
The 20th Intl Conference on Parallel and Distributed Computing, Applications and Technologies PDCAT 2019 and
arXiv:1908.02691.
- Pelofske, E., Hahn, G., Djidjev, H. (2019).
Optimizing the spin reversal transform on the D-Wave 2000Q.
Proceedings of the IEEE Intl Conference on Rebooting Computing 2019 and
arXiv:1906.10955.
- Pelofske, E., Hahn, G., Djidjev, H. (2019).
Solving large Minimum Vertex Cover problems on a quantum annealer.
Proceedings of the Computing Frontiers Conference CF'19 and
arXiv:1904.00051.
- Pelofske, E., Hahn, G., Djidjev, H. (2019).
Solving large Maximum Clique problems on a quantum annealer.
Proceedings of the Intl Workshop on Quantum Technology and Optimization Problems QTOP 2019 and
arXiv:1901.07657.
- Hahn, G., Djidjev, H. (2017).
Reducing Binary Quadratic Forms for More Scalable Quantum Annealing.
IEEE Intl Conference on Rebooting Computing 2017 and
arXiv:1801.08652.
- Chapuis, G., Djidjev, H., Hahn, G., Rizk, G. (2017).
Finding Maximum Cliques on a Quantum Annealer.
Proceedings of the Computing Frontiers Conference CF'17 and
arXiv:1801.08649v1.
- Djidjev, H., Hahn, G., Mniszewski, S., Negre, C., Niklasson, A., Sardeshmukh, V. (2015).
Graph Partitioning Methods for Fast Parallel Quantum Molecular Dynamics.
SIAM Workshop on Combinatorial Scientific Computing (CSC16) and
arXiv:1605.01118.
- Dechantsreiter, D., Kelly, R., Lange, C., Lasky-Su, J., Hahn, G. (2025).
Quantification of individual dataset contributions to prediction accuracy in cooperative learning.
bioRxiv:2025.04.16.649215. Under review.
- Hahn, G., Schneeweiss, S., Wang, S. (2025).
Adaptive multi-wave sampling for efficient chart validation.
arXiv:2503.06308. Under review.
- Qian, J., Hahn, G. (2024).
Scalable computation of the maximum flow in large brain connectivity networks.
arXiv:2412.00106. Under review.
- Pelofske, E., Hahn, G., Djidjev, H. (2024).
Increasing the Hardness of Posiform Planting Using Random QUBOs for Programmable Quantum Annealer Benchmarking.
arXiv:2411.03626. Under review.
- Qian, J., Hahn, G. (2024).
An efficient heuristic for approximate maximum flow computations.
arXiv:2409.08350. Under review.
- Hahn, G., Lutz, S., Laha, N., Lange, C. (2022).
A framework to efficiently smooth L1 penalties for linear regression.
bioRxiv:2020.09.17.301788. Under review.