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1. Introduction

The following essay introduces basic concepts of information and coding theory with a
view to optimal coding schemes. This leads to an optimal code in terms of length, the
so-called Huffman Code, presented in chapter 2 including its proof of optimality. The
shortest length code is also the optimal code for compressing single characters. This
part of the essay is based on chapter 5 of [8]. While the chapter on Huffman coding only
focusses on single character compression, significantly higher compression rates can be
achieved by compressing larger substrings. The main algorithm in this area is the one
developed by Lempel and Ziv ([4] and [5]), presented in chapter 3. It will be shown that
Lempel-Ziv coding approaches the entropy of a given data stream and is therefore optimal
in the limit. The part on Lempel-Ziv coding will follow chapter 12 of [8] and chapter 2
of [9]. A recent approach to lossless data compression is the so-called Burrows-Wheeler
Transformation, presented in chapter 4. This reversible data transformation is not a
compression scheme itself, but a pre-stage used to increase the redundancy of arbitrary
data by block-sorting. The part on the Burrows-Wheeler Transformation is based on the
original paper [1] by M. Burrows and D.J. Wheeler. In chapter 4 the transformation will
be introduced and it will be shown that it is always reversible. Next, the essay focusses
on the notion of entropy by proving a Central Limit Theorem for return times of blocks
in a random process. One application of the theorem is its restatement as an asymptotic
normal estimator of the entropy. Chapter 5 on the Central Limit Theorem is based on
the original paper [10] by O. Johnson. To observe the effect of the Burrows-Wheeler
Transformation, the compression rates of all three algorithms (Huffman compression,
the Lempel-Ziv variant Lempel-Ziv-Welch and the Burrows-Wheeler Transformation)
are compared with a popular compression scheme like the ZIP format. This is done
in the last chapter 6 using own implementations of all algorithms and the standard
compression benchmark [6].
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2. Huffman Coding

2.1. Basic definitions

To introduce basic concepts of coding, the notion of a code and its main properties are
stated first. This chapter follows chapter 5 in [8].

2.1 Definition:

1. An alphabet A is a (finite or infinite) set of symbols.

2. The set of all non-empty words which can be built out of symbols from an alphabet
A by concatenation is denoted by A∗.

3. A code C for a random variable X with range R over an alphabet A is a mapping
which assigns a codeword w ∈ A∗ to every value of X, C(X) : R → A∗.

4. The extension of a code is the mapping from R∗ to A∗, defined as C(x1 · · ·xn) :=
C(x1) · · ·C(xn).

5. The expected length L of a code C is defined to be the weighted average of the
codeword lengths l(·) with respect to the probability p(X = x) of a symbol x ∈ R:
L(C) :=

∑

x∈R p(X = x)l(x), where l(x) := l(C(x)) is the length of the codeword
assigned to x.

So far, a code is just any mapping from a random variable to any set of words over an
alphabet. In order to distinguish between codes that might be more useful than others
for encoding information, additional notions are defined next.

2.2 Definition:

1. A code is called non-singular if it maps injectively into the set A∗, i.e. xi 6= xj ⇒
C(xi) 6= C(xj).

2. A code is called uniquely decodable if its extension is non-singular, i.e. if every con-
catenation of codewords C(s) ∈ A∗ corresponds to exactly one string s = x1 · · ·xn ∈
R∗.

3. A string s ∈ A∗ is called a prefix of a longer string t ∈ A∗ if s is the stem of t.

4. A code is called a prefix code (or an instantaneous code) if no codeword is the prefix
of a longer codeword.

The prefix condition makes it possible to decode a message in linear time: by starting
from the first symbol in the encoded message and regarding all symbols sequentially, a
substring s0 is decoded as soon as it matches a codeword. Note that, if such a substring
s0 is not decoded immediately, no other codeword will be found afterwards, as no other
codeword has s0 as prefix by definition. This makes any prefix code uniquely decodable.
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In order to encode or compress data reversibly, only uniquely decodable codes are of
interest from now on. To illustrate those notions, a few examples follow.

2.3 Example:

1. Over the alphabet A = {0, 1}, define a code C with codewords C(a) = 01 and
C(b) = 111. Here, R = {a, b} and if a occurs with probability P (a) = 0.8 and b
with P (b) = 0.2, then C has an expected length of L(C) = 0.8 ∗ 2 + 0.2 ∗ 3 = 2.2.

2. Over the alphabet A = {0, 1} consider the following codes for the three symbols
{x, y, z} = R:

Symbol C1 C2 C3 C4

x 1 0 00 0

y 1 1 11 10

z 1 01 001 11

Code C1 is clearly singular and C2 is not uniquely decodable as 01 could be xy or z.
C3 is an example of a uniquely decodable code, which can be proven by induction.
The main idea is that if a substring 001 appears in the message, the number of 1’s
until the next 0 appears decides on how to decode 001: if the number is even, then
001...1 has been x and several y’s, if the number is odd, then 001...1 has been z and
several y’s. Code C3 is not prefix since 00 appears as stem of 001. C4 is clearly a
prefix code and therefore uniquely decodable, e.g. 11100 can only be decoded as z
(11 is the first substring that matches a symbol), y (10) and x (0).

The second example shows that prefix codes are a real subset of uniquely decodable
codes, i.e. there are more codes which are uniquely decodable than there are prefix codes.
However, the relationship between uniquely decodable and prefix codes is reviewed in
greater detail in the next section.

2.2. The Kraft Inequality

An important property of prefix codes was discovered by Leon Kraft in 1949. It gives a
necessary condition for the existence of prefix codes and shows how to construct prefix
codewords of given lengths.

2.4 Theorem: (Kraft Inequality) Let C be any code over an alphabet A of size S = |A|
consisting of n codewords of lengths l1, . . . , ln. Then,

C is a prefix code ⇒
n
∑

i=1

S−li ≤ 1.

Conversely, given any numbers l1, . . . , ln satisfying the Kraft Inequality
∑n

i=1 S−li ≤ 1,
there exists a prefix code C = {c1, . . . , cn} with lengths l(ci) = li.
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Proof. Let C be any given code with codeword lengths l1, . . . , ln and let lmax be the
length of the longest codeword. Insert all codewords in a S-ary tree by starting from
the root and following the branches according to the digits in the codeword. As C is a
prefix code, once a codeword x is inserted, the whole subtree underneath it (subtree A
for word x in the following figure) is ruled out for further codewords as they all have x
as prefix. Consider now the number of leaves the full tree would have at level lmax. This
is Slmax . On the other hand, the subtree A of codeword x has depth lmax − l(x) and
hence Slmax−l(x) leaves at the bottom level.

0

1

root 

x
A

y

All leaves at the bottom level of the subtrees for each
symbol also belong to the set of leaves the full tree
has at level lmax. As every subtree underneath a code-
word is ruled out for further codewords, all those sub-
sets of leaves are disjoint, and its sum can’t be greater
than the number of leaves at level lmax in the full tree:
∑n

k=1 Slmax−lk ≤ Slmax . Dividing by Slmax gives the
Kraft Inequality

∑n
k=1 S−lk ≤ 1.

Conversely, start with a full S-ary tree of depth lmax. By assumption,
∑n

i=1 S−li ≤ 1,
so
∑n

i=1 Slmax−li ≤ Slmax after multiplying with Slmax . As before, this means that the
full tree is big enough to contain disjoint subtrees of depth lmax − li for every codeword
of length li and therefore contains n nodes at levels l1, . . . , ln. To obtain the actual
codewords, simply assign c1, . . . , cn with lengths l1, . . . , ln to the corresponding nodes
at levels l1, . . . , ln in any order and interpret the paths from the root to the nodes as
codewords. This code is prefix free since all subtrees of depth lmax − li are disjoint.

Surprisingly, exactly the same statement is true not only for prefix codes, but also for
the larger set of uniquely decodable codes. This was proved by McMillan [11] in 1956.

2.5 Theorem: (McMillan) Any uniquely decodable code C over an alphabet of size
S satisfies the Kraft Inequality, i.e.

∑n
i=1 S−li ≤ 1, where li are the lengths of the

codewords. Conversely, if numbers l1, . . . , ln are given with
∑n

i=1 S−li ≤ 1 there exists a
uniquely decodable code C = {c1, . . . , cn} with lengths l(ci) = li.

Proof. Let C be a given code with codeword lengths l1, . . . , ln and lmax be the length
of the longest codeword. Note that it is possible to rewrite the sum

∑n
i=1 S−li as

∑lmax

l=1 nlS
−l, where nl denotes the number of codewords of length l.

For any m ≥ 1, consider Cm, the code which consists of all concatenations of m words
of C. As C is uniquely decodable, every codeword in Cm corresponds to exactly one
concatenation of m words c1 · · · cm (and vice versa), where ci ∈ C. It follows that

(

n
∑

i=1

S−li

)m

=
n
∑

i1=1

· · ·
n
∑

im=1

S−(li1+···+lim ) =

m·lmax
∑

l=1

ñlS
−l, (1)
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where ñl is the number of codewords of length l in Cm. The first equality here is just
the expanded product of sums. The second equality is true since all codewords in Cm

correspond 1:1 to concatenations of m words of C, so the sum over all possible li1+· · ·+lim
contains exactly the same codelengths as the sum over all lengths of codewords in Cm.
The maximal codelength of Cm is m times the maximal length of C, hence the sum is
indexed by l = 1, . . . , m · lmax.

Clearly, the number of codewords ñl of length l cannot be greater than the number of
all strings which consist of l symbols out of alphabet A, so ñl ≤ Sl. Substituting this
into (1) and taking the mth root yields

n
∑

i=1

S−li ≤
(

m·lmax
∑

l=1

SlS−l

)1/m

= (m · lmax)1/m.

Since m was arbitrary, the inequality also holds in the limit m → ∞. As lmax is
constant, (m · lmax)1/m → 1 as m → ∞ and therefore

∑n
i=1 S−li ≤ 1, which proves the

Kraft Inequality for uniquely decodable codes.

Conversely, given numbers l1, . . . , ln with
∑n

i=1 S−li ≤ 1, use the known Kraft Inequality
to even get a prefix code C = {c1, . . . , cn} with lengths l(ci) = li, which is also uniquely
decodable.

Both theorems together establish a surprising result: Given any prefix code C, C is
trivially also a uniquely decodable code. Conversely, given any uniquely decodable code
C ′ with codeword lengths l1, . . . , ln, the li satisfy

∑n
i=1 S−li ≤ 1 by McMillan. Using the

converse of Kraft there exists a prefix code C ′′ with exactly the same codeword lengths
as the codewords in C ′ and hence the same expected length, i.e. L(C ′) = L(C ′′). This
means that the set of prefix codes is as powerful for encoding as the larger set of uniquely
decodable codes.

2.3. The construction of an optimal code

Finally, an optimal code C in terms of its expected length shall be constructed. This
is done with a view to an actual application on a computer, thus the binary case is
considered in this section. The optimal code can be used to encode data with minimal
expected length and hence achieves compression. Note that, by the theorems of Kraft
and McMillan, it can be assumed without loss of generality that the optimal code is a
prefix code. The following theorem states properties of an optimal code.

2.6 Theorem: Let C be an optimal code over a binary alphabet to encode symbols
{b1, . . . , bn}, where symbol bi occurs with probability pi. Then the lengths li of the code-
words C = {c1, . . . , cn}, ci ∈ {0, 1}∗ must satisfy the following properties.

1. If pr > ps for any r, s ∈ {1, . . . , n}, then lr ≤ ls.
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2. The two longest codewords have equal length.

3. There is a pair of two longest codewords which are siblings in a tree representation.

Proof.

1. Let C be a code of minimal length L(C) =
∑

pili for encoding the symbols bi.
Define another code C ′ to be code C, except that the symbol indices r and s are
switched. As C is optimal, L(C) ≤ L(C ′) and therefore 0 ≤ L(C ′) − L(C) =
prls + pslr − prlr − psls = (ls − lr)(pr − ps). If pr > ps it follows that ls − lr ≥ 0
and hence lr ≤ ls.

2. Suppose that the two longest codewords don’t have equal length. Let c be the
longest codeword. As C is a prefix code, there is no shorter codeword on the path
from the root to c in the tree representation of C. Therefore the last branch (=last
digit) of the codeword c can be deleted without destroying the prefix property
which gives a shorter code. Contradiction to the optimality of C.

3. If no pair of two longest codewords are siblings in the tree, then there exists a
maximal length codeword c without a sibling (if it had one, its sibling would
have maximal length as well). Therefore the last branch (=last digit) of c can be
deleted again without destroying the prefix property which gives a shorter code.
Contradiction to the optimality of C.

This theorem can directly be applied to inductively construct an optimal code over a
binary alphabet, the so-called Huffman code:

Construction of the Huffman code

1. The two least likely symbols will have the longest code lengths by property (1)
and are siblings by (3), so they’re joined into a supernode with added probability.
This ensures that they will have equal length at the end as required by (2).

2. The tree now consists of one node less, so repeat the first step until only one
node remains and the tree (called Huffman tree) is constructed.

3. Once the tree is constructed, label the two branches going out of every node
with the symbols 0 and 1 and read off the codewords by following the paths
from the root to the leaves. This is the Huffman code.

4. Replacing every symbol of the input by its Huffman code then yields a message
length which is equal or shorter than the original length when compared in a
joint alphabet. No special symbol for separating the codes is needed as the
Huffman code is a prefix code.

Empirical results on compression rates using Huffman codes are shown in chapter 6.

7



3. Lempel-Ziv Coding

3.1. Description of the coding scheme

The Huffman code was proven to be optimal for single characters, but even higher
compression rates can be achieved when encoding substrings. This is done by the so-
called Lempel-Ziv coding. This chapter follows chapter 12 in [8] and chapter 2 in [9].

3.1 Definition: A parsing of a string s is a decomposition of s into n substrings si such
that s = s1 · · · sn. A parsing is called distinct if all si are distinct.

Like in the last section on the construction of the Huffman code, inputs over a binary
alphabet are considered in this chapter. All symbols are denoted again by ai ∈ {0, 1}.
The Lempel-Ziv coding combines string parsing with a prefix property:

Lempel-Ziv coding

1. Given a binary input string s = a1 · · · an of length n, s is parsed sequentially
into substrings si as follows: if s1 · · · sj have already been processed, the next
substring sj+1 is the shortest string which hasn’t occured so far. As an example,
1011111 is parsed as 1, 0, 11, 111. Note that the shortest new string sj+1 always
extends exactly one previous substring, say sk, by just one bit b. Therefore,
sk is a prefix of sj+1 and sj+1 can be expressed as (sk, b). By construction no
string equals a previous one, hence the Lempel-Ziv parsing is distinct.

2. Let the parsing of the message consist of κ(n) substrings. To encode a tupel
(sj , b), it suffices to write the index of the prefix sj and the new bit b. This takes
log κ(n) + 1 bits.

3. To encode the whole string, all κ(n) parsed substrings have to be encoded, which
takes κ(n) · (log κ(n) + 1) bits.

3.2. Statement and proof of the main theorem

It will be shown in this section that the code length per symbol κ(n)·(log κ(n)+1)
n converges

to the entropy of the input sequence a1 · · · an as n → ∞. As a first preparation, the
Lemma by Lempel and Ziv bounds the number of substrings κ(n) in a distinct parsing.

3.2 Lemma: (Lempel and Ziv) The number of substrings κ(n) in a distinct parsing of
a binary string s = a1 · · · an satisfies

κ(n) ≤ n

(1 − ǫn) log n
,

where ǫn → 0 as n → ∞.
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Proof. Suppose that for m ≥ 1, a string sm is constructed by concatenating all binary
strings of lengths i = 1, . . . , m in any order. There are 2i binary strings of length i, so
sm has length lm :=

∑m
i=1 i2i = (m − 1)2m+1 + 2 (using a standard formula which is

easily proven by induction). The number of substrings κ(n) in a distinct parsing of a
string of length n is clearly maximized if all parsed substrings are as short as possible.
In the case of length n = lm, a binary parsing with a maximal number of substrings
would start with the two length 1 substrings, then four length 2 substrings and so on.
Therefore,

κ(lm) ≤
m
∑

i=1

2i = 2m+1 − 2 < 2m+1 <
lm

m − 1
, (2)

where it was used that lm > lm − 2 = (m − 1)2m+1, so 2m+1 < lm
m−1 . This means that a

string of length lm can be parsed into at most lm
m−1 substrings.

For an arbitrary string s of length n given in the statement of the lemma, choose m such
that lm ≤ n < lm+1 and devide s into two parts s = s1s2, where s1 has length lm. By (2)
the maximal number of substrings in a parsing of s1 is bounded by lm

m−1 . The remaining
part s2 of length r = n− lm is then parsed into a maximal number of r

m+1 substrings by
using the minimal available substring length m + 1. This is possible since n < lm+1 and
lm+1 is the length of a string consisting of all substrings up to length m + 1. Hence,

κ(n) ≤ lm
m − 1

+
r

m + 1
≤ lm

m − 1
+

n − lm
m − 1

=
n

m − 1
. (3)

Finally, m is bounded in (3) in order to obtain the required bound for κ(n). Firstly, by
definition of lm,

n ≥ lm =
m
∑

i=1

i2i ≥ m2m ≥ 2m,

so m ≤ log n, where log = log2. Secondly, using m ≤ log n,

n < lm+1 = m2m+2 + 2 ≤ (m + 2)2m+2 ≤ (log n + 2)2m+2.

Dividing by (log n + 2), taking the logarithm and subtracting 3 gives

m − 1 ≥ log
n

log n + 2
− 3. (4)

Using the fact that log n + 2 ≤ 2 log n ∀n ≥ 4 (proof by induction as n = 4 ⇒ 4 ≤ 4 and
log(n + 1) + 2 = log n+1

n + log n + 2 ≤ 2 log n+1
n + 2 log n = 2 log(n + 1)), inequation (4)

can be extended as follows:

m − 1 ≥ log
n

log n + 2
− 3 = log n − log(log n + 2) − 3

= log n

(

1 − log(log n + 2) + 3

log n

)

≥ log n

(

1 − log(2 log n) + 3

log n

)

= log n

(

1 − log(log n) + 4

log n

)

= (1 − ǫn) log n, (5)
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where ǫn = log(log n)+4
log n → 0 as n → ∞. Inserting (5) into (3) proves the claimed bound

κ(n) ≤ n
(1−ǫn) log n .

Before proving Ziv’s Inequality, which is the starting point for the proof of the main
theorem, a couple of facts about stochastic processes are introduced next. Stochastic
processes are considered in this section as an arbitrary input source of characters is
modelled by a stationary ergodic process in the following proofs.

3.3 Definition:

1. Over a probability space (Ω, S, P ) with sample space Ω, σ-algebra S and proba-
bility measure P , a stochastic process Z is a set of random variables {Zi}i∈I =
{Zi : Ω → Ω′|i ∈ I} indexed by I. In this section, it is assumed that I = Z .
The joint distribution function of the random variables Zt1 , . . . , Ztk is denoted by
P Zt1

,...,Ztk
(zt1 , . . . , ztk).

2. A process {Zi}i∈Z is called stationary if its joint distribution function is invariant
when shiftet in time, i.e. P Zt1+s,...,Ztk+s

(zt1 , . . . , ztk) = P Zt1
,...,Ztk

(zt1 , . . . , ztk) ∀s.

3. A process {Zi}i∈Z is called ergodic if a sufficiently long sample (realization) reflects
its statistical properties, i.e. mean and variance.

4. The entropy H of a discrete random variable X is H(X) := −∑x p(x) log p(x),
where X takes its values xi with probabilities p(xi). For a continuous X with
density f(x), the entropy is defined as H(X) := −

∫

f(x) log f(x)dx.

5. The relative entropy is defined as D(p||q) :=
∑

x p(x) log p(x)
q(x) in the discrete case

and as D(f ||g) :=
∫

f(x) log f(x)
g(x)dx in the continuous case, where p, q are proba-

bility densities and f, g are density functions.

6. The entropy rate of a stochastic process Z = {Zi}i∈Z is defined as the limit
H(Z) := limn→∞ 1

nH(Z1, . . . , Zn), where (Z1, . . . , Zn) denotes a n-dimensional
random variable.

7. For a process {Zi}i∈Z , the lth order Markov approximation Ml of P is defined
as Ml(Z−(l−1), . . . , Z0, . . . , Zn) := P (Z0

−(l−1))
∏n

i=1 P (Zi|Zi−1
i−l ) for all n, where Zb

a

denotes the vector (Za, . . . , Zb) and Z0
−(l−1) is an initial configuration.

3.4 Lemma: (Properties)

1. The relative entropy is non-negative.

2. The density f̃ which maximizes the entropy H subject to the constraints f(x) ≥ 0,
∫

f(x)dx = 1 and E =
∫

xf(x)dx = µ has the form f̃(x) = ea+bx, where a and b
are chosen to satisfy the three constraints.
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3. Let X be a random variable taking values in N 0 with mean µ. Then its entropy is
bounded by H(X) ≤ (µ + 1) log(µ + 1) − µ log µ.

4. For random variables X and Y , the entropy of (X, Y ) is bounded by the sum of
H(X) and H(Y ), i.e. H(X, Y ) ≤ H(X) + H(Y ).

5. Let H(Z) denote the entropy of the process Z = {Zi}i∈I . The Markov approxima-
tion satisfies limn→∞− 1

n log Ml(Z1, . . . , Zn|Z0
−(l−1)) = H(Z0|Z−1

−l ) and addition-

ally, liml→∞ H(Z0|Z−1
−l ) = H(Z).

Proof.

1. Using Jensen’s Inequality for the convex function − log,

D(p||q) =
∑

x

p(x) log

(

p(x)

q(x)

)

=
∑

x

p(x)

[

− log

(

q(x)

p(x)

)]

≥ − log

(

∑

x

p(x)
q(x)

p(x)

)

= − log

(

∑

x

q(x)

)

= − log 1 = 0,

as q(x) is a probability density. The same statement for D(f ||g) is proven similarly:

D(f ||g) =

∫

f

[

− log

(

g

f

)]

≥ − log

(∫

f
g

f

)

= − log

(∫

g

)

= − log 1 = 0.

2. Let f be any other density which satisfies all three constraints. Then

H(f) = −
∫

f log f = −
∫

f

(

log
f

f̃
+ log f̃

)

= −D(f ||f̃) −
∫

f log f̃ .

Using the definition of f̃(x) = ea+bx and D(f ||f̃) ≥ 0 yields

H(f) ≤ −
∫

f(x)(a + bx)dx = −a

∫

f(x)dx − b

∫

xf(x)dx = −a − bµ

= −a

∫

f̃(x)dx − b

∫

xf̃(x)dx = −
∫

f̃ log f̃ = H(f̃),

where it was used that f and f̃ satisfy the constraints.

3. By (2) it is known that the density of a random variable with given mean µ which
maximizes the entropy is of the form f(x) = ea+bx. Both constraints

∑∞
x=0 f(x) =

1 and
∑∞

x=0 xf(x) = µ have to be satisfied, hence

1 = ea
∞
∑

x=0

ebx =
ea

1 − eb
,

µ = eaeb
∞
∑

x=1

x(eb)x−1 = eaeb d

d(eb)

∞
∑

x=1

(eb)x = eaeb d

d(eb)

(

1

1 − eb
− 1

)

=
eaeb

(1 − eb)2
.

11



Substituting 1 = ea

1−eb yields µ = eb

1−eb , so eb = µ
1+µ and ea = 1 − eb = 1

1+µ .
Therefore, the distribution with maximal entropy subject to a given mean µ must

be of the form f(x) = 1
1+µ

(

µ
1+µ

)x
, x = 0, 1, . . .. The only distribution of this form

is the geometric distribution γ(x) = p(1 − p)x, x = 0, 1, . . . with mean µ = 1
p − 1,

for which the entropy can be computed directly:

H(Xγ) = −
∞
∑

x=0

p(1 − p)x(log p + x log(1 − p))

= −p log p
∞
∑

x=0

(1 − p)x − p(1 − p) log(1 − p)
∞
∑

x=1

x(1 − p)x−1

= − log p + p(1 − p) log(1 − p)
d

dp

∞
∑

x=1

(1 − p)x

= − log p + p(1 − p) log(1 − p)
d

dp

(

1

p
− 1

)

= − log p − 1 − p

p
log(1 − p).

This shows that the entropy of an arbitrary random variable X is bounded by
H(X) ≤ H(Xγ) = − log p − 1−p

p log(1 − p) = (µ + 1) log(µ + 1) − µ log µ, where

µ = 1
p − 1 ⇔ p = 1

1+µ was substituted.

4. Let X ∼ p1(x) and Y ∼ p2(y). Then, (X, Y ) is distributed according to the
joint distribution (X, Y ) ∼ p3(x, y) and note that p1(x) =

∑

y p3(x, y), p2(y) =
∑

x p3(x, y). By (1) it is known that 0 ≤ D(p||q) = −∑x p(x) log
(

q(x)
p(x)

)

, which

is equivalent to −∑x p(x) log p(x) ≤ −∑x p(x) log q(x) for any distributions p, q.
Applying this to the distributions p3(x, y) and p1(x)p2(y) gives

H(X, Y ) = −
∑

x,y

p3(x, y) log p3(x, y) ≤ −
∑

x,y

p3(x, y) log(p1(x)p2(y))

= −
∑

x,y

p3(x, y) log p1(x) −
∑

x,y

p3(x, y) log p2(y) = H(X) + H(Y ).

5. Those two properties follow by the Shannon-McMillan-Breiman Theorem, see The-
orem 15.7.1 and Lemma 15.7.1 of chapter 15.7 in ([8]).

After having introduced those basic definitions and its properties, the outline of the
further proof is as follows. Instead of P (Z1, . . . , Zn) for an input process Z, its Markov
approximation is considered. Then, an upper bound of the entropy of the Markov ap-
proximation is derived in Ziv’s Inequality. This result is used in the main theorem and
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a resulting corollary, where it is shown that the length per symbol of the Lempel-Ziv
coding κ(n)(log κ(n)+1)

n (see subsection 3.1) converges to the entropy.

Suppose now that a realization zn
−(l−1) = (z0

−(l−1), z
n
1 ) of the binary input process Zn

−(l−1)

is given, where l = 1, 2, . . . is arbitrary and z0
−(l−1) is an initial configuration. Let zn

1 have
a distinct parsing ω1 · · ·ωκ. For all substrings ωi in the parsing, denote the preceding
substring (history) of length l by πi, i.e. the preceding substring of ωi = (za, . . . , zb)
is πi = za−1

a−l . The history of the first parsed substring ω1 is the initial configuration
π1 = z0

−(l−1). Moreover, denote the number of substrings in the parsing with length λ

and history π (all π have length l) by κλπ. As the parsing is distinct, every ωi is uniquely
determined by its length λ and its history π, hence

∑

λ,π κλπ = κ. Similarly, every ωi

is counted only once in one of the κλπ and all substrings belonging to κλπ have equal
length λ, so

∑

λ,π λκλπ = n.

3.5 Lemma: (Ziv’s Inequality) Let a realization zn
−(l−1) = (z0

−(l−1), z
n
1 ) of the binary

input process Zn
−(l−1) be given. For all l ≥ 1 and for all distinct parsings of zn

1 , the lth
order Markov approximation is bounded independently of Ml by

log Ml(z1, . . . , zn|z0
−(l−1)) ≤ −

∑

λ,π

κλπ log κλπ.

Proof. Let z1 · · · zn = ω1 · · ·ωκ be any distinct parsing. As the parsing is distinct,

Ml(z1, . . . , zn|z0
−(l−1)) = Ml(ω1, . . . , ωκ|π1) =

κ
∏

i=1

P (ωi|πi),

where the last equality follows by definition of the Markov approximation. Taking the
logarithm yields

log Ml(z1, . . . , zn|z0
−(l−1)) =

κ
∑

i=1

log P (ωi|πi) =
∑

λ,π

∑

ωi:l(ωi)=λ,πi=π

log P (ωi|πi),

as every ωi is determined by its length and pre-state. Inserting κλπ, 1
κλπ

and using
Jensen’s Inequality for the concave log function gives

log Ml(z1, . . . , zn|z0
−(l−1)) =

∑

λ,π

κλπ

∑

ωi:l(ωi)=λ,πi=π

1

κλπ
log P (ωi|πi)

≤
∑

λ,π

κλπ log





1

κλπ

∑

ωi:l(ωi)=λ,πi=π

P (ωi|πi)



 . (6)

Now, for every given λ and π in the first sum,

∑

ωi:l(ωi)=λ,πi=π

P (ωi|πi) ≤
∑

i

P (ωi|π) = P (any ω|π) ≤ 1, (7)

13



where the inequality holds true as the constraint l(ωi) = λ, πi = π was removed and the
first equality is true as all ωi are distinct. Substituting (7) into (6) finally shows

log Ml(z1, . . . , zn|z0
−(l−1)) ≤ −

∑

λ,π

κλπ log κλπ.

Using Ziv’s Inequality, the main theorem can now be proven. It shows that the expression
κ(n) log κ(n)

n for any distinct parsing in κ(n) substrings, not only the one of Lempel-Ziv
coding, is bounded above by the entropy.

3.6 Theorem: (Main theorem) For any stationary ergodic process Z = {Zi}i∈I with
entropy H(Z) and any realization of length n of Z, a distinct parsing into κ = κ(n)
substrings satisfies

lim sup
n→∞

κ(n) log κ(n)

n
≤ H(Z).

Proof. By Ziv’s Inequality (Lemma 3.5), it is already known that

log Ml(z1, . . . , zn|z0
−(l−1)) ≤ −

∑

λ,π

κλπ log κλπ = −
∑

λ,π

κλπ

(

log κ + log
κλπ

κ

)

,

where ± log κ was inserted. As stated in the introduction to Ziv’s Inequality,
∑

λ,π κλπ =
κ, therefore

log Ml(z1, . . . , zn|z0
−(l−1)) ≤ −κ log κ − κ

∑

λ,π

κλπ

κ
log

κλπ

κ
. (8)

Also, as
∑

λ,π κλπ = κ, the fractions κλπ

κ =: pλπ can be interpreted as point masses pλπ

of a probability distribution, where
∑

λ,π pλπ = 1. Similarly, n
κ =

∑

λ,π λpλπ follows
directly from n =

∑

λ,π λκλπ after dividing by κ.

Now, the known results from Lemma 3.4 shall be used to derive the bound stated in the
main theorem. In order to do this, define random variables X, Y with P (X = λ, Y =
π) = pλπ. This is possible by simply defining X and Y discretely on all finitely many
tupels (λ, π) as the range for the length is λ = 1, . . . , n and the are 2l possible strings
for the history π of length l over a binary alphabet. Inserting P (X = λ, Y = π) = pλπ

into the sum in (8) yields

−
∑

λ,π

κλπ

κ
log

κλπ

κ
= −

∑

λ,π

pλπ log pλπ = H(X, Y ),

and thus
log Ml(z1, . . . , zn|z0

−(l−1)) ≤ −κ log κ + κH(X, Y ).
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After multiplying by − 1
n , this becomes

− 1

n
log Ml(z1, . . . , zn|z0

−(l−1)) ≥
κ

n
log κ − κ

n
H(X, Y ). (9)

Next, the entropy H(X, Y ) is bounded by H(X, Y ) ≤ H(X) + H(Y ) using Lemma 3.4.
H(X) can be bounded by using the mean only as proven in Lemma 3.4 as well. Note
that

E (X) =
∑

λ

λP (X = λ) =
∑

λ,π

λP (X = λ, Y = π) =
∑

λ,π

λpλπ =
n

κ
,

so by substituting the mean µ = n
κ into H(X) ≤ (µ + 1) log(µ + 1) − µ log µ, it follows

that

H(X) ≤ n

κ
log

(

κ + n

n

)

+ log

(

κ + n

κ

)

. (10)

On the other hand, P (Y = π) = 2−l, as any of the 2l possible binary substrings π of
length l is equally likely. By definition of the entropy,

H(Y ) = −
∑

π

P (Y = π) log P (Y = π) = −2l2−l(−l) log 2 = l, (11)

where log = log2. Together, (10) and (11) show that

H(X, Y ) ≤ H(X) + H(Y ) ≤ n

κ
log

(

κ + n

n

)

+ log

(

κ + n

κ

)

+ l.

Multiplied by κ
n , this is equivalent to

κ

n
H(X, Y ) ≤ log

(κ

n
+ 1
)

+
κ

n
log
(n

κ
+ 1
)

+
κ

n
l. (12)

Consider (12) now in the limit n → ∞ and note that κ = κ(n). To derive the limit
behaviour of all terms in (12), Lemma 3.2 by Lempel and Ziv is used. It stated that
κ(n) ≤ n

(1−ǫn) log n for any distinct parsing, where ǫn → 0 as n → ∞.

Using the Lemma of Lempel and Ziv and dividing by n, it follows that 0 ≤ κ
n ≤

1
(1−ǫn) log n → 0 as n → ∞. Therefore, κ

n l → 0 as l is independent of n and log
(

κ
n + 1

)

→
log 1 = 0 as n → ∞. In the middle term of (12), the expression n

κ + 1 in the log-
arithm tends to infinity but is dominated by the coefficient κ

n → 0. Summing up,
δl(n) := κ

nH(X, Y ) → 0 as n → ∞.

Rewriting (9) with δl gives

κ log κ

n
=

κ(n) log κ(n)

n
≤ − 1

n
log Ml(z1, . . . , zn|z0

−(l−1)) + δl(n).

In the limit, this leads to

lim sup
n→∞

κ log κ

n
≤ lim sup

n→∞
− 1

n
log Ml(z1, . . . , zn|z0

−(l−1)) + δl(n) = H(z0|z−1
−l ) → H(Z)

as l → ∞, where it was used that δl(n) → 0 as n → ∞ and the two entropy limits for
n → ∞ and l → ∞ follow by Lemma 3.4.
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The fact that Lempel-Ziv coding approaches the entropy now follows as a corollary of
the main theorem. As derived in subsection 3.1, the length of the Lempel-Ziv code
is κ(n)(log κ(n) + 1). The length per symbol κ(n)(log κ(n)+1)

n is easily bounded by the
entropy.

3.7 Corollary: For any stationary ergodic process Z = {Zi}i∈I with entropy H(Z) and

any realization of length n of Z, the length per symbol κ(n)(log κ(n)+1)
n of the Lempel-Ziv

coding satisfies

lim sup
n→∞

κ(n)(log κ(n) + 1)

n
≤ H(Z).

Proof. By Lemma 3.2 of Lempel and Ziv, κ(n) ≤ n
(1−ǫn) log n for any distinct parsing,

where ǫn → 0 as n → ∞. As used in the proof of the main theorem before, this means
that 0 ≤ κ(n)

n ≤ 1
(1−ǫn) log n → 0 as n → ∞. It follows that

lim sup
n→∞

κ(n)(log κ(n) + 1)

n
= lim sup

n→∞

(

κ(n) log κ(n)

n
+

κ(n)

n

)

≤ H(Z),

where it was used that κ(n)
n → 0 as n → ∞ and that lim supn→∞

κ(n) log κ(n)
n ≤ H(Z)

by the main theorem. Clearly, Lempel-Ziv coding cannot beat the entropy, hence it is
optimal in the limit.

Empirical results on compression rates using a Lempel-Ziv variant are presented in chap-
ter 6. The results presented there were obtained with an implementation of the Lempel-
Ziv-Welch algorithm, which uses amongst others a variable bitrate encoding. In sub-
section 3.1, it was derived that every tupel consisting of prefix and appended bit needs
log κ(n) + 1 bits for storage, because a pointer to any of the κ(n) prefixes uses at most
log κ(n) bits. The variable bitrate encoder increases the bitrate over time, using fewer
bits for the first tupels as those pointers are more likely to point to lower indices. Hence,
every tupel consisting of prefix and appended bit needs at most log κ(n) + 1 bits (the
first tupels need less, the last ones need exactly log κ(n)+1 bits). As a consequence, this
technique approaches the entropy even faster than the method analysed in the theorems
above. Note that the method by Lempel and Ziv doesn’t require any information on the
distribution of the input sequence. Such a code is called a universal code.
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4. A Block-Sorting Data Transformation

After the universal compression algorithm by Lempel and Ziv has been introduced in
chapter 3, a recent approach on data compression is described in this chapter. The
following section is based on the original paper ([1]) by M. Burrows and D.J. Wheeler,
who describe a block-sorting coding scheme to increase the redundancy of a given input
source. The scheme itself doesn’t compress the data. The algorithm works as follows:

Burrows-Wheeler Transformation

1. Given any finite input string s = s0 · · · sn−1 of length n over an arbitrary finite
alphabet, let s(k) = sk · · · sn−1s0 · · · sk−1 denote the cyclic left shift of s by k
symbols. Note that s = s(0) = s(n).

2. Insert all n shifts s(0), . . . , s(n−1) of length n as rows into an n× n matrix M in
any order and sort all rows of M lexicographically, giving a sorted matrix M ′.

3. Locate the first cyclic left shift s(1) in the output M ′ and call its row number r.
Output the last column of M ′ including the index r.

4.1 Example: As an example, the string s = bacba over the alphabet {a, b, c} shall be
encoded. Firstly, all cyclic left shifts of s are inserted as rows in a matrix M and sorted
lexicographically, giving a matrix M ′,

M =













b a c b a
a c b a b
c b a b a
b a b a c
a b a c b













⇒ M ′ =













a b a c b
a c b a b
b a b a c
b a c b a
c b a b a













0
1
2
3
4

Let the rows be indexed by 0, 1, . . . , (n − 1). In this example, the first shift s(1) = acbab
is located in row r = 1 in the matrix M ′. The output of the Burrows-Wheeler Transfor-
mation is the last column of M ′ and r, so (bbcaa, 1).

The effect of the Burrows-Wheeler transformation (abbreviated by BWT) can be ob-
served immediately in the example above, where an almost perfect sorting was achieved.
For every character a in a cyclic shift of length n, call its successive n− 1 characters the
context of a. The BWT sorts all shifts lexicographically and outputs the last symbol
of every shift, which means that all output symbols are grouped together according to
their context. In the example, the second b of the input bacba appears as first output
character because its context abac is the lowest in the lexicographical sorting. Hence,
for any input string, the BWT groups all symbols together according to their context
independently of the actual position of a symbol in the input. This turns out to be es-
pecially useful for data compression. Using Lempel-Ziv coding, those repetitions z . . . z

17



of an equal subsequence z will yield prefixes z, zz, . . . of growing length and thus higher
compression, while in the original file, z might always appear isolated.

4.2 Remark: Consider any shift s(k) = sksk+1 · · · sn−1s0 · · · sk−1, which starts with
a symbol sk = c. After having sorted the shift s(k) lexicographically together with
all other shifts {s(j1), . . . , s(jn)} starting with symbol c, call its position in the sort-
ing m. This means that s(k) is the mth shift in the sorting of all those starting with
c. Note that the symbol c itself is not important for the lexicographical sorting as all
shifts {s(k), s(j1), . . . , s(jn)} begin with c, hence only the context sk+1, . . . , sk−1 of sym-
bol sk is important for sorting. Likewise, only the context of the first symbol of the
other shifts {s(j1), . . . , s(jn)} is of interest for sorting. Now, the position of the sym-
bol sk shall be determined when all strings are rotated left by one symbol and c will
be last character. Observe that if all shifts are rotated left by one, all shifts ending
with c are precisely {s(k+1), s(j1+1), . . . , s(jn+1)}. Symbol sk appears at the end of shift
s(k+1) = sk+1 · · · sn−1s0 · · · sk and thus has the same context sk+1, . . . , sk−1 again. Like-
wise, the last symbols in the other shifts {s(j1+1), . . . , s(jn+1)} have unchanged context.
This means that they will have exactly the same order after lexicographical sorting as
before and the shift s(k+1), which has sk = c as last symbol, will again have position m
in the sorting.

Surprisingly, the input string can be uniquely recovered using only the BWT output
string s′ and the index r as shown in the next constructive proof.

4.3 Theorem: (Burrows-Wheeler reverse transformation) There exists a reverse trans-
formation to obtain the original string s out of the BWT output (s′, r).

Proof. Let a BWT output (s′, r) be given. By construction of the BWT output, s′

corresponds to the last column of the sorted matrix M ′, while all other columns are yet
unknown.

Suppose that the original string s was known and let s(0), . . . , s(n−1) be the cyclic left
shifts as before. As every symbol si of s is rotated n times in the shifts, it appears as
the last symbol in exactly one shift, the shift s(i+1). The matrix M ′ contains all shifts
as rows and hence all symbols of the input are contained in its last column, which is the
BWT output. Therefore, ordinary sortings of s and s′ yield the same sorted string t,
which corresponds to the first column of M ′:

M ′ =









...
...

t · · · s′

...
...









.

The index r marks the row of the first shift s(1) of s, in which the first symbol s0 of s
is rotated to the last position. Hence, s0 appears as last symbol in row r of M ′. By
construction, all shifts are cyclic, which means that the following symbol s1 appears in
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row r of the first column, which is the known column t. Note that all other columns
of M ′ are still unknown, so in order to get symbol s2, a jump from the first to the last
column is needed. This is done by locating symbol s1 in the last column of M ′ again,
using Remark 4.2: If s1 = c appears as first symbol in the mth of all rows starting
with c, it also has to correspond to the mth of all rows with last symbol c, which shall
have row number r′. Then, the next symbol s2 must be the first symbol in row r′.
Similarly, s2 is located in the last column of M ′ again. Inductively, the whole string can
be recovered.

Finally, the construction for decoding is applied in the continued example:

4.4 Example: In the last example, the BWT ouput was (bbcaa, 1). Sorting the string
bbcaa (the last column of M ′) gives its first column aabbc:

M ′ =













a · · · b
a · · · b
b · · · c
b · · · a
c · · · a













0
1
2
3
4

The first symbol s0 of s is the last symbol in shift s(1), which has row number r = 1, so
s0 = b. The next symbol s1 is the next one in the cyclic shift, located in the first column
of row 1, so s1 = a. This is the second a in the sorted sequence, so its corresponding
shift is the second one with an a in the last column, which has row number 4. From
there s3 is found again by looking at the next symbol in the cyclic shift, which is the first
symbol in row 4, so s3 = c. Inductively, s = bacba is recovered.

From an empirical point of view it turns out that the Burrows-Wheeler Transformation
is an easy and effective scheme to increase the compression rate. Note that the trans-
formation is computationally intensive because of the lexicographical matrix sorting,
while the reverse transformation just requires an ordinary sorting of a string. Burrows
and Wheeler suggest an additional simple encoding technique in their paper ([1]) on
the BWT, which they call Move-To-Front (MTF) encoding. The MTF makes use of re-
peated patterns in the BWT output in order to reversibly convert repetitions of different
symbols into repetitions of the same low byte values. This increases the effect of the
BWT when compressing data. Empirical results are again presented in chapter 6.
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5. A Central Limit Theorem for return times in a random

process

In chapter 3, it was proven that the universal Lempel-Ziv coding approaches the entropy
of an arbitrary stationary ergodic random process. In the following sections, a central
limit theorem on return times of a random process is stated and proven, which can be
restated to give an asymptotic normal estimator of the entropy. This chapter is based
on the original paper ([10]) by O. Johnson.

5.1. Statement of the problem and main theorem

Let a sample (Z1, . . . , Zn) of a stationary random process Z be given, where all Zi take
values in a finite alphabet A. The main aim is to estimate the entropy H of Z. As
before, let Zb

a denote the vector Zb
a = (Za, Za+1, . . . , Zb). Partition a sample Zi into

blocks of length l in the following definition.

5.1 Definition: Define random variables Xi to be the block of length l up to Zil, so
Xi := Zil

(i−1)l+1 ∈ Al.

The main theorem is a statement on the return times of the first k blocks Xi, i.e. the
time t it takes for the first k blocks X1, . . . , Xk to reappear. The return time is formally
defined in the next definition.

5.2 Definition: The return time Sj of the jth block is defined as the random variable

Sj := min{t ≥ 1 : Xj+t = Xj} (13)

for all j = 1, . . . , k.

The main theorem now states that the return times Sj satisfy a central limit theorem,
given that the number k(l) and size l of the blocks grow adequately.

5.3 Theorem [10]: (Main theorem) Suppose that (Zi) is an independent identically dis-
tributed finite alphabet process with entropy H. Let qmax < 1 be the maximum probability
of any symbol. If, as the block length l → ∞, the number of blocks k(l) → ∞ in such a
way that liml→∞ k(l)3/2lql

max = 0, then

∑k(l)
i=1(log Si − lH log 2 + γ)

√

k(l)π2/6

d→ N(0, 1),

where γ is the Euler constant.

As an important application, the main theorem can be restated to give an asymptotically
normal estimator of the entropy H, as stated in the following corollary.
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5.4 Corollary [10]: Under the conditions of the main theorem, the estimator

Ĥ :=

∑k(l)
i=1(log Si + γ)

l log 2
√

k(l)π2/6

is asymptotically normal and estimates the entropy.

Proof. By definition of asymptotic normality, a sequence (Tn(Y1, . . . , Yn))n∈N of esti-
mators is asymptotically normal for a quantity θ if and only if there exist sequences
(µn(θ))n∈N and (σn(θ))n∈N such that

Tn(Y1, . . . , Yn) − µn(θ)

σn(θ)

d→ N(0, 1),

where the estimator (Tn(Y1, . . . , Yn))n∈N depends on empirical input values Yi.

For the claimed estimator Ĥ in the corollary, let σn = 1
l log 2 be independent of H and

µn(H) =

√
k(l)H√
π2/6

. Substituting into the definition of asymptotic normality shows that

Ĥ(log S1, . . . , log Sk(l)) − µn(H)

σn
=

1
1

l log 2

(

∑k(l)
i=1(log Si + γ)

l log 2
√

k(l)π2/6
−
√

k(l)H
√

π2/6

)

=

∑k(l)
i=1(log Si − lH log 2 + γ)

√

k(l)π2/6

d→ N(0, 1)

by the main theorem. This proves that Ĥ is an asymptotically normal estimator.

5.2. Avoiding early matches

Let the process Zi be independent and equidistributed over a finite alphabet A. There are
|A|l possibilities for each block Xi of length l, hence each block occurs with probability

p = |A|−l. (14)

The return time Sj then corresponds to the waiting time until a block reappears and
thus is a geometric variable. As the process is assumed to be independent and identically
distributed with entropy H, the Asymptotic Equipartition Property (AEP, see chapter
3 in [8]) is satisfied, so that

p ∼= 2−lH . (15)

The problem with the Sj in Definition 5.2 is that early matches may occur in the sequence
X1, . . . , Xk, i.e. Si ≤ k − i. As an example, it could happen that X2 = X3, while for
the main theorem the return times of X1, . . . , Xk as a whole and not early return times
within the block are of interest. To bypass this problem, new random variables Rj are
defined, which take the values of Sj if no early match has occured and are set to a new
value for early matches.
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5.5 Definition:

1. For a realization X1, . . . , Xn of the process, define

D := {i : Xi 6= Xj ∀j = (i + 1), . . . , k}

to be the set of all indices that do not see an early match.

2. For all i ∈ D, set new values bi = Xi and for all i /∈ D, define bi to be a random
element chosen uniformly from the set of blocks not yet assigned, i.e. bi ∈ Al\⋃j bj.

3. For the new values bj, define random variables Rj to be the waiting time from the
end of every block until bj is seen again, i.e.

Rj := min{t ≥ 1 : Xk+t = bj}. (16)

5.6 Remark:

1. If i ∈ D it follows that bi = Xi. By definition, the numbers Si and Ri satisfy
Xk+Ri

= bi = Xi = Xi+Si
. As both indices are minimal, k +Ri = i+Si and hence

Si = Ri + (k − i).

2. If i ∈ Dc, then an early match has occurred and bi is equal to a Xj, j = (i+1), . . . , k,
between the two bi in the sequence X1, . . . , bi, . . . , Xj , . . . , Xk, . . . , bi. Therefore,
Si ≤ k − i + Ri.

3. For a random variable R ∼ Geom(p), P (R = k) = p(1 − p)k−1 ∀k ∈ N , the
expected value E (1/R) is

E (1/R) = p
∞
∑

k=1

1

k
(1 − p)k−1 = p

∞
∑

k=0

1

k + 1
(1 − p)k

=
p

1 − p

∞
∑

k=0

1

k + 1
(1 − p)k+1 =

p

1 − p

∞
∑

k=0

∫ p

1
−(1 − x)kdx

=
−p

1 − p

∫ p

1

∞
∑

k=0

(1 − x)kdx =
−p

1 − p

∫ p

1

1

x
dx =

−p

1 − p
log p.

By (14) it is known that p = |A|−l, while on the other hand the probability p of
any block of length l can be bounded by the probability of the most likely symbol
occuring l times, p ≤ ql

max. The value E (1/R) can then be bounded by

E (1/R) = − log p
p

1 − p
= l log |A|

∞
∑

k=1

pk ≤ l log |A|
∞
∑

k=1

(ql
max)k = O(lql

max),

because ql
max → 0 as l → ∞.
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4. All |x| ≤ 1 satisfy 1 − (1 − x)k ≤ kx for k ∈ N : Define fk(x) = kx − 1 + (1 − x)k

and show that fk(x) ≥ 0 ∀x ∈ [0, 1]. Firstly, compute f ′
k(x) = k − k(1 − x)k−1 =

k(1 − (1 − x)k−1). As x ∈ [0, 1], (1 − (1 − x)k−1) ∈ [0, 1] and thus f ′
k(x) ≥ 0. As

fk(0) = 0 it follows that fk(x) ≥ 0.

5. Let i ∈ D. The probability of two blocks Xi and Xj, i 6= j, of length l being
equal is the probability that all l symbols are equal, which is at most ql

max. So
P (Xi = Xj) ≤ ql

max < 1. By the definition of the set D and independence of {Xj}
it follows that

P (i ∈ D) = P (Xi 6= Xj ∀j = i + 1, . . . , k) =
k
∏

j=i+1

P (Xi 6= Xj)

=
k
∏

j=i+1

(1 − P (Xi = Xj)) ≥
k
∏

j=i+1

(1 − ql
max)

≥
k
∏

j=1

(1 − ql
max) = (1 − ql

max)k.

The new random variables Rj will later be used to restate the main theorem in exchange
for the Sj . This is possible as in the limit l → ∞, a scaled version of

∑

i(log Ri − log Si)
tends to zero in probability, as proven in the next Lemma 5.7. This means that early
matches can be neglected in the limit and as shown later, a central limit theorem for the
Ri extends to a limit for the Si.

5.7 Lemma [10]: Suppose that (Zi) is an independent identically distributed finite al-
phabet process with entropy H. Let qmax < 1 be the maximum probability of any symbol.
If, as the block length l → ∞, the number of blocks k = k(l) → ∞ in such a way that
liml→∞ k(l)3/2lql

max = 0, then

∑k
i=1(log Ri − log Si)√

k

p→ 0,

as l → 0.

Proof. By definition of convergence in probability, it must be shown that

lim
l→∞

P

(∣

∣

∣

∣

∣

∑k(l)
i=1(log Ri − log Si)

√

k(l)
− 0

∣

∣

∣

∣

∣

≥ δ

)

= 0 ∀δ > 0.

This is done by considering ±
∑k

i=1
(log Ri−log Si)√

k
seperately, starting with the proof that

P

(∑k
i=1

(log Si−log Ri)√
k

≥ δ
)

→ 0.

23



Firstly, 1 ≤ Si ≤ Ri + (k − i) by Remark 5.6, so

δ ≤
∑k

i=1(log Si − log Ri)√
k

≤
∑k

i=1(log(Ri + (k − i)) − log Ri)√
k

=

∑k
i=1 log(1 + k−i

Ri
)

√
k

.

It is more likely that the bigger sum is larger than δ, hence

P

(

∑k
i=1(log Si − log Ri)√

k
≥ δ

)

≤ P

(
∑k

i=1 log(1 + k−i
Ri

)
√

k
≥ δ

)

≤ P

(

k
∑

i=1

√
k

Ri
≥ δ

)

,

where log(1 + x) ≤ x was used for the second inequality, so
∑k

i=1
(log(1+(k−i)/Ri)√

k
≤

∑k
i=1

(k−i)√
kRi

≤∑k
i=1

k√
kRi

=
∑k

i=1

√
k

Ri
. Using Chebyshev’s Inequality P (X ≥ ǫ) ≤ 1

ǫ E (X)

for P

(

∑k
i=1

√
k

Ri
≥ δ
)

= P

(

∑k
i=1

1
Ri

≥ δ√
k

)

gives

P

(

k
∑

i=1

√
k

Ri
≥ δ

)

≤
√

k

δ

k
∑

i=1

E
1

Ri
≤

√
k

δ
kO(ql

maxl) = O(k(l)3/2lql
max),

where E (1/R) = O(ql
maxl) is known by Remark 5.6.

In order to proof the same result for
∑k

i=1
(log Ri−log Si)√

k
, consider the cases i ∈ D and

i ∈ Dc separately. If i ∈ D, then Si = Ri + (k − i) by Remark 5.6, so Ri ≤ Si and hence
log Ri − log Si ≤ 0. For all i ∈ Dc, bound log Ri − log Si ≤ log Ri as Si ≥ 1, log Si ≥ 0.
Therefore,

P

(

∑k
i=1(log Ri − log Si)√

k
≥ δ

)

≤ P

(

∑k
i=1 log RiI (i ∈ Dc)√

k
≥ δ

)

≤ 1

δ
√

k

k
∑

i=1

E (log Ri · I (i ∈ Dc))

=
1

δ
√

k

k
∑

i=1

E (log Ri)P (i ∈ Dc), (17)

where the second inequality follows again by Chebyshev. Also, E (log Ri · I (i ∈ Dc)) =
E (log Ri)E (I (i ∈ Dc)) as log Ri and i ∈ Dc are independent and by definition E (I A) =
P (A) for all sets A.

Using that p = |A|−l by (14), p ≤ 1 and E (log Ri) = −γ − log p + O(p) by the following
Lemma 5.10, the expected value of log Ri can be bounded by E (log Ri) = −γ − log p +
O(p) ≤ −γ + l log |A| + const · p ≤ −γ + l log |A| + const = O(l).

Also, P (i ∈ Dc) = 1 − P (i ∈ D) ≤ 1 − (1 − ql
max)k ≤ kql

max, where the two facts
P (i ∈ D) ≥ (1− ql

max)k and 1− (1− x)k ≤ kx ∀x ∈ [0, 1] ∀k ∈ N are known by Remark
5.6.
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Inserting E (log Ri) = O(l) and P (i ∈ Dc) ≤ kql
max into (17) gives the bound

1

δ
√

k

k
∑

i=1

E (log Ri)P (i ∈ Dc) ≤ 1

δ
√

k
kO(l)kql

max = O(k(l)3/2lql
max).

Summarized, if liml→∞ k(l)3/2lql
max = 0 by assumption then

P

(∣

∣

∣

∣

∣

∑k(l)
i=1(log Ri − log Si)

√

k(l)
− 0

∣

∣

∣

∣

∣

≥ δ

)

= O(k(l)3/2lql
max) → 0

as l → ∞, which proves the Lemma.

5.3. Mean and variance of log Ri

The proof of the last Lemma 5.7 used the yet unproven fact E (log Ri) = −γ−log p+O(p).
The leading order terms of mean and variance of log R will therefore be calculated in
the following two lemmas.

5.8 Lemma [10]: Any differentiable function f such that f(x) → 0 as x → ∞ satisfies

∣

∣

∣

∣

∣

∞
∑

i=1

f(i) −
∫ ∞

1
f(x)dx

∣

∣

∣

∣

∣

≤ 1

2
|f(1)| + 1

2

∫ ∞

1
|f ′(x)|dx.

Proof. Integration by parts on the interval [a, a + 1] gives

−
∫ a+1

a
f ′(x)

(

x − a − 1

2

)

dx = −
[

f(x)

(

x − a − 1

2

)]a+1

x=a

+

∫ a+1

a
f(x)dx

= −1

2
(f(a) + f(a + 1)) +

∫ a+1

a
f(x)dx,

so

∫ a+1

a
f(x)dx− 1

2
(f(a)+f(a+1)) ≤

∣

∣

∣

∣

−
∫ a+1

a
f ′(x)

(

x − a − 1

2

)

dx

∣

∣

∣

∣

≤ 1

2

∫ a+1

a
|f ′(x)|dx,

where the absolute value was moved under the integral and it was used that |x−a−1/2| ≤
1/2 for all x ∈ [a, a + 1]. Similarly,

1

2
(f(a) + f(a + 1)) −

∫ a+1

a
f(x)dx ≤

∣

∣

∣

∣

∫ a+1

a
f ′(x)

(

x − a − 1

2

)

dx

∣

∣

∣

∣

≤ 1

2

∫ a+1

a
|f ′(x)|dx.
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This means that
∣

∣

∣

1
2(f(a) + f(a + 1)) −

∫ a+1
a f(x)dx

∣

∣

∣
≤ 1

2

∫ a+1
a |f ′(x)|dx, which gives the

statement of the Lemma:
∣

∣

∣

∣

∣

∞
∑

i=1

f(i) −
∫ ∞

1
f(x)dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

2
f(1) +

∞
∑

a=1

1

2
(f(a) + f(a + 1)) −

∞
∑

a=1

∫ a+1

a
f(x)dx

∣

∣

∣

∣

∣

≤ 1

2
|f(1)| +

∞
∑

a=1

∣

∣

∣

∣

1

2
(f(a) + f(a + 1)) −

∫ a+1

a
f(x)dx

∣

∣

∣

∣

≤ 1

2
|f(1)| + 1

2

∞
∑

a=1

∫ a+1

a
|f ′(x)|dx

=
1

2
|f(1)| + 1

2

∫ ∞

1
|f ′(x)|dx.

Lemma 5.8 and the following Remark 5.9 are used as a preparation for the proof of mean
and variance of log Ri stated in the later Lemma 5.10.

5.9 Remark:

1. For any c ≥ 0, compute the derivative d
dx (e−cx log x) = e−cx 1

x − ce−cx log x. Inte-
grating the derivative from 1 to infinity shows that

0 =
[

e−cx log x
]∞
x=1

=

∫ ∞

1
e−cx 1

x
dx −

∫ ∞

1
ce−cx log xdx.

Using the substitution t = cx, x = t
c , dx = 1

cdt for the second equality gives

∫ ∞

1
e−cx log xdx =

1

c

∫ ∞

1
e−cx 1

x
dx =

1

c

∫ ∞

c
e−t c

t

1

c
dt =

1

c

∫ ∞

c
t−1e−tdt.

2. The incomplete gamma function is defined as Γ(s, x) =
∫∞
x ts−1e−tdt. By def-

inition, 1
cΓ(0, c) = 1

c

∫∞
c t−1e−tdt =

∫∞
1 e−cx log xdx, where the second equality

follows by the previous calculation. Moreover, using integral tables for the Gamma
function it can be derived that Γ(0, c) = −γ − log c + c + O(c2), where γ is Euler’s
constant.

3. Let X ∼ f(x) be a random variable defined on [a, . . . ,∞) with cumulative distribu-
tion function F (x) = P (X < x) = 1 − P (X ≥ x), F ′(x) = f(x). The expectation
E (g(X)) for a differentiable function g can then be expressed using integration by
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parts and F (a) = 0, F (∞) = 1,

E (g(X)) =

∫ ∞

a
g(x)f(x)dx = [g(x)F (x)]∞x=a −

∫ ∞

a
g′(x)(1 − P (X ≥ x))dx

= [g(x)F (x)]∞x=a −
∫ ∞

a
g′(x)dx +

∫ ∞

a
g′(x)P (X ≥ x)dx

= [g(x)(F (x) − 1)]∞x=a +

∫ ∞

a
g′(x)P (X ≥ x)dx

= g(a) +

∫ ∞

a
g′(x)P (X ≥ x)dx.

5.10 Lemma [10]: Let R ∼ Geom(p), then

1. µ(p) := E (log R) = −γ − log p + O(p),

2. σ2(p) := Var (log R) = π2

6 + O(p log p),

3. E
(

| log R − µ(p)|3
)

≤ K = const < ∞.

Proof.

1. Define c := − log(1−p) ≥ 0 and f(x) := e−cx log x. Computing the derivate shows
that |f ′(x)| = |e−cx/x − ce−cx log x| ≤ |e−cx/x| + |ce−cx log x|. Denote the sum in
Lemma 5.8 by S :=

∑∞
i=1 f(i) and the integral by I :=

∫∞
1 f(x)dx and note that

f(1) = 0, so that

|S − I| =

∣

∣

∣

∣

∣

∞
∑

i=1

e−ci log i −
∫ ∞

1
e−cx log xdx

∣

∣

∣

∣

∣

≤ 1

2
|0| + 1

2

∫ ∞

1
|f ′(x)|dx

≤ 1

2

∫ ∞

1

e−cx

x
dx +

c

2

∫ ∞

1
e−cx log xdx

=
1

2

[

e−cx log x
]∞
x=1

− 1

2

∫ ∞

1
(−c)e−cx log xdx +

c

2

∫ ∞

1
e−cx log xdx

= cI,

where |f ′(x)| ≤ |e−cx/x| + |ce−cx log x| = e−cx/x + ce−cx log x was used as both

terms are non-negative for x ≥ 1 and 1
2

∫∞
1

e−cx

x dx was integrated by parts.

For R ∼ Geom(p), P (R = k) = p(1− p)k−1 ∀k ∈ N , the first expectation can now
be calculated using c = − log(1 − p),

E (log R) =
∞
∑

x=1

p(1 − p)x−1 log x = p
∞
∑

x=1

e−c(x−1) log x = pec
∞
∑

x=1

e−cx log x.
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The previous estimation showed that |S|− |I| ≤ |S− I| ≤ cI, so S ≤ |S| ≤ I(1+ c)
as I ≥ 0 for x ≥ 1. Therefore,

pec
∞
∑

x=1

e−cx log x ≤ p

1 − p

∫ ∞

1
e−cx log xdx(1 + c) =

p

1 − p

Γ(0, c)

c
(1 + c),

where I =
∫∞
1 e−cx log xdx = 1

cΓ(0, c) follows by Remark 5.9. A Taylor expansion
gives c = p+ 1

2p2 + . . . = O(p) and p
(1−p)c = 1+ 1

2p+ 5
12p2 + . . . = 1+O(p). Further,

p ≤ c as log(1 − p) ≤ −p, so − log c ≤ − log p and Γ(0, c) = −γ − log c + c + O(c2)
by Remark 5.9, which shows that

p

1 − p

Γ(0, c)

c
(1 + c) ≤ (1 + O(p))2(−γ − log c + c + O(c2))

≤ (1 + O(p))(−γ − log p + O(p) + O(p2))

= −γ − log p + O(p).

This shows that µ(p) = E (log R) = −γ − log p + O(p).

2. Similarly, define a new function f(x) := e−cx(log x)2 with derivative |f ′(x)| =
|2e−cx log x/x − ce−cx(log x)2| ≤ |2e−cx log x/x| + |ce−cx(log x)2|. As before it can
be shown that

|S − I| =

∣

∣

∣

∣

∣

∞
∑

i=1

e−ci(log i)2 −
∫ ∞

1
e−cx(log x)2dx

∣

∣

∣

∣

∣

≤ cI.

With the help of the fact that I = π2/(6c) + (−γ + log c)2/c + 1−O(c), it follows
that Var (log R) = E ((log R)2) − µ(p)2 = π2/6 + O(p log p).

3. In order to prove the bound on E
(

| log R − µ(p)|3
)

, partition the range of inte-
gration R into three sets A1 = {x : | log x − µ(p)| ≤ 1}, A2 = {x : log x −
µ(p) ≥ 1} and A3 = {x : log x − µ(p) ≤ −1}. This results in the parti-
tion E

(

| log R − µ(p)|3
)

= K1 + K2 + K3, where Ki = E
(

| log R − µ(p)|3I Ai

)

,
i ∈ {1, 2, 3}. All values Ki are now calculated explicitly.

Firstly, all x ∈ A1 satisfy | log x − µ(p)| ≤ 1 by definition, so | log x − µ(p)|3 ≤ 1
and hence K1 = E

(

| log R − µ(p)|3I x∈A1

)

≤ E (1) = 1.

Secondly, K2 is calculated using Chernoff’s bound P (X ≥ a) ≤ E (esX)
esa ∀s > 0

and the second moment E (R2) = 2−p
p2 of the geometric distribution. Applying

Chernoff’s bound on X = log R with s = 2 yields

P (log R − µ(p) ≥ t) = P (log R ≥ t + µ(p))

≤ E (R2)

exp(2(t + µ(p)))

≤ 2 − p

p2
e−2te−2(−γ−log p+O(p))

≤ 2e2γe−2t,
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where 2 − p ≤ 2 was used, the denominator 1
p2 was cancelled by e−2(− log p) = p2

and e−2O(p) ≤ 1. Also, observe that K2 = E (g(log R − µ(p))) with g(t) = t3. K2

can now be bounded with the help of P (log R− µ(p) ≥ t) ≤ 2e2γe−2t and Remark
5.9 as follows

K2 =

∫ ∞

1
3t2P (log R − µ(p) ≥ t)dt ≤

∫ ∞

1
6t2e2γe−2tdt

=

[

−3

2
e2(γ−t)(2t2 + 2t + 1)

]∞

t=1

=
15

2
e2(γ−1) < 4.

Thirdly, note that

P (log R−µ(p) ≤ −t) = P (R ≤ e−t+µ(p)) = P (R ≤ e−t−γ−log p+O(p)) ≤ 1−exp(−e−γ−t),

so by integrating over the set A3 = {x : log x − µ(p) ≤ −1},

K3 =

∫ −1

−∞
3t2P (log R − µ(p) ≤ t)dt ≤

∫ −1

−∞
3t2(1 − exp(−e−γ+t))dt ≈ 3.02 < 4.

Together, the values K1 ≤ 1, K2 ≤ 4 and K3 ≤ 4 establish the claimed bound
E
(

| log R − µ(p)|3
)

= K1 + K2 + K3 ≤ 9 =: K.

5.4. Asymptotic independence

From the section ’Avoiding early matches’ it is known that the Ri are geometrically
distributed with parameter pi, so Ri ∼ Geom(pi). After mean and variance of log Ri

were deduced in the previous section, explicit bounds on the difference between the joint
probability distribution and the product of the marginal distributions are derived in the
following Lemma 5.11. This result will be needed in the next Proposition 5.13, where
it will be shown that the log Ri are asymptotically independent in the limit l → ∞ and
hence satisfy a Central Limit Theorem.

5.11 Lemma [10]: Let (Zi) be an independent identically distributed finite alphabet
process with entropy H and (Ri) be the random variables defined in Definition 5.5. Then
for any s, m, a = (a1, . . . , am−1),

(

1 − pm

1 − S∗

)s−1

≤ P (Rm ≥ s|R = a) ≤ (1 − pm)s−m,

where R = (R1, . . . , Rm−1) and S∗ = p1 + . . . + pm−1.
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Proof. By definition of the random variable Rm in 5.5, observe that

Rm ≥ s ⇔ min{t ≥ 1 : Xk+t = bm} ≥ s ⇔ Xk+i 6= bm ∀i = 1, . . . , (s − 1).

Therefore, the distribution of Rm given R = a can be made explicit by

P (Rm ≥ s|R = a) =
s−1
∏

i=1

P (Xk+i 6= bm|R = a). (18)

Now consider each term in the product (18) separately for all i. If for some j ≤ m − 1,
the aj = i, then Rj = aj = i as R = a. By definition of Rj := min{t ≥ 1 : Xk+t = bj}
it follows that Xk+i = bj , hence Xk+i 6= bm and the contribution of that i to the product
(18) is 1.

In the case aj 6= i for a fixed i and all j, the probability P (Xk+i 6= bm|R = a) will now
be computed. Firstly, suppose that Xk+i ∈ {bl : l ∈ I}, where I ⊆ N denotes the set of
all possible indices.

Secondly, observe that if aj > i, then as before Rj = min{t ≥ 1 : Xk+t = bj} > i,
hence Xk+l 6= bj for all l ≤ i. In particular, Xk+i 6= bj . This means that the index j
is not needed in the set I of all possible indices. Define the set of all excluded indices
J = {j : aj > i}. Thus Xk+i ∈ {bl : l ∈ I} can now be refined as Xk+i ∈ {bl : l ∈ I \J}.
If aj < i, then Xk+aj

= bj and no information for Xk+i is obtained.

Thirdly, if aj 6= i for all j = 1, . . . , (m− 1) is known only, the index m still belongs to I,
i.e. bm ∈ {bl : l ∈ I \ J},

P (Xk+i = bm, Xk+i ∈ {bl : l ∈ I \ J}) = P (Xk+i = bm) = pm. (19)

Knowing the conditional information R = a on the aj for j = 1, . . . , (m−1) is equivalent
to refining the possible values for Xk+i to the set {bl : l ∈ I \ J} as every given Rj = aj

might exclude an index in I,

P (Xk+i = bm|R = a) = P (Xk+i = bm|Xk+i ∈ {bl : l ∈ I \ J}). (20)

The probability P (Xk+i ∈ {bl : l ∈ I \ J}) can now be calculated directly. Using
J = {j1, . . . , jm},

P (Xk+i ∈ {bl : l ∈ I \ J}) = 1 − P (Xk+i /∈ {bl : l ∈ I \ J})
= 1 − P (Xk+i ∈ {bl : l ∈ J})
= 1 − P (Xk+i = bj1 ∨ . . . ∨ Xk+i = bjm)

= 1 −
m−1
∑

j=1

pjI {j∈J}

= 1 −
m−1
∑

j=1

pjI (aj>i). (21)
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Equations (19), (20) and (21) together give the explicit expression

P (Xk+i 6= bm|R = a) = 1 − P (Xk+i = bm|R = a)

= 1 − P (Xk+i = bm|Xk+i ∈ {bl : l ∈ I \ J})

= 1 − P (Xk+i = bm, Xk+i ∈ {bl : l ∈ I \ J})
P (Xk+i ∈ {bl : l ∈ I \ J})

= 1 − P (Xk+i = bm)

P (Xk+i ∈ {bl : l ∈ I \ J})
= 1 − pm

1 −∑m−1
j=1 pjI (aj>i)

= 1 − pm

1 − Si
, (22)

where Si =
∑m−1

j=1 pjI (aj>i). It is immediate to see that (22) is a decreasing function in
Si, which has range 0 ≤ Si ≤ S∗. By bounding expression (22), the product (18) will
also be bounded.

Firstly, as Si ≤ S∗ ∀i and (22) is decreasing in Si, it follows that P (Xk+i 6= bm|R =
a) ≥ 1− pm

1−S∗
. Bounding all s−1 terms gives the first claimed inequality in the Lemma,

P (Rm ≥ s|R = a) =
s−1
∏

i=1

P (Xk+i 6= bm|R = a) ≥
(

1 − pm

1 − S∗

)s−1

.

Secondly, observe that the product (18) is maximized when the first (m − 1) values of
ai appear in the first (m − 1) places, i.e. {a1, . . . , am−1} = {1, . . . , m − 1}. As stated in
the beginning of the proof, in this case the contribution to the product (18) is 1. It is
clear that the remaining terms i = m, . . . , (s−1) satisfy aj 6= i and thus are bounded by
P (Xk+i 6= bm|R = a) ≤ 1 − pm, where 0 ≤ Si was used in (22). In this way, the second
claimed inequalitity is obtained,

P (Rm ≥ s|R = a) =
s−1
∏

i=1

P (Xk+i 6= bm|R = a) ≤
m−1
∏

i=1

1
s−1
∏

i=m

(1− pm) = (1− pm)s−1−m+1.

The last Lemma 5.11 will now be used to establish a Central Limit Theorem for the
random variables log Ri in the next proposition. It shows that scaled versions of the
log Ri have the property that its limit distribution coincides with the product of its
marginal distributions if liml→∞ lk(l)1/2ql

max = 0. This in turn implies by definition that
the log Ri are asymptotically independent and hence satisfy a Central Limit Theorem.
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5.12 Remark:

1. For any non-negative random variable X, the expected value can be expressed as
E (X) =

∫∞
0 xP (X ≤ x)dx =

∫∞
0 P (X ≥ x)dx by Remark 5.9, where a = 0 and

g(X) = X was used.

2. Define the function

HX,Y (x, y) := P (X ≥ x, Y ≥ y) − P (X ≥ x)P (Y ≥ y).

Then
∫ ∞

0

∫ ∞

0
HX,Y (x, y)dxdy

=

∫ ∞

0

∫ ∞

0
P (X ≥ x, Y ≥ y)dxdy −

∫ ∞

0
P (X ≥ x)dx

∫ ∞

0
Prob(Y ≥ y)dy

= E (XY ) − E (X)E (Y )

= Cov (X, Y ).

Let f and g be any complex continuously differentiable (and invertible) functions.
Using the substitutions x = f−1(a), f(x) = a, f ′(x)dx = da and y = g−1(b),
g(y) = b, g′(y)dy = db yields

Cov (f(X), g(Y ))

=

∫ ∞

0

∫ ∞

0
P (f(X) ≥ a, g(Y ) ≥ b) − P (f(X) ≥ a)P (g(Y ) ≥ b)dadb

=

∫ ∞

0

∫ ∞

0
P (X ≥ f−1(a), Y ≥ g−1(b)) − P (X ≥ f−1(a))P (Y ≥ g−1(b))dadb

=

∫ ∞

0

∫ ∞

0
HX,Y (f−1(a), g−1(b))dadb

=

∫ ∞

0

∫ ∞

0
f ′(x)g′(y)HX,Y (x, y)dxdy.

5.13 Proposition [10]: Let (Zi) be an independent identically distributed finite alphabet
process with entropy H and (Ri) be the random variables defined in Definition 5.5. Then

α :=

∣

∣

∣

∣

∣

∣

E exp





i√
k

m
∑

j=1

log Rj



− E exp





i√
k

m−1
∑

j=1

log Rj



E exp

(

i√
k

log Rm

)

∣

∣

∣

∣

∣

∣

is O(lk(l)1/2ql
max).

Proof. Define random variables U = log Rm ≥ 0, V =
∑m−1

j=1 log Rj ≥ 0 and apply the
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formula from Remark 5.12, where f(t) = g(t) = exp(it/
√

k).

α =

∣

∣

∣

∣

∣

∣

E exp





i√
k

m
∑

j=1

log Rj



− E exp





i√
k

m−1
∑

j=1

log Rj



E exp

(

i√
k

log Rm

)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

Cov

(

exp

(

iU√
k

)

, exp

(

iV√
k

))∣

∣

∣

∣

=

∣

∣

∣

∣

−1

k

∫ ∞

0

∫ ∞

0
exp

(

iu√
k

)

exp

(

iv√
k

)

HU,V (u, v)dudv

∣

∣

∣

∣

≤
∣

∣

∣

∣

−1

k

∣

∣

∣

∣

∫ ∞

0

∫ ∞

0
|HU,V (u, v)|dudv. (23)

Next, define a new function

f(p) :=

∫ ∞

0
(1 − p)eu−1du,

which has derivative f ′(p) = 1
(1−p) log(1−p) + 1

(1−p)2

∫∞
0 (1− p)eu

du. As p ∈ (0, 1), observe

that 1
(1−p)2

∫∞
0 (1 − p)eu

du ≥ 0, hence

−f ′(p) =
−1

(1 − p) log(1 − p)
− 1

(1 − p)2

∫ ∞

0
(1 − p)eu

du ≤ 1

p(1 − p)
,

where it was used that log(1 − p) ≤ −p ∀|p| < 1 (define g(p) = p + log(1 − p), then
g(0) = 0, g′(p) = 1 − 1/(1 − p) ≤ 0 for |p| < 1, thus g(p) ≤ 0), so − log(1 − p) ≥ p and
−1/ log(1 − p) ≤ 1

p .

In addition, let t(x) := f ′(p)x + f(p)− f ′(p)p be the tangent to f at the point (p, f(p)).
As f has an increasing but negative gradient1, t(q) ≤ f(q) for all p ≤ q. This means
that

f(p) − f(q) ≤ f(p) − t(q) = f(p) − f ′(p)q − f(p) + f ′(p)p = −f ′(p)(q − p) ≤ q − p

p(1 − p)
.

This result is now applied on p = pm and q = pm

1−S∗
, which shows that

∫ ∞

0
(1 − pm)eu−1 −

(

1 − pm

1 − S∗

)eu−1

du = f(pm) − f

(

pm

1 − S∗

)

≤
pm

1−S∗
− pm

pm(1 − pm)

=
S∗

(1 − S∗)(1 − pm)

≤ k(l)ql
max

(1 − S∗)(1 − pm)

= O(k(l)ql
max), (24)

1Note that this fails if p is in an ǫ-neighbourhood of 1.
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where the denominator is swallowed up into the O(·) term and S∗ ≤ k(l)ql
max can be

seen as follows: m ≤ k(l) as Rm is the waiting time for block m and there are only k(l)
blocks. In all blocks of length l, every symbol occurs with maximal probability qmax,
hence every block appears with maximal probability ql

max and S∗ = p1 + . . . + pm−1 ≤
(m − 1)ql

max ≤ k(l)ql
max.

Now, non-negative functions h− and h+ will be found such that −h−(u, v) ≤ H(u, v) ≤
h+(u, v). Use Lemma 5.11 to sum over values a such that

∑

j log aj ≥ v or
∑

j log aj < v.

1. For v ≥ E (V ),

h−(u, v) ≤
(

(1 − pm)eu−1 −
(

1 − pm

1 − S∗

)eu−1
)

P (V ≥ v)

and analogously h+ ≤ (1 − pm)1−m
P (U ≥ u)P (V ≥ v). Thus by (24), integration over

{v ≥ E (V )} gives
∫

h−(u, v)dudv =
∫

(1 − pm)eu−1 − (1 − pm

1−S∗
)eu−1du

∫

P (V ≥ v)dv ≤
O(k(l)ql

max)E |V − µ| = O(k(l)3/2ql
max). Also, using that E (U) = O(l) by Lemma 5.10,

∫

h+dudv ≤ (1 − pm)1−m
E (U)E |V − µ| = O(lk(l)3/2ql

max).

2. For v ≤ E (V ),

h+(u, v) ≤
(

(1 − pm)eu−1 −
(

1 − pm

1 − S∗

)eu−1
)

P (V ≤ v)

and analogously h− ≤ (1 − pm)1−m
P (U ≥ u)P (V ≥ v). As in the previous case,

∫

h+(u, v)dudv = O(k(l)3/2ql
max) and

∫

h−(u, v)dudv = O(lk(l)3/2ql
max).

Together, over the whole interval [0,∞), the integrals satisfy
∫

h−dudv =
∫

h+dudv =
O(k(l)ql

max) + O(lk(l)3/2ql
max) = O(lk(l)3/2ql

max). By choice of h− and h+, the function
H(u, v) is bounded by −h−(u, v) ≤ H(u, v) ≤ h+(u, v), which means that |H(u, v)| ≤
h−(u, v) + h+(u, v). Substituting into (23) yields

α ≤
∣

∣

∣

∣

−1

k

∣

∣

∣

∣

∫ ∞

0

∫ ∞

0
|HU,V (u, v)|dudv

≤ 1

k

∫ ∞

0

∫ ∞

0
h−(u, v) + h+(u, v)dudv

≤ 1

k
O(lk(l)3/2ql

max)

≤ O(lk(l)1/2ql
max),

where it was used that the number of blocks k(l) is non-negative.
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5.5. Completing the proof of the main theorem

Proposition 5.13 was the last preparation for proving the main theorem. Recall that the
Lyapunov Central Limit Theorem (see reference [18] in [10]) states that for independent
random variables Y1, . . . , Yk with E (Yi) = µi, Var (Yi) = σ2

i and finite centered absolute
third moment mi = E |Yi − µi|3, if

∑k
i=1 mi

(

∑k
i=1 σ2

i

)3/2
→ 0,

as k → ∞, then
∑k

i=1(Yi − µi)
√

Var
(

∑k
i=1 Yi

)

d→ N(0, 1)

for k → ∞. The main theorem is finally repeated and proven.

Theorem [10]: (Main theorem) Suppose that (Zi) is an independent identically dis-
tributed finite alphabet process with entropy H. Let qmax < 1 be the maximum probability
of any symbol. If, as the block length l → ∞, the number of blocks k(l) → ∞ in such a
way that liml→∞ k(l)3/2lql

max = 0, then

∑k(l)
l=1(log Si − lH log 2 + γ)

√

k(l)π2/6

d→ N(0, 1),

where γ is the Euler constant.

Proof. Given the number of blocks k(l) = k, let T1, . . . , Tk be a sequence of independent
random variables with E (log Ti) = µ(pi) = E (log Ri), Var (log Ti) = π2/6 + O(p log p) =
Var (log Ri) and third moment E | log Ti − µ(p)|3 = E | log Ri − µ(p)|3 ≤ K = 9. (This
is possible since stochastic independence doesn’t depend on the expectation or the vari-
ance).

The log T1, . . . , log Tk now satisfy the Lyapunov Central Limit Theorem. Using that
√

Var
(

∑k
i=1 log Ti

)

=
√

kVar (log Ti) =
√

kπ2/6, the Lyapunov Central Limit Theo-

rem yields

∑k
i=1 log Ti
√

kπ2/6
−
∑k

i=1 µ(pi)
√

kπ2/6
=

∑k
i=1(log Ti − µ(pi))

√

kπ2/6

d→ N(0, 1), (25)

where O(p log p) → 0 as the probability per block p = |A|−l → 0 for l → ∞.
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Here, µ(p) = −γ − log p + O(p) is known by Lemma 5.10. By the Asymptotic Equipar-
tition Property in (15), p = 2−lH as l, k → ∞, independently of the actual pi, which
means that − log p = lH log 2 and thus

k
∑

i=1

µ(pi) → k(−γ + lH log 2), (26)

where it was also used that O(p) → 0. Together with (25), statement (26) shows that

∑k
i=1(log Ti − lH log 2 + γ)

√

kπ2/6

d→ N(0, 1). (27)

Next, the Central Limit Theorem will be extended to the log Ri. Note that the terms

E exp
(

i√
k

log Rj

)

in Proposition 5.13 satisfy

E exp

(

i√
k

log Rj

)

= E

(

cos

(

log Rj√
k

)

+ i sin

(

log Rj√
k

))

≤ E

∣

∣

∣

∣

cos

(

log Rj√
k

)

+ i sin

(

log Rj√
k

)∣

∣

∣

∣

= 1, (28)

as E (X) ≤ E (|X|) for all random variables. By Proposition 5.13 and (28),
∣

∣

∣

∣

∣

∣

E exp





k
∑

j=1

i√
k

log Rj



−
k
∏

j=1

E exp

(

i√
k

log Rj

)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

E exp





k
∑

j=1

i√
k

log Rj



− E exp





k−1
∑

j=1

i√
k

log Rj



E exp

(

i√
k

log Rk

)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

E exp





k−1
∑

j=1

i√
k

log Rj



E exp

(

i√
k

log Rk

)

−
k
∏

j=1

E exp

(

i√
k

log Rj

)

∣

∣

∣

∣

∣

∣

≤ O(lk(l)1/2ql
max) +

∣

∣

∣

∣

∣

∣

E exp





k−1
∑

j=1

i√
k

log Rj



−
k−1
∏

j=1

E exp

(

i√
k

log Rj

)

∣

∣

∣

∣

∣

∣

, (29)

where ±E exp
(

∑k−1
j=1

i√
k

log Rj

)

E exp
(

i√
k

log Rk

)

was inserted.

Bounding the remaining absolute values in (29) k − 1 times in the same fashion shows
that

∣

∣

∣

∣

∣

∣

E exp





k
∑

j=1

i√
k

log Rj



−
k
∏

j=1

E exp

(

i√
k

log Rj

)

∣

∣

∣

∣

∣

∣

≤ k · O(lk(l)1/2ql
max)

= O(lk(l)3/2ql
max). (30)
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By assumption, liml→∞ k(l)3/2lql
max = 0, which establishes the asympotic independence

of log Rj . In the limit l → ∞, the random variables log Rj therefore satisfy the same
Central Limit Theorem as the log Ti in (27), hence

∑k
i=1(log Ri − lH log 2 + γ)

√

kπ2/6

d→ N(0, 1). (31)

Statement (31) now directly carries over to the log Si,

∑k
i=1(log Si − lH log 2 + γ)

√

kπ2/6

=

∑k
i=1(log Si − lH log 2 + γ)

√

kπ2/6
+

∑k
i=1 log Ri
√

kπ2/6
−
∑k

i=1 log Ri
√

kπ2/6

=
−1

√

π2/6
·
∑k

i=1(log Ri − log Si)√
k

+

∑k
i=1(log Ri − lH log 2 + γ)

√

kπ2/6

d→ N(0, 1),

where (31) was used and
∑k

i=1
(log Ri−log Si)√

k
→ 0 is known by Lemma 5.7. This proves the

main theorem.
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6. Empirical results on compression

In the last chapter, the theoretical results on compression are applied in practise. In
order to do this, an own implementation of all presented algorithms was written and
is appended to this essay. The program includes an implementation for constructing
the Huffman code (Huffman), the Lempel-Ziv variant Lempel-Ziv-Welch (LZW) with
variable bitrate encoder and an implementation of the Burrows-Wheeler transformation
(BWT) including the Move-To-Front scheme (MTF, see end of chapter 4). The stan-
dard Canterbury Corpus Benchmark ([6]) was used to compare the compression rates.
The following table shows the best results of all algorithms when compressing the Can-
terbury Corpus, including the common compression tool WinZip with option ’maximal
compression’:

algorithm output filesize in bytes rate in %

uncompressed 2812342 100.0
Huffman 1672576 59.5
LZW 978765 34.8
WinZip 737450 26.2
BWT+LZW 714181 25.4
BWT+MTF+Huffman 871214 31.0
BWT+MTF+LZW 625541 22.2

The table shows that LZW coding makes considerably better use of the redundancy in
an input stream compared to Huffman coding due to compressing substrings. Partial
sorting via BWT increases the redundancy significantly, as observed by compressing
the BWT output using LZW coding. Here, the benchmark could be compressed more
than 250000 bytes more efficiently than without the BWT. Note that there would be no
change between Huffman coding and BWT+Huffman, as the BWT output contains the
same symbols with same multiplicities and hence with the same probability distribution
as the input. Using MTF encoding, repetitions of different symbols in the BWT output
are reversibly transformed to repetitions of the same low byte values, which increases
the redundancy a second time. Now, there exist far more low byte values in the file than
high byte values, hence the probability distribution was shifted to lower symbols and
Huffman coding yields better compression. Moreover, there exist substrings of different
symbols which had different prefix pointers when Lempel-Ziv coded before and now get
same pointers after they had been encoded with the same low byte values. This results
in a better Lempel-Ziv compression, which drops far beyond 700000 bytes (from 714181
bytes for BWT+LZW down to 625541 bytes for BWT+MTF+LZW) and thus beats the
WinZip compression by more than 100000 bytes.
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A. Appendix

The compression results presented in chapter 6 were obtained with an own implementa-
tion, available on the following CD-Rom. It contains a directory ’BSDC’ (Block-Sorting
Data Compression) with the main application ’Project1.exe’ and its source code.
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