public class UPModel.Transform.M extends UPModel.M
Transform-ed Model.
That is, apply Function 'f' to datum 'd' and
Model f(d) by UPModel.M.
This amounts to applying the inverse, f−1
to the random variable modelled by UPModel.M, e.g.,
log−1=exp.
Statistical parameters are as per
the enclosing UPModel.M being transformed.
Note, there is a more specific Continuous.Transform.M for
transforming (UnParameterised) Continuous Models and similar
can be created for other subclasses of UPModel.M.transform(f).Model.Transform.M.Model.Defaults, Model.TransformValue.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Modifier and Type | Field and Description |
|---|---|
Model |
m
'm', the
UPModel.M doing the work
behind the scenes. |
| Constructor and Description |
|---|
M(double msg1,
double msg2,
Value sp)
Statistical parameter(s) 'sp', as per the enclosing UPModel.M,
is (are) used to create
m. |
| Modifier and Type | Method and Description |
|---|---|
double |
nlLH(Value ss)
|
double |
nlPr(Value d)
|
double |
pr(Value d)
|
Value |
random()
|
Value |
stats(boolean add,
Value ss0,
Value ss1)
Combine
statistics 'ss0' and 'ss1'
as m does. |
Value |
stats(Vector ds,
int lo,
int hi)
m.stats(ds.map(f),...), i.e., m's stats on
transformed data. |
java.lang.String |
toString()
Return a String representation of 'this' fully parameterised Model.
|
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTrivpublic Value stats(boolean add, Value ss0, Value ss1)
statistics 'ss0' and 'ss1'
as m does.public java.lang.String toString()
UPModel.MUnParameterised Model, with its
problem defining parameters, and 'this' M-Model's
statistical parameter(s).