public abstract class UPModel.M extends Model
UPModel. A subclass of Model that extends UPModel.M
gets stats(ds...) "for free" from
UPModel.stats(ds...) –
if appropriate – similarly toString().
Also see Model.Model.Defaults, Model.TransformValue.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Constructor and Description |
|---|
M(double msg1,
double msg2,
Value sp)
Given two-part message lengths, msg1 and msg2, and
statistical parameter(s), sp, construct an M-Model.
|
| Modifier and Type | Method and Description |
|---|---|
Model |
asGiven(double msg2)
Calls
asGiven(0,msg2). |
Model |
asGiven(double msg1,
double msg2)
Enables setting the first- and second-part message lengths, msg1
and msg2, after having estimated the statistical parameter(s) of
a Model, say.
|
Value |
stats(boolean add,
Value ss0,
Value ss1)
By default, combine statisticses ss0 and ss1 using the
stats(add,ss0,ss1)
of the the enclosing UPModel. |
Value |
stats(Vector ds,
int lo,
int hi)
Return sufficient statistics ss=stats(ds,lo,hi) of elements
[lo, hi), lo inclusive to hi exclusive,
of data-set 'ds' using the
stats(ds,lo,hi)
of the enclosing UPModel. |
java.lang.String |
toString()
Return a String representation of 'this' fully parameterised Model.
|
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, nlLH, nlPr, pr, random, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTrivpublic M(double msg1,
double msg2,
Value sp)
public Value stats(Vector ds, int lo, int hi)
stats(ds,lo,hi)
of the enclosing UPModel.
This is often appropriate, but not always, for example,
see BestOf.M.stats(...).
Note that ss=M.stats(ds...) must be enough to calculate
M.nlLH(ss) but UPModel.stats(ds...) must be enough
to estimate a fully parameterised M-Model.
More on stats [here].public Value stats(boolean add, Value ss0, Value ss1)
stats(add,ss0,ss1)
of the the enclosing UPModel.
This is often appropriate, but not always.
Note, ss=M.stats(ds...) must be enough to calculate
M.nlLH(ss) but UPModel.stats(ds...) must be
enough to estimate a fully parameterised model.
More on stats [here].public Model asGiven(double msg2)
asGiven(0,msg2).public Model asGiven(double msg1, double msg2)
asGiven(msg2).public java.lang.String toString()
UnParameterised Model, with its
problem defining parameters, and 'this' M-Model's
statistical parameter(s).