public class Model.Transform.M extends UPModel.M
Model.Transform.transform(f).Model.Defaults, Model.TransformValue.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Constructor and Description |
|---|
M(double msg1,
double msg2,
Value sp)
Note, msg1=0 and statistical parameter sp=triv, checked.
|
| Modifier and Type | Method and Description |
|---|---|
double |
nlLH(Value ss)
The enclosing Model.this's nlLH applied to
statistics 'ss'. |
double |
nlPr(Value d)
The enclosing Model.this's nlPr(
f(d)). |
double |
pr(Value d)
The enclosing Model.this's pr(
f(d)). |
Value |
random()
f-1 (Model.this.random()).
|
java.lang.String |
toString()
Return a String representation of 'this' fully parameterised Model.
|
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTrivpublic M(double msg1,
double msg2,
Value sp)
public double nlLH(Value ss)
statistics 'ss'.public Value random()
f to have an implemented inverse to work.public java.lang.String toString()
UPModel.MUnParameterised Model, with its
problem defining parameters, and 'this' M-Model's
statistical parameter(s).