public abstract class Discretes extends UPModel
Value.Enum data. The fully parameterised model is
Discretes.M. Particularly see Discretes.M.nlPr_n(int) and
Discretes.M.random_n().| Modifier and Type | Class and Description |
|---|---|
static class |
Discretes.Bounded
The class of UnParameterised Models over Bounded Discrete data
such as
|
class |
Discretes.M
The (abstract) class of fully parameterised Models of
Discrete data-spaces.
|
class |
Discretes.Shifted
This
UnParameterised Model of Discretes shifted by
+offset. |
static class |
Discretes.Uniform
The UnParameterised Uniform Model (distribution) on data in
statistical parameter."
Also see the fully parameterised Discretes.Uniform.M,
and Continuous.Uniform. |
UPModel.Est, UPModel.TransformFunction.Native.WithInverseFunction.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Modifier and Type | Method and Description |
|---|---|
Discretes.M |
apply(Value sp)
Given statistical parameters, sp, return a Model,
sp2Model(0, 0, sp),
i.e., one that is not estimated, having zero part 1 and
part 2 message lengths. |
static Vector |
NandSum(Vector ds)
Some Discrete Models, such as
Geometric0UPM.M, have
(N,sum) as sufficients statistics, Model.stats(la.maths.Vector) by calling NandSum. |
static Vector |
NandSum(Vector ds,
int lo,
int hi)
NandSum for elements [lo, hi). |
Discretes |
shifted(int offset)
Convenience function for
new
Shifted(new Int(offset)), for example,
Poisson0.shifted(1) is the unparameterised
Poisson distribution for integers n≥1. |
Discretes |
shifted(Value.Int offset)
Convenience function for new
Shifted(offset),
for example, Poisson0.shifted(1)
is the unparameterised Poisson distribution for integers n≥1. |
abstract Discretes.M |
sp2Model(double msg1,
double msg2,
Value sp)
Given two-part message lengths msg1 & msg2, and statistical
parameter sp, return a fully parameterised
M-Model. |
defnParams, estimator, main, stats, stats, stats, stats, toString, transformpublic Discretes(Value sp)
public Discretes.M apply(Value sp)
UPModelsp2Model(0, 0, sp),
i.e., one that is not estimated, having zero part 1 and
part 2 message lengths. (Also see Function.apply(la.la.Value).)public abstract Discretes.M sp2Model(double msg1, double msg2, Value sp)
UPModelpublic static Vector NandSum(Vector ds)
Geometric0UPM.M, have
(N,sum) as sufficients statistics, Model.stats(la.maths.Vector) by calling NandSum. Note the Values of N and
sum are Cts because we may have fractionally weighted data,
say in a Mixture.public Discretes shifted(int offset)
Shifted(new Int(offset)), for example,
Poisson0.shifted(1) is the unparameterised
Poisson distribution for integers n≥1.
Also see Discretes.M.shifted(int).public Discretes shifted(Value.Int offset)
Shifted(offset),
for example, Poisson0.shifted(1)
is the unparameterised Poisson distribution for integers n≥1.
Also see Discretes.M.shifted(int).