public static class Discretes.Uniform extends Discretes.Bounded
statistical parameter."
Also see the fully parameterised Discretes.Uniform.M,
and Continuous.Uniform.| Modifier and Type | Class and Description |
|---|---|
class |
Discretes.Uniform.M
Mdl should be sufficient for most purposes. |
Discretes.Bounded, Discretes.Shifted, Discretes.UniformUPModel.Est, UPModel.TransformFunction.Native.WithInverseFunction.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Modifier and Type | Field and Description |
|---|---|
Discretes.Uniform.M |
Mdl
The Uniform Model on
|
| Constructor and Description |
|---|
Uniform(Value bounds)
Construct an "UnParameterised" Uniform Discrete Model
over
|
| Modifier and Type | Method and Description |
|---|---|
Value.Tuple |
bounds()
|
Estimator |
estimator(Value t)
The trivial Estimator that is a Uniform's.
|
double |
nlLH(Value ss)
Given sufficient statistics,
stats(ds), |
Discretes.Uniform.M |
sp2Model(double m1,
double m2,
Value t)
sp2Model(0, msg2, ()) -- Uniform has no true stat params.
|
Value.Real |
stats(boolean add,
Value ss0,
Value ss1)
Combine sufficient statisticses 'ss0' and 'ss1' additively
(add=true), or remove ss1 from ss0 (add=false).
|
Value.Real |
stats(Vector ds,
int lo,
int hi)
Given a data-set, ds, return sufficient statistics, ss,
that is the (weighted) number of elements in ds, for use
in
Estimator.ss2Model(la.la.Value) and Discretes.Uniform.M.nlLH(la.la.Value). |
public final Discretes.Uniform.M Mdl
public Uniform(Value bounds)
public Value.Tuple bounds()
Discretes.Boundedbounds in class Discretes.Boundedpublic Discretes.Uniform.M sp2Model(double m1, double m2, Value t)
public Value.Real stats(Vector ds, int lo, int hi)
Estimator.ss2Model(la.la.Value) and Discretes.Uniform.M.nlLH(la.la.Value).
More on stats here.public Value.Real stats(boolean add, Value ss0, Value ss1)
UPModelstats(ds,lo,hi).public double nlLH(Value ss)
stats(ds),