public class vMF.M extends Direction.M
R_D.M.TransformModel.DefaultsValue.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Modifier and Type | Field and Description |
|---|---|
double |
kappa
The concentration parameter, κ.
|
double |
logCD
The concentration parameter, κ.
|
Vector |
mu
The mean Direction, μ.
|
double[] |
mu_x
The mean Direction
mu as double[]. |
| Modifier and Type | Method and Description |
|---|---|
double |
kappa()
κ ≥ 0, the concentration parameter.
|
Vector |
mu()
μ, the mean, a Direction in RD.
|
double |
nlLH(Value ss)
Given statistics, ss =
stats(ds) of a
data-set, ds, return the negative log
likelihood of ds. |
double |
nlPdf(Value v)
|
void |
random(double[] x)
Generate a random Direction, a random unit Vector in
RD.
|
nlPrasEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTrivpublic final Vector mu
public final double[] mu_x
mu as double[].public final double kappa
public final double logCD
public M(double msg1,
double msg2,
Value sp)
public Vector mu()
public double kappa()
Uniform Model.
For large κ,
public double nlPdf(Value v)
pdf(v) for datum Direction v,
return log CD(κ)nlPr(v).nlPdf in interface HasPdfnlPdf in class Direction.Mpublic double nlLH(Value ss)
stats(ds) of a
data-set, ds, return the negative log
likelihood of ds.public void random(double[] x)
R_D.M.random_x(). See
T.A.Wood, Simulation of the von Mises Fisher distribution,
Communications in Statistics - Simulation and Computation,
23(1), pp.157-164, 1994.