public class WallaceInt0UPM.M extends Discretes.M
WallaceInt0 should be enough for
most purposes but here are the classes,
fully (trivially) parameterised (M) and
UnParameterised (WallaceInt0UPM).Model.Defaults, Model.TransformValue.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Constructor and Description |
|---|
M(double msg1,
double msg2,
Value sp)
Requires msg1=0, sp=triv.
|
| Modifier and Type | Method and Description |
|---|---|
double |
nlLH(Value ss)
Assumes that
statistics
are the data-set itself. |
double |
nlPr_n(int n)
The negative log probability of int n≥0 depends on
cummulativeCatalans(i). |
int |
random_n()
random_n() is not supported.
|
java.lang.String |
toString()
Return a String representation of 'this' fully parameterised Model.
|
nlPr, pr_n, pr, shiftedasEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, random, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTrivpublic M(double msg1,
double msg2,
Value sp)
public double nlPr_n(int n)
cummulativeCatalans(i).
The first few code lengths are 1, 3, 5, 5, 7, ... bits.nlPr_n in class Discretes.Mpublic double nlLH(Value ss)
statistics
are the data-set itself.public int random_n()
random_n in class Discretes.Mpublic java.lang.String toString()
UPModel.MUnParameterised Model, with its
problem defining parameters, and 'this' M-Model's
statistical parameter(s).