public class R_D.NrmDir.M extends R_D.M
norms (Vector lengths) and a Model of
Directions. To be an efficient code the
former would assume and make use of
v.norm() ≥ 0, for a Vector v.R_D.M.TransformModel.DefaultsValue.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Modifier and Type | Field and Description |
|---|---|
Direction.M |
dirnMdl
A fully parameterised Model of Directions, that is of
RD Vector Directions.
|
Continuous.M |
normMdl
A fully parameterised Model of Vector
norms (lengths). |
| Modifier and Type | Method and Description |
|---|---|
double |
nlLH(Value ss)
Given sufficient statistics,
ss =
stats(ds), of a
data-set, ds, return the negative log likelihood of ds. |
double |
nlPdf(Value v)
The negative log probability density of a Vector datum, v, in
RD.
|
Vector |
random()
Generate a random RD-Vector from 'this' Model.
|
Value |
stats(boolean add,
Value ss0,
Value ss1)
Calls upon stats of
normMdl and dirnMdl,
and may or may not equal
R_D.NrmDir.stats(boolean,Value,Value). |
Value |
stats(Vector ds,
int lo,
int hi)
The statistics, ss = stats(ds), of a data-set, ds.
|
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTrivpublic final Continuous.M normMdl
norms (lengths).
Note that v.norm() ≥ 0, of course.public final Direction.M dirnMdl
public M(double msg1,
double msg2,
Value sps)
public double nlPdf(Value v)
density
is adjusted to a "radius" of v.norm().public Value stats(Vector ds, int lo, int hi)
normMdl and dirnMdl, and
may or may not equal R_D.NrmDir.stats(Vector,int,int).
Also see M.nlLH(ss).
More on stats here.public Value stats(boolean add, Value ss0, Value ss1)
normMdl and dirnMdl,
and may or may not equal
R_D.NrmDir.stats(boolean,Value,Value).public double nlLH(Value ss)
stats(ds), of a
data-set, ds, return the negative log likelihood of ds.