public class R_D.M.Transform.MM extends R_D.M
R_D.M.Transform;
a Transform.MM "is a" (extends) R_D.M.
Also see the related but different
R_D.Transform.R_D.M.transform(f).R_D.M.TransformModel.DefaultsValue.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Constructor and Description |
|---|
MM(double msg1,
double msg2,
Value sp)
Note, msg1=0 and statistical parameter sp=triv, checked.
|
| Modifier and Type | Method and Description |
|---|---|
double |
nlLH(Value ss)
Use the enclosing R_D.M.this's nlLH(ss) but
statistics 'ss' come from
R_D.M.Transform.stats(la.maths.Vector, int, int). |
double |
nlPdf(Value xs)
R_D.M.this.nlPdf(f.apply(v))
+ f.
nlJ(v). |
double[] |
random_x()
Requires '
f' to have an implemented inverse to work. |
java.lang.String |
toString()
Return a String representation of 'this' fully parameterised Model.
|
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTrivpublic MM(double msg1,
double msg2,
Value sp)
public double nlPdf(Value xs)
nlJ(v).
The last term "adjusts" the datum's AoM.public double nlLH(Value ss)
R_D.M.Transform.stats(la.maths.Vector, int, int).public double[] random_x()
public java.lang.String toString()
UPModel.MUnParameterised Model, with its
problem defining parameters, and 'this' M-Model's
statistical parameter(s).