public class MotifD.M extends Graphs.Motifs.M
Model.Defaults, Model.TransformValue.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Modifier and Type | Field and Description |
|---|---|
Discretes.Bounded.M |
mdlE
|
protected Graph[] |
motifs
The motifs (patterns, templates), sorted on |V|,
that can be used to compress a given Graph.
|
int |
sgMaxV
|V| for the smallest and largest of the
motifs[.]. |
int |
sgMinV
|V| for the smallest and largest of the
motifs[.]. |
| Modifier and Type | Method and Description |
|---|---|
Graph[] |
motifs()
Returns
motifs[];
see Graphs.Motifs.M.motifs(). |
double |
nlLH(Value ss)
ss =
stats(ds,lo,hi), requires
that ss is ds, the Vector (data-set) of Graphs itself. |
double |
nlPr(Value G)
The negative log probability of datum (Graph) G.
|
Graph |
random()
Generate a random Graph according to 'this'
Model. |
msgMotifs, msgMotifsasEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTrivpublic final Discretes.Bounded.M mdlE
Adaptive) Model of
that part of the Adjacency Matrix not covered by instances of
motifs[.]. Also see MotifD.upmE.protected final Graph[] motifs
estimated.public final int sgMinV
motifs[.].
Also see the different MotifD.sgMinV and sgMaxV.public final int sgMaxV
motifs[.].
Also see the different MotifD.sgMinV and sgMaxV.public M(double msg1,
double msg2,
Value sp)
public Graph[] motifs()
motifs[];
see Graphs.Motifs.M.motifs().motifs in class Graphs.Motifs.Mpublic double nlLH(Value ss)
stats(ds,lo,hi), requires
that ss is ds, the Vector (data-set) of Graphs itself.public double nlPr(Value G)