public class LogStar0UPM.M extends Discretes.M
logStar0 should be enough for most purposes,
but here are the classes, fully (trivially) parameterised (M)
and UnParameterised (LogStar0UPM).Model.Defaults, Model.TransformValue.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Constructor and Description |
|---|
M(double msg1,
double msg2,
Value sp)
Note, requires msg1=0 and sp=triv.
|
| Modifier and Type | Method and Description |
|---|---|
double |
nlLH(Value ss)
Assumes that
statistics
are the data-set itself. |
double |
nlPr_n(int n)
Negative log probability of datum int,
|
int |
random_n()
random_n() is not supported.
|
java.lang.String |
toString()
Return a String representation of 'this' fully parameterised Model.
|
nlPr, pr_n, pr, shiftedasEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, random, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTrivpublic M(double msg1,
double msg2,
Value sp)
public double nlPr_n(int n)
nlPr_n in class Discretes.Mpublic double nlLH(Value ss)
statistics
are the data-set itself.public int random_n()
random_n in class Discretes.Mpublic java.lang.String toString()
UPModel.MUnParameterised Model, with its
problem defining parameters, and 'this' M-Model's
statistical parameter(s).