public class Continuous.M.Transform.MM extends Continuous.M
Continuous.M.Transform;
a Transform.MM "is a" (extends) Continuous.M.
Also see the related but different
Continuous.Transform.transform(f).Continuous.M.TransformModel.DefaultsValue.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Constructor and Description |
|---|
MM(double msg1,
double msg2,
Value sp)
Note, msg1=0 and statistical parameter sp=triv, checked.
|
| Modifier and Type | Method and Description |
|---|---|
double |
nlLH(Value ss)
Use the enclosing Continuous.M.this's nlLH(ss) but
statistics 'ss' come from
Continuous.M.Transform.stats(la.maths.Vector, int, int). |
double |
nlPdf_x(double x)
M.nlPdf_x(f(x))
− log(|f.d_dx()(x)|),
the second term to "correct" the datum's nlAoM. |
double |
random_x()
Requires '
f' to have an implemented inverse to work. |
java.lang.String |
toString()
Return a String representation of 'this' fully parameterised Model.
|
asEstimator, asUPModel, m1m2sp, msg, msg1, msg1bits, msg2, msg2bits, msgBits, nl2LH, nl2Pr, pr, random, randomSeries, statParams, stats, stats, sumNlPr, transform, type, zeroTrivpublic MM(double msg1,
double msg2,
Value sp)
public double nlPdf_x(double x)
M.nlPdf_x(f(x))
− log(|f.d_dx()(x)|),
the second term to "correct" the datum's nlAoM.nlPdf_x in class Continuous.Mpublic double nlLH(Value ss)
Continuous.M.Transform.stats(la.maths.Vector, int, int).public double random_x()
f' to have an implemented inverse to work.
Sample with the enclosing Continuous.M.this's random_x()
and apply f's inverse.random_x in class Continuous.Mpublic java.lang.String toString()
UPModel.MUnParameterised Model, with its
problem defining parameters, and 'this' M-Model's
statistical parameter(s).