public static class Permutation.Uniform extends Permutation
| Modifier and Type | Class and Description |
|---|---|
class |
Permutation.Uniform.M
Mdl should be sufficient for most purposes, but
here is the class of "fully parameterised" Uniform Models of
Permutations. |
Permutation.UniformUPModel.Est, UPModel.TransformFunction.Native.WithInverseFunction.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Modifier and Type | Field and Description |
|---|---|
protected double |
log_fact_N
log(N!), the cost of stating a Permutation
of
|
Permutation.Uniform.M |
Mdl
The (trivially) fully parameterised Uniform Model
of Permutations; also see its class,
M. |
protected int |
N
The problem-defining parameter is 'N' (here as an int)
for Permutations of
|
| Modifier and Type | Method and Description |
|---|---|
Estimator |
estimator(Value t)
The trivial Estimator that is a Uniform
Model's. |
int |
N()
Permutations of
|
Permutation.Uniform.M |
sp2Model(double msg1,
double msg2,
Value sp)
sp2Model(0, m2, ()) returns a
Model. |
Value.Real |
stats(boolean add,
Value ss0,
Value ss1)
Combine sufficient statisticses 'ss0' and 'ss1'.
|
Value.Real |
stats(Vector ds,
int lo,
int hi)
Given a data-set ds[lo,hi) of Permutations return
sufficient statistics ss=ds.wts[lo,hi).
|
randomprotected final int N
protected final double log_fact_N
public final Permutation.Uniform.M Mdl
M.public int N()
PermutationN in class Permutationpublic Permutation.Uniform.M sp2Model(double msg1, double msg2, Value sp)
Model.public Value.Real stats(Vector ds, int lo, int hi)
public Value.Real stats(boolean add, Value ss0, Value ss1)