public class NormalMu extends NormalUPM
μ
is the problem-defining parameter (common knowledge, given) and
σ alone is the statistical parameter
of the fully parameterised NormalMu.M to be
estimated. We have the ready-made
MML.NormalMu0 for the NormalUPM and NormalUPM.M.| Modifier and Type | Class and Description |
|---|---|
class |
NormalMu.Est
The standard Estimator for a Normal Model with specified μ.
|
class |
NormalMu.M
M, a fully parameterised
Normal Model with
problem-defining parameter μ,
and statistical parameter σ, as
produced by the UnParameterised NormalMu. |
Continuous.Bounded, Continuous.Transform, Continuous.UniformFunction.Native.WithInverseFunction.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Modifier and Type | Field and Description |
|---|---|
double |
mu
The given, problem-defining parameter, μ, as a double.
|
protected Value.Cts |
muC
The given, problem-defining parameter, μ, as a Cts.
|
| Modifier and Type | Method and Description |
|---|---|
NormalMu.M |
apply(Value sigma)
apply(σ), return N
μ,σ. |
Value.Cts |
defnParams()
Return Real
μ, the problem defining parameter. |
UPModel.Est |
estimator(Value ps)
Return an Estimator of a fully parameterised Normal
Model. |
UPModel.Est |
estimatorB(Value t)
Return an Estimator of a fully parameterised Normal
Model;
note, NormalUPM.estSigma(la.la.Value, double, double, double) to estimate σ. |
NormalMu.M |
sp2Model(double msg1,
double msg2,
Value sigma)
Given msg1, msg2 and the (one) statistical parameter, σ,
return a fully parameterised Normal
Model. |
transformprotected final Value.Cts muC
public final double mu
public NormalMu(Value mu)
public Value.Cts defnParams()
μ, the problem defining parameter.defnParams in class UPModelpublic NormalMu.M apply(Value sigma)
μ,σ.public NormalMu.M sp2Model(double msg1, double msg2, Value sigma)
Model.public UPModel.Est estimator(Value ps)
Model.
Note, std dev., σ.
Also see NormalUPM.estimator(.).public UPModel.Est estimatorB(Value t)
Model;
note, NormalUPM.estSigma(la.la.Value, double, double, double) to estimate σ. If you require
more control, e.g., of the prior, implement another Estimator.
Also see estimator((lo,hi)).estimatorB in class NormalUPM