public class LaplaceUPM extends Continuous
MML.Laplace suffices, but
here is its class. Fully parameterised is Mμb.
Also see the (negative-) Exponential.| Modifier and Type | Class and Description |
|---|---|
class |
LaplaceUPM.M
The fully parameterised Laplace probability distribution.
|
Continuous.Bounded, Continuous.Transform, Continuous.UniformUPModel.EstFunction.Native.WithInverseFunction.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Constructor and Description |
|---|
LaplaceUPM(Value dp)
Requires definition parameters dp = triv.
|
| Modifier and Type | Method and Description |
|---|---|
UPModel.Est |
estimator(Value ps)
Parameters ps = (μmin, μmax,
bmin, bmax).
|
LaplaceUPM.M |
sp2Model(double msg1,
double msg2,
Value sp)
Given two part message lengths, msg1 and msg2, and
statistical parameters, sp, return an
M. |
Vector |
stats(boolean add,
Value ss0,
Value ss1)
Given sufficient statisticses 'ss0' and 'ss1', either
'add' them or remove (add=false) ss1 from ss0.
|
Value |
stats(Vector ds,
int lo,
int hi)
Given a data-set, ds, return statistics,
|
java.lang.String |
toString()
Return a String representation of 'this' UnParameterised Model,
including its problem-
defining parameters. |
transformpublic LaplaceUPM(Value dp)
public LaplaceUPM.M sp2Model(double msg1, double msg2, Value sp)
M.sp2Model in class Continuouspublic Value stats(Vector ds, int lo, int hi)
public Vector stats(boolean add, Value ss0, Value ss1)
public UPModel.Est estimator(Value ps)
parameterised Laplace probability distribution.