public class Intervals extends UPFunctionModel
intervals (buckets) and give a conditional Model
of od corresponding to each bucket. Note that the input datum may
be continuous in which case it is "discretized." However it is only
required to have a total order. The output datum, od, can be of any type
at all, including Multivariate. The fully parameterised FunctionModel
is M.| Modifier and Type | Class and Description |
|---|---|
class |
Intervals.M
|
UPFunctionModel.Est, UPFunctionModel.KUPModel.TransformFunction.Native.WithInverseFunction.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Modifier and Type | Field and Description |
|---|---|
UPModel |
upm
upm, the UnParameterised Model for the output (dependent)
datum, od.
|
| Constructor and Description |
|---|
Intervals(Value upm)
The problem defining parameter,
upm, is an
UnParameterised Model suitable for the ouput datum, od. |
| Modifier and Type | Method and Description |
|---|---|
UPFunctionModel.Est |
estimator(Value ps)
Return an Estimator for
M. |
Intervals.M |
sp2Model(double msg1,
double msg2,
Value sp)
Given two-part message lengths, msg1 and msg2, and statistical
parameters, sp, return a fully parameterised
M. |
Vector |
stats(boolean add,
Value ss0,
Value ss1)
Combine sufficient statisticses 'ss0' and 'ss1' additively
(add=true), or remove ss1 from ss0 (add=false).
|
Vector |
stats(Vector ds,
int lo,
int hi)
Sufficient statistics, ss = stats(ds), for a
data-set, ds, are ds itself, sorted on the input data.
|
applypublic final UPModel upm
parameterised
differently for each interval of the input datum, id.public Intervals.M sp2Model(double msg1, double msg2, Value sp)
M.sp2Model in class UPFunctionModelpublic Vector stats(Vector ds, int lo, int hi)
public Vector stats(boolean add, Value ss0, Value ss1)
UPModelstats(ds,lo,hi).public UPFunctionModel.Est estimator(Value ps)