public class GammaUPM extends Continuous
MML.Gamma and GammaUPM.M should
be enough, with little need to call upon GammaUPM directly.
The γ (gamma) Model (probability distribution) is for
positive (>0) continuous data.| Modifier and Type | Class and Description |
|---|---|
class |
GammaUPM.M
The fully parameterised γ Model (probability distribution).
|
Continuous.Bounded, Continuous.Transform, Continuous.UniformUPModel.EstFunction.Native.WithInverseFunction.Cts2Cts, Function.Cts2Cts2Cts, Function.CtsD2CtsD, Function.HasInverse, Function.Native, Function.Native2, Function.Native3Value.Atomic, Value.Bool, Value.Char, Value.Chars, Value.Cts, Value.Defer, Value.Discrete, Value.Enum, Value.Inc_Or, Value.Int, Value.Lambda, Value.List, Value.Maybe, Value.Option, Value.Real, Value.Scannable, Value.Structured, Value.Triv, Value.Tuple| Modifier and Type | Method and Description |
|---|---|
UPModel.Est |
estimator(Value ps)
TODO, Gamma's Estimator is not yet implemented.
|
GammaUPM.M |
sp2Model(double m1,
double m2,
Value sp)
Given two-part message lengths m1 and m2, and statistical parameters
sp, return a fully parameterised
Model. |
Vector |
stats(boolean add,
Value ss0,
Value ss1)
Combine sufficient statisticses 'ss0' and 'ss1' additively
(add=true), or remove ss1 from ss0 (add=false).
|
Vector |
stats(Vector ds,
int lo,
int hi)
Return the data-set, ds.[lo,hi).
|
java.lang.String |
toString()
Return a String representation of 'this' UnParameterised Model,
including its problem-
defining parameters. |
transformpublic GammaUPM(Value t)
public GammaUPM.M sp2Model(double m1, double m2, Value sp)
Model.sp2Model in class Continuouspublic Vector stats(Vector ds, int lo, int hi)
public Vector stats(boolean add, Value ss0, Value ss1)
UPModelstats(ds,lo,hi).public UPModel.Est estimator(Value ps)