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ABSTRACT OF THE DISSERTATION

Herding: Driving Deterministic Dynamics to Learn and Sample Probabilistic Models

By

Yutian Chen

Doctor of Philosophy in Computer Science

University of California, Irvine, 2013

Professor Max Welling, Chair

The herding algorithm was recently proposed as a deterministic algorithm to learn Markov

random fields (MRFs). Instead of obtaining a fixed set of model parameters, herding drives

a set of dynamical parameters and generates an infinite sequence of model states describing

the learned distribution. It integrates the learning and inference phases effectively, and

entertains a fast rate of convergence in the inference phase compared to the widely used

Markov chain Monte Carlo methods. Herding is therefore a promising alternative to the

conventional training-prediction two step paradigm in applying MRFs. In this thesis we

study the properties of the herding algorithm from the perspective of both a statistical

learning method and a nonlinear dynamical system. We further provide a mild condition

for its moment matching property to hold and thereby derive a general framework for the

herding algorithm. Under that framework three extensions of herding dynamics are proposed

with a wide range of applications. We also discuss the application of herding as a sampling

algorithm from the input distribution. Two more variants of herding are introduced to

sample discrete and continuous distributions respectively, accompanied with discussion on

the conditions when the sampler is unbiased.

xiii



Chapter 1

Introduction

1.1 Background

A typical statistical approach to machine learning problems is to first fit a probabilistic model

to variables of interest and then apply that model to various tasks such as classification,

clustering and prediction. A probabilistic model is usually learned from a set of observed

data cases so as to match the empirical frequencies of events. For examples, the bias of

coin-toss is estimated from the number of heads and tails in a series of trials; the bigram of

pairs of words is learned from their co-occurrence in a large corpus (Jelinek, 1990).

When the number of random variables grows, obtaining a reliable model for the joint frequen-

cies of all variables becomes increasingly difficult because the number of required training

data cases would grow exponentially. For instance, in order to predict the outcome of a

tic-tac-toe game with a 3 × 3 board size based on an incomplete game, we can simply per-

form a lookup in a collection of past games and compute the conditional probability of an

outcome given any of the 39 = 531441 states. However, to predict the final status of the Go

game with a 19×19 board size, we would need an astronomical amount of data, around 3361
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data-cases.

Graphical models (Pearl, 1988) have been proposed to factorize the joint distribution by

exploiting the conditional independence among variables, and therefore to obtain reliable

model estimation given a much smaller size of data. With the maximum likelihood (ML)

criterion, the Bayesian networks are estimated to match the conditional distribution of indi-

vidual variables to observed frequencies, and the Markov networks, a. k. a. Markov random

fields (MRFs), are estimated to match the expected value of features that are usually defined

on a small subset of variables (Koller & Friedman, 2009).

Take the example of the Go game. A conditional random field (Lafferty et al., 2001; Sutton,

2012) (CRF) model, a discriminative variant of MRF, has been proposed to match the

conditional frequency of small patches on the board, and has obtained promising performance

on this difficult problem (Stern et al., 2004). The CRF model considers the conditional

distribution of the final status of neighboring stones given their current colors as shown in

Figure 1.1. It is obviously much easier to study the distribution of a small patch than to

model the whole board. Once we obtain these local conditional frequencies, or features, from

a training dataset, a CRF is trained to maximize the entropy of the joint distribution under

the constraints of matching these averages over features (Berger et al., 1996).

Although MRFs/CRFs have been applied successfully in various areas, among which are

image segmentation (Blake et al., 2004), natural language processing (Sha & Pereira, 2003),

social networks (Wasserman & Pattison, 1996) and bioinformatics (Li et al., 2007), these

models are usually difficult to work with. Firstly, obtaining the maximum likelihood esti-

mation (MLE) of a generic MRF during the training phase is an intractable problem. This

is because the optimization procedure involves carrying out inference in the model and the

time complexity of exact inference is exponential to the maximum tree-width of the graph

(Pearl, 1988). Researchers have resorted to approximate inference methods such as varia-

tional methods (Wainwright et al., 2003) and Markov chain Monte Carlo (MCMC) (Geyer,

2



Figure 1.1: Part of a Go board of an incomplete game (left) and its final territory (right). The
CRF model takes as a feature the final territory of a pair of neighboring stones conditioned
on the current stones.

1991; Neal, 1992; Hinton, 2002; Tieleman, 2008). However, variational methods introduce

systematic bias, and MCMC methods suffer from the problem of slow mixing when the model

distribution is multi-modal leading to a high computational burden. There are some training

algorithms in the literature based on other inductive principles than maximum likelihood,

such as pseudo-likelihood (Besag, 1975) and composite likelihood (Lindsay, 1988). They do

not have the intractable computational problem, but these estimators are statistically less

efficient than MLE (van Duijn et al., 2009) and do not apply to partially observed models

in general (Parise & Welling, 2005). Secondly, even when a good model has been estimated,

applying the model in the test phase is often an intractable problem again. This is because

typical applications such as classification, structured prediction, and computing evidence

are all inference problems. Variational methods and MCMC methods are hence applied here

again for approximate estimation with the same issues as in the training phase.

The herding algorithm was proposed in Welling (2009a) as an efficient alternative to joint

learning and predicting for fully visible MRFs with discrete variables. Observing that in the

MCMC approach we have to generate samples in both training and test phases and that

what would really be used eventually are the samples, herding combines these two phases

by simulating a single deterministic Markov chain throughout the whole process. Instead

3



of the conventional “training-predicting” paradigm, herding can be considered as a system

that generates a sequence of new samples directly from training data such that their average

feature-values match the observed averages in the training data. The model parameters

become auxiliary variables that are updated only to produce a new sample in the next

iteration. The herding algorithm was later extended to partially observed MRFs (POMRFs)

in Welling (2009b). However, the behavior of this deterministic algorithm as well as its

strength and weakness compared to regular learning algorithms remains to be understood.

1.2 Our Approach and Contributions

In this thesis, we first introduce the statistical properties of the standard herding algorithm

(discovered in Welling (2009a,b); Chen et al. (2010); Welling & Chen (2010)) from the aspects

of a learning algorithm for MRFs and a nonlinear dynamic system. We interpret herding

as an algorithm that greedily generates new samples to match the statistics (moments)

of the training data. The output sample sequence exhibits negative autocorrelation and

consequently obtains a higher rate of convergence, O(1/T ), than that of either MCMC and

independent samples, O(1/
√
T ), where T denotes the number of samples. This helps mitigate

the slow mixing problem in the MCMC approach. From the aspect of nonlinear dynamics,

the sequence of samples is shown to be weakly chaotic a.k.a. on the edge-of-chaos. Although

totally deterministic, a sequence on the edge-of-chaos appears similar to a random sequence.

More importantly the learnable information conveyed in that sequence is likely to be richer

than that in a random sequence (see Section 2.6.4 for more detail).

The main contribution of this thesis is to give a general condition for the fast rate of conver-

gence on the sampling moments. Based on that condition, we extend the herding algorithm

beyond training fully visible MRFs. The work of Welling (2009b) on POMRFs fits well

into this general framework and we propose a parametric variant with improved efficiency.
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The generalized herding also applies to training discriminative models (e.g. multi layer

perceptrons and CRFs) with competitive performance. We also study the case when the

convergence condition does not hold and propose a novel alternative to CRF models with a

trivial training phase. We show how to apply this method to image segmentation and the

final territory prediction of the Go game.

Moreover, we interpret herding as a pure sampling algorithm when the input set of training

data is replaced by a distribution and the output sample sequence is enforced to converge to

the same distribution. We apply herding as a deterministic version of the Gibbs sampling

algorithm with discrete variables and also extend the original herding algorithm to sampling

in a continuous state space. Its fast convergence rate, O(1/T ), grants herding the potential

to outperform the “ideal” independent random sampler.

Since its inception, herding has been shown to be related to a variety of methods in different

domains. The idea of introducing negative auto-correlations to speed up the mixing of

Markov chains in learning MRFs is shared with prior work such as the fast-weight persistent

contrastive divergence method (Tieleman & Hinton, 2009) and the adaptive Monte Carlo

method (Salakhutdinov, 2010). The use of dynamical model parameters also shows similarity

with a recently proposed algorithm for learning MRFs, called perturb-and-map (Papandreou

& Yuille, 2011). The interpretation as a greedy algorithm for matching average features is

closely related to the conditional gradient algorithm in optimization (Bach et al., 2012) and

the Bayesian quadrature method in Gaussian processes (Huszar & Duvenaud, 2012). The

impressive O(1/T ) convergence rate as a deterministic Monte Carlo method is reminiscent

of Quasi Monte Carlo methods (Niederreiter, 1992; Chentsov, 1967) and the rotor-router

algorithm (Holroyd & Propp, 2010) in the area of MCMC.
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1.3 Outline

We introduce the original herding algorithm and study its statistical properties in Chapter 2.

We then discuss extensions of herding as a learning algorithm with applications in Chapter

3. Chapter 4 applies herding as a pure sampling algorithm and shows its applications as

a deterministic Gibbs sampler on discrete variables and as an infinite-memory sampler on

continuous variables. The thesis is concluded with a summary and a discussion for future

work in Chapter 5.
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Chapter 2

Herding Model Parameters

2.1 The Maximum Entropy Problem and Markov Ran-

dom Fields

Define x ∈ X to be a random variable in the domain X , and {φα(x)} to be a set of feature

functions of x, indexed by α. In the maximum entropy problem (MaxEnt), given a data set

of D observations D = {xi}Di=1, we want to learn a probability distribution over x, P (x),

such that the expected features, a.k.a. moments, match the average value observed in the

data set, denoted by φ̄α. For the remaining degrees of freedom in the distribution we assume

maximum ignorance which is expressed as maximum entropy. Mathematically, the problem

is to find a distribution P such that:

P = arg max
P
H(P) s.t. Ex∼P [φα(x)] = φ̄α, ∀α (2.1)

The dual form of the MaxEnt problem is known to be equivalent to finding the maximum

likelihood estimate (MLE) of the parameters w = {wα} of a Markov Random Field (MRF)
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defined on x, each parameter associated with one feature φα:

wMLE = arg max
w

P (D; w) = arg max
w

D∏
i=1

P (xi; w), P (x; w) =
1

Z(w)
exp

(∑
α

wαφα(x)

)
(2.2)

where the normalization term Z(w) =
∑

x exp(
∑

αwαφα(x)) is also called the partition

function. The parameters {wα} act as the Lagrange multiplier to enforce the constraints in

the primal form 2.1. Since they assign different weights to the features in the dual form, we

will also called them “weights” below.

It is generally intractable to obtain the MLE of parameters because the partition function

involves computing the sum of potentially exponentially many states. Take the gradient

descent optimization algorithm for example. Denote the average log-likelihood per data

item by

`(w)
def
=

1

D

D∑
i=1

logP (xi; w) = wT φ̄− logZ(w) (2.3)

The gradient descent algorithm searches for the maximum of ` with the following update

step:

wt+1 = wt + η(φ̄− Ex∼P (x;wt)[φ(x)]) (2.4)

Notice however that the second term in the gradient that averages over the model dis-

tribution, EP (x;w)[φ(x)], is derived from the partition function and we can not compute it

efficiently in general. A common solution is to approximate that quantity by drawing samples

using Markov chain Monte Carlo (MCMC) method at each gradient descent step. However,

MCMC is known to suffer from slow mixing when the state distribution has multiple modes

or variables are strongly correlated (Tieleman & Hinton, 2009; Salakhutdinov, 2009, 2010).
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Furthermore, we can usually afford to run MCMC for only a few iterations in the nested

loop for the sake of efficiency (Neal, 1992; Tieleman, 2008), which makes it even harder to

obtain an accurate estimate of the gradient.

Even when the MRF is well trained, it is usually difficult to apply the model to regular tasks

such as inference, density estimation, and model selection, because all of those tasks require

computation of the partition function. One has to once more resort to running MCMC

during the prediction phase to obtain an approximation.

Is there a method to speed up the inference step that exists in both the training and test

phases? The herding algorithm was proposed to address the slow mixing problem of MCMC

and combine the execution of MCMC in both training and prediction phases into a single

process.

2.2 Learning MRFs with Herding

When there exist multiple local modes in a model distribution, an MCMC sampler is prone

to getting stuck in local modes and it becomes difficult to explore the state space efficiently.

However, that is not a serious issue at the beginning of the MRF learning procedure as

observed by, for example, Tieleman & Hinton (2009). That is because the parameters keep

being updated with a large learning rate η at the beginning. Specifically, when the expected

feature vector is approximated by a set of samples EP (x;w)[φ(x)] ≈ 1
M

∑M
m=1φ(x̃m) in the

MCMC approach, after each update in Equation 2.4, the parameter w is translated along the

direction that tends to reduce the inner product of wTφ(x̃m), and thereby reduces the state

probability around the region of the current samples. The change in the state distribution

helps the MCMC sampler to escape local optima and mix faster.

This observation suggests that we can speed up the MCMC algorithm by updating the
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target distribution itself with a large learning rate. However, in order to converge to a

point estimate of a model, η needs to be decreased using some suitable annealing schedule.

But one may ask if one always needs to know the value of a fixed set of parameters? As

discussed in the previous section, for many applications an exact solution is not available

given a trained model and MCMC is adopted to provide an approximation. In that case,

a sequence of samples from a proper learned distribution is all we need. It then becomes

a waste of resources and time to nail down a single point estimate of the parameters by

decreasing η when a sequence of samples are already available. We actually killed two birds

with one stone by obtaining samples during the training phase and reuse them for making

predictions. The idea of the herding algorithm originates from the preceding observation.

Herding was proposed in Welling (2009a) and can be considered as an algorithm that runs a

gradient descent algorithm with a constant learning rate on an MRF in the zero-temperature

limit. Define the distribution of an MRF with a temperature by replacing w with w/T , where

T is an artificial temperature variable. The log-likelihood of a model (multiplied by T ) then

becomes:

`T (w) = wT φ̄− T log

(∑
x

exp

(∑
α

wα
T
φα(x)

))
(2.5)

When T approaches 0, all the probability is absorbed into the most probable state, denoted

as s, and the expectation of φ̄ equals the feature vector of s. The herding algorithm then

consists of the iterative gradient descent updates at the limit, T → 0, with a constant

learning rate, η:

st = arg max
x

∑
α

wα,t−1φα(x) (2.6)

wt = wt−1 + η(φ̄− φ(st)) (2.7)
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We usually omit the constant learning rate by setting η = 1 except when mentioned explicitly

with the reason explained in Section 2.3.2. We treat the sequence of most probable states,

{st}, as a set of “samples” from herding and use it for inference tasks. At each iteration, we

find the most probable state in the current model distribution deterministically, and update

the parameter towards the average feature vector from the training data subtracted by the

feature vector of the current sample. Compared to maintaining a set of random samples

in the MCMC approach (see e.g. Tieleman, 2008), updating w with a single sample state

facilitates updating the distribution at an even rate.

It is not difficult to observe that running gradient descent on a tempered MRF with a learning

rate, η, is equivalent to running it on a regular MRF with η replaced by η/T and w replaced

by w/T :

wt+1

T
=

wt

T
+
η

T
(φ̄− Ex∼P (x;

wt
T

)[φ(x)]) (2.8)

Therefore the herding algorithm in Equations 2.6-2.7 is equivalent to running the gradient

descent algorithm on a regular MRF with an infinitely large learning rate.

One can obtain an intuitive impression on the dynamics of herding by looking at the change in

the asymptotic behavior of the gradient descent algorithm as we decrease T from a large value

towards 0. Assume we can compute the expected feature vector w.r.t. the model exactly.

Given an initial value of w, the gradient descent update equation 2.8 with a constant learning

rate is a deterministic mapping in the parameter space. When T is large enough (η/T is

small enough), the optimization process will converge and w/T will approach a single point

which is the MLE. As T decreases below some threshold (η/T is above some threshold), the

convergence condition is violated and the trajectory of wt will move asymptotically into an

oscillation between two points, that is, the attractor set splits from a single point into two

points. As T decreases further, the asymptotic oscillation period doubles from two to four,
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Figure 2.1: Attractor bifurcation for a model with 4 states and 2-dimension feature vectors.

four to eight, etc, and eventually the process approaches an infinite period at a particular

temperature. Figure 2.1 shows an example of the attractor bifurcation phenomenon. Starting

from that temperature threshold, the trajectory of w is still bounded in a finite region as

shown shortly in Section 3.1 but will not be periodic any more. Instead, we observe that the

dynamics often converges to a fractal attractor set as shown in Figure 2.1b. We discuss this

phenomenon in more detail in Section 2.6.

2.3 Tipi Function and Basic Properties of Herding

We will discuss a few distinguishing properties of the herding algorithm in this section. When

we take the zero temperature limit in Equation 2.5, the log-likelihood function becomes

`0(w) = wT φ̄−max
x

[
wTφ(x)

]
(2.9)
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This function has a number of interesting properties that justify the name “Tipi function”1

(see Figure 2.2) (Welling, 2009a):

1. `0 is continuous piecewise linear (C0 but not C1). It is clearly linear in w as long as

the maximizing state s does not change. However, changing w may in fact change the

maximizing state in which case the gradient changes discontinuously.

2. `0 is a concave, non-positive function of w with a maximum at `0(0) = 0. This is true

because the first term represents the average EP [wTφ(x)] over some distribution P,

while the second term is its maximum. Therefore, ` 5 0. If we further more assume

that φ is not constant on the support of P then `0 < 0 and the maximum at w = 0 is

unique. Concavity follows because the first term is linear and the second maximization

term is convex.

3. `0 is scale free. This follows because `0(βw) = β`0(w),∀β ≥ 0 as can be easily checked.

This means that the function has exactly the same structure at any scale of w.

1A Tipi is a traditional native Indian dwelling.
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Herding runs gradient descent optimization on this Tipi function. There is no need to search

for the maximum as w = 0 is the trivial solution. However, the fixed learning rate will always

result in a perpetual overshooting of the maximum and these weights will never converge.

Every flat face of the Tipi function is associated with a state. We will show later in Section

2.5 that the most useful property of herding is that the state sequence obtained by following

this gradient descent procedure satisfies the moment matching constraints in Equation 2.1.

There are a few more properties of this procedure that are worth noticing.

2.3.1 Deterministic Nonlinear Dynamics

Herding is a deterministic nonlinear dynamical system. In contrast to the stochastic MLE

learning algorithm based on MCMC, the two update steps in Equation 2.6 and 2.7 consist of

a nonlinear deterministic mapping of the weights as illustrated in Figure 2.3. In particular

it is not an MCMC procedure and it does not require random number generation.

The dynamics thus produces pseudo-samples that look random, but should not be interpreted

as random samples. Although reminiscent of the Bayesian approach, the weights generated

during this dynamics should not be interpreted as samples from some Bayesian posterior

distribution. As to be discussed in detail in Section 2.6, the herding dynamics show weakly

chaotic behavior, and the distribution of the weights may render a fractal attractor set (see

Figure 2.2).

2.3.2 Invariant on Learning Rate

Varying the learning rate η does not change the behavior of the herding dynamics. The only

effect is to change the scale of the invariant attractor set of the sequence wt. This actually

follows naturally from the scale-free property of the Tipi function. More precisely, denote

14



Figure 2.3: Herding as a nonlinear dynamical system.

with vt the standard herding sequence with η = 1 and wt the sequence with an arbitrary

learning rate. It is easy to see that if we initialize vt=0 = 1
η
wt=0 and apply the respective

herding updates for wt and vt afterwards, the relation vt = 1
η
wt will remain true for all

t > 0. In particular, the states st will be the same for both sequences. Therefore we simply

set η = 1 in the herding algorithm.

Of course, if one initializes both sequences with arbitrary different values, then the state

sequences will not be identical. However, if one accepts the conjecture that there is a unique

invariant attractor set, then this difference can be interpreted as a difference in initialization

which only affects the transient behavior (or “burn-in” behavior) but not the (marginal)

distribution P (s) from which the states st will be sampled.

Notice however that if we assign different learning rates across the dimensions of the weight

vector {wα}, it will change the distribution P (s). While the moment matching constraints

are still satisfied, we notice that the entropy of the sample distribution varies as a function

of {ηα}. In fact, changing the relative ratio of learning rates among feature dimensions is

equivalent to scaling features with different factors in the greedy moment matching algorithm

interpretation of Section 2.4. How to choose an optimal set of learning rates is still an open

problem.
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2.3.3 Negative Auto-correlation

A key advantage of the herding algorithm over sampling using a Markov chain is that the

dynamical system mixes very rapidly over the attractor set. This is attributed to the nature

of the ever changing model distribution as briefly mentioned at the beginning of this section.

Let π(x) be the distribution of training data D, and st be the maximizing state at time t.

The distribution of an MRF at time t with a regular temperature T = 1 is

P (x; wt−1) ∝ exp(wT
t−1φ(x)) (2.10)

After the weights are updated with Equation 2.7, the probability of the new model becomes

P (x; wt) ∝ exp(wT
t−1φ(x)) = exp((wt−1 + φ̄− φ(st))

Tφ(x))

= exp

(
wT
t−1φ(x) +

∑
y 6=st

π(y)φ(y)Tφ(x)− (1− π(st))φ(st)
Tφ(x)

)
(2.11)

Comparing Equation 2.11 with 2.10, the product in the exponent is rewarded by a positive

term π(x)φ(x)Tφ(x) for all states but st, which after normalization will likely depress the

probability of st in the new model and thereby decrease the chance that st is selected as the

maximizing state again. Imagine that the sampler is stuck at a local mode. After drawing

samples at that mode for a while, weights are updated to gradually reduce that mode and

help the sampler to escape it. The resulting negative auto-correlation would help mitigate

the notorious problem of positive auto-correlation in the MCMC method.

We illustrate the negative auto-correlation using a synthetic MRF with 10 discrete states,

each associated with a 7-dimensional feature vector. The model parameters are randomly

generated and the expected feature values are then computed and fed into the herding

algorithm to draw T = 105 samples. We define the auto-correlation of the sample sequence
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of discrete variables as follows:

R(t) =
1

T−t
∑T−t

τ=1 I[sτ = sτ+t]−
∑

s P̂ (s)2

1−
∑

s P̂ (s)2
(2.12)

where I is the indication function and P̂ is the empirical distribution of the 105 samples. It

is easy to observe that R(t = 0) = 1 and if the samples are independently distributed R(t) =

0,∀t > 0 up to a small error due to the finite sample size. We run herding 100 times with

different model parameters and show the mean and standard deviation of the auto-correlation

in Figure 2.4. We can see that the auto-correlation is negative for neighboring samples, and

converges to 0 as the time lag increases. This effect exists even if we use a local optimization

algorithm when a global optimum is hard or expensive to be obtained. This type of “self-

avoidance” idea is also shared by other sampling methods such as overrelaxation (Young,

1954), fast-weights PCD (Tieleman & Hinton, 2009) and adaptive MCMC (Salakhutdinov,

2010).
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Figure 2.4: Negative auto-correlation of herding samples from a synthetic MRF.
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2.4 Herding as a Greedy Moment Matching Algorithm

As herding does not obtain the MLE, the distribution of the generated samples does not

provide a solution to the maximum entropy problem either. However, we observe that the

moment matching constraints in Equation 2.1 are still respected, that is, when we compute

the sampling average of the feature vector it will converge to the input moments. Further-

more, the negative auto-correlation in the sample sequence helps to achieve a convergence

rate that is faster than what one would get from independently drawing samples or running

MCMC at the MLE. Before providing any quantitative results, it would be easier for us to

understand herding intuitively by taking a “dual view” of its dynamics where we remove

weights w in favor of the states x (Chen et al., 2010).

Notice that the expression of wT can be expanded recursively using the update equation 2.7:

wT = w0 + T φ̄−
T∑
t=1

φ(st) (2.13)

Plugging 2.13 into Equation 2.6 results in

sT+1 = arg max
x
〈w0,φ(x)〉+ T 〈φ̄,φ(x)〉 −

T∑
t=1

〈φ(st),φ(x)〉 (2.14)

For ease of intuitive understanding of herding, we temporarily make the assumptions (which

are not necessary for the propositions to hold in the next section):

1. w0 = φ̄

2. ‖φ(x)‖2 = R, ∀x ∈ X

The second assumption is easily achieved, e.g. by renormalizing φ(x)← φ(x)
‖φ(x)‖ or by choosing
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Figure 2.5: Herding as an infinite memory process on samples.

a suitable feature map φ in the first place. Given the above assumptions, Equation 2.14

becomes

sT+1 = arg max
x
〈φ̄,φ(x)〉 − 1

T + 1

T∑
t=1

〈φ(st),φ(x)〉 (2.15)

One can show that the herding update equation 2.15 is equivalent to greedily minimizing

the squared error E2T defined as

E2T
def
=

∥∥∥∥∥φ̄− 1

T

T∑
t=1

φ(st)

∥∥∥∥∥
2

(2.16)

We therefore see that herding will generate pseudo-samples that greedily minimize the dis-

tance between the input moments and the sampling average of the feature vector at every

iteration (conditioned on past samples). Note that the error function is unfortunately not

submodular and the greedy procedure does not imply that the total collection of samples at

iteration T is jointly optimal (see Huszar & Duvenaud (2012) for a detailed discussion). We

also note that herding is an “infinite memory process” on st (as opposed to a Markov pro-

cess) illustrated in Figure 2.5 because new samples depend on the entire history of samples

generated thus far.
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2.5 Moment Matching Property

With the dual view in the previous section, the distance between the moments and their

sampling average in Equation 2.16 can be considered as the objective function for the herding

algorithm to minimize. We discuss in this section under what condition and at what speed

the moment constraints will be eventually satisfied.

Proposition 2.1 (Proposition 1 in Welling (2009a)). ∀α, if limτ→∞
1

τ
wατ = 0, then

limτ→∞
1

τ

∑τ
t=1 φα(st) = φ̄α.

Proof. Following Equation 2.13, we have

1

τ
wατ −

1

τ
wα0 = φ̄α −

1

τ

τ∑
t=1

φα(st) (2.17)

Using the premise that the weights grow slower than linearly and observing that wα0 is

constant we see that the left hand term vanishes in the limit τ → ∞ which proves the

result.

What this says is that under the very general assumption that the weights do not grow

linearly to infinity (note that due to the finite learning rate they can not grow faster than

linear either), the moment constraints will be satisfied by the samples collected from the

combined learning/sampling procedure. In fact, we will show later that the weights are

restricted in a bounded region, which leads to a convergence rate of O(1/τ) as stated below.

Proposition 2.2. ∀α, if there exists a constant R such that |wα,t| ≤ R, ∀t, then∣∣∣∣1τ ∑τ
t=1 φα(st)− φ̄α

∣∣∣∣ ≤ 2R

τ
.

The proof follows immediately Equation 2.17.

Note that if we want to estimate the expected feature of a trained MRF by a Monte Carlo
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method, the optimal standard deviation of the approximation error with independent and

identically distributed (i.i.d.) random samples decays as O( 1√
τ
), where τ is the number of

samples. (For positively autocorrelated MCMC methods this rate could be even slower.)

Samples from herding therefore achieve a faster convergence rate in estimating moments

than i.i.d. samples.

2.5.1 Recurrence of the Weight Sequence

As the weights are driven following the update equations on the Tipi function, it is crucial

to ensure that the herding dynamics does not diverge to infinity. Welling (2009a) discovered

an important property of herding, known as recurrence, that the sequence of the weights

is confined in a ball in the parameter space. This property suffices the premise of both

Proposition 2.1 and 2.2. It was stated in a corollary of Proposition 2:

Proposition 2.3 (Proposition 2 in Welling (2009a)). ∃R such that a herding update per-

formed outside this radius will always decrease the norm ‖w‖2.

Corollary 2.4 (Corollary in Welling (2009a)). ∃R′ such that a herding algorithm initialized

inside a ball with that radius will never generate weights w with norm ‖w‖2 > R′.

However, there was a gap in the proof of Proposition 2 in Welling (2009a). We give the

corrected proof below:

Proof of Proposition 2.3. Write the herding update equation 2.7 as wt = wt−1 +∇w`0 (set

η = 1). Take the inner product with wt leading to

‖wt‖22 = ‖wt−1‖22 + 2wT
t−1∇w`0 + ‖∇w`0‖22 =⇒ δ‖w‖22 < 2`0 + B2 (2.18)

where we notice `0 = wT
t−1∇w`0, and B is an upper bound of {‖∇w`0(x)‖2 : x ∈ X}
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introduced in Lemma 1 of Welling (2009a).

Denote the unit hypersphere as U = {w|‖w‖22 = 1}. Since `0 is continuous on U and U is

a bounded closed set, `0 can achieve its supremum on U , that is, we can find a maximum

point w∗ on U where `0(w
∗) ≥ `0(w), ∀w ∈ U .

Combining this with the fact that `0 < 0 outside the origin, we know the maximum of `0 on

U is negative. Now taking into account the fact that B is constant (i. e. does not scale with

w), there exists some constant R for which R`0(w∗) < −B2/2. Together with the scaling

property of `0, `0(βw) = β`0(w), we can prove that for any w with a norm larger than R,

`0 is smaller then −B2/2:

`0(w) = ‖w‖2`0(w/‖w‖2) ≤ R`0(w∗) < −B2/2, ∀‖w‖2 > R (2.19)

The proof is concluded by plugging the inequality above in Equation 2.18.

2.5.2 The Remaining Degrees of Freedom

Both of the herding and the MaxEnt methods match the moments of the training data.

But how do they control the remaining degrees of freedom that is otherwise controlled by

maximizing the entropy in the MaxEnt method? Unfortunately it is still an open problem

and we do not have a principled way except for some heuristics to achieve high entropy. In

practice however, we usually observe that the sampling distribution from herding renders

high entropy. We illustrate the behavior of herding in the example of simulating an Ising

model in the next paragraph.

An Ising model is an MRF defined on a lattice of binary nodes, G = (E, V ), with biases and
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pairwise features. The probability distribution is expressed as

P (x) =
1

Z
exp

β
 ∑

(i,j)∈E

Ji,jxixj +
∑
i∈V

hixi

 , xi ∈ {−1, 1},∀i ∈ V (2.20)

where hi is the bias parameter, Ji,j is the pairwise parameter and β ≥ 0 is the inverse

temperature variable. When hi = 0, Ji,j = 1 for all nodes and edges, and β is set at

the inverse critical temperature, the Ising model is said to be at a critical phase where

regular sampling algorithms fail due to long range correlations among variables. A special

algorithm, the Swendsen-Wang algorithm (Swendsen & Wang, 1987), was designed to draw

samples efficiently in this case. In order to run herding on the Ising model, we need to know

the average features, x̄i (0 in this case) and xixj instead of the MRF parameters. So we first

run the Swendsen-Wang algorithm to obtain an estimate of the expected cross terms, xixj,

which are constant across all edges, and then run herding with weights for every node wi

and edge wi,j. The update equations are:

st = arg max
x

∑
(i,j)∈E

w(i,j),t−1xixj +
∑
i∈V

wi,t−1xi (2.21)

w(i,j),t = w(i,j),t−1 + xixj − si,tsj,t (2.22)

wi,t = wi,t−1 − si,t (2.23)

As finding the global optimum is an NP-hard problem we find a local maximum for st

by coordinate descent. Figure 2.6 shows a sample from an Ising model on an 100 × 100

lattice at the critical temperature. We do not observe qualitative difference between the

samples generated by the Ising model (MaxEnt) and herding, which suggests that the sample

distribution of herding may be very close to the distribution of the MRF. Furthermore,

figure 2.7 shows the distribution of the size of connected components in the samples. It is

known that this distribution should obey a power law at the critical temperature. We find

that samples from both methods show the power law distribution with an almost identical
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(a) Generated by Swendsen-Wang (b) Generated by Herding

Figure 2.6: Sample from an Ising model on an 100× 100 lattice at the critical temperature.

(a) Generated by Swendsen-Wang (b) Generated by Herding

Figure 2.7: Histogram of the size of connected components in the samples of the Ising model
at the critical temperature.

exponent.

2.6 Learning Using Weak Chaos

There are two theoretical frameworks for statistical inference: the frequentist and the Bayesian

paradigm. A frequentist assumes a true objective value for some parameter and tries to esti-

mate its value from samples. Except for the simplest models, estimation usually involves an
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iterative procedure where the value of the parameter is estimated with increasing precision.

In information theoretic terms, this means that more and more information from the data

is accumulated in more decimal places of the estimate. With a finite data-set, this process

should stop at some scale because there is not enough information in the data that can be

transferred into the decimal places of the parameter. If we continue anyway, we will overfit

to the dataset at hand. In a Bayesian setting we entertain a posterior distribution over pa-

rameters, the width of which determines the amount of information it encodes. In Bayesian

estimation, the width automatically adapts itself to the amount of available information in

the data. In both cases, the learning process itself can be viewed as a dynamical system. For

a frequentist this means a convergent series of parameter estimates indexed by the learning

iteration w1,w2, . . . . For a Bayesian running a MCMC procedure this means a stochastic

process converging to some equilibrium distribution.

Herding introduces a third possibility by encoding all the information in a deterministic

nonlinear dynamical system. We focus on studying the weakly chaotic behavior of the

herding dynamics in this section. The sequence of weights never converges but traces out a

quasi-periodic trajectory on an attractor set which is often found to be of fractal dimension.

We show that the learnable information contained in the sequence, which is expressed as the

sub-extensive part of the entropy, appears to grow faster than in both a converged sequence

and a stochastic process.

2.6.1 Example: Herding a Single Neuron

We first study an example of the herding dynamics in its simplest form and show its equiv-

alence to some well-studied theories in mathematics. Consider a single (artificial) neuron,

which can take on two distinct states: either it fires (x = 1) or it does not fire (x = 0).

Assume that we want to simulate the activity of a neuron with an irrational firing rate,
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Figure 2.8: Herding dynamics for a single binary variable. At every iteration the weight is
first increased by π. If w was originally positive, it is then depressed by 1.

π ∈ [0, 1], that is, the average firing frequency approaches limT→∞
1
T

∑T
t=1 st = π. We can

achieve that by applying the herding algorithm with a one-dimensional feature φ(x) = x and

feeding the input moment with the desired rate φ̄ = π. Apply the update equations 2.6-2.7

and we get the following dynamics:

st = I(wt−1 > 0) (2.24)

wt = wt−1 + π − st (2.25)

where I[·] is the indicator function. With the moment matching property we can show

immediately that the firing rate converges to the desired value for any initial value of w. The

update equations are illustrated in Figure 2.8. This dynamics is a simple type of interval

translation mapping (ITM) problem in mathematics (Boshernitzan & Kornfeld, 1995). In a

general ITM problem, the invariant set of the dynamics often has a fractal dimension. But

for this simple case, the invariant set is the entire interval (π−1, π]. As a neuron model, one

can think of wt as a “synaptic strength.” At each iteration the synaptic strength increases

by an amount π. When the synaptic strength rises above 0, the neuron fires. If it fires its

synaptic strength is depressed by a factor 1. The value of w0 only has some effect on the

transient behavior of the resulting sequence s1, s2, . . . .

It is perhaps interesting to note that by setting π = ϕ with ϕ the golden mean ϕ = 1
2
(
√

5−1)

and initializing the weights at w0 = 2ϕ−1, we exactly generate the “Rabbit Sequence”: a well
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studied Sturmian sequence which is intimately related with Fibonacci numbers2). In Figures

2.9 we plot the weights (a) and the states (b) resulting from herding with the “Fibonacci

neuron” model. For a proof, please see Welling & Chen (2010).
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(a) Sequence of weight values. Note that the
state results by checking if the weight value is
larger than 0 (in which case st = 1) or smaller
than 0 (in which case st = 0). By initializing
the weights at w0 = 2ϕ − 1 and using π = ϕ,
with ϕ the golden mean, we obtain the Rabbit
sequence (see main text).
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(b) Top stripes show the first 30 iterates of the
sequence obtained with herding. For compari-
son we also show the Rabbit sequence below it
(white indicates 1 and black indicates 0). Note
that these two sequences are identical.

Figure 2.9: Sequence of weights and states generated by the “Fibonacci neuron” based on
herding dynamics.

When initializing w0 = 0, one may think of the synaptic strength as an error potential that

keeps track of the total error so far. One can further show that the sequence of states is a

discrete low discrepancy sequence (Angel et al., 2009) in the following sense:

Proposition 2.5. If w is the weight of the herding dynamics for a single binary variable

x with probability P (x = 1) = π, and wτ ∈ (π − 1, π] at some step τ ≥ 0, then wt ∈
2Imagine two types of rabbits: young rabbits (0) and adult rabbits (1). At each new generation the

young rabbits grow up (0→ 1) and old rabbits produce offspring (1→ 10). Recursively applying these rules
we produce the rabbit sequence: 0 → 1 → 10 → 101 → 10110 → 10110101 etc. The total number of terms
of these sequences and incidentally also the total number of 1’s (lagged by one iteration) constitutes the
Fibonacci sequence: 1, 1, 2, 3, 5, 8, ....

27



(π − 1, π], ∀t ≥ τ . Moreover, for T ∈ N, we have:

∣∣∣∣∣
τ+T∑
t=τ+1

I[st = 1]− Tπ

∣∣∣∣∣ ≤ 1,

∣∣∣∣∣
τ+T∑
t=τ+1

I[st = 0]− T (1− π)

∣∣∣∣∣ ≤ 1 (2.26)

Proof. We first show that (π − 1, π] is the invariant interval for herding dynamics. Denote

the mapping of the weight in Equation 2.24 and 2.25 as T . Then we can see that the interval

(π − 1, π] is mapped to itself as

T (π − 1, π] = T (π − 1, 0] ∪ T (0, π] = (2π − 1, π] ∪ (π − 1, 2π − 1] = (π − 1, π] (2.27)

Consequently when wτ falls inside the invariant interval, we have wt ∈ (π − 1, π],∀t ≥ τ .

Now summing up both sides of Equation 2.25 over t immediately gives us the first inequality

in 2.26 as:

Tπ −
τ+T∑
t=τ+1

I[st = 1] = wτ+T − wτ ∈ [−1, 1]. (2.28)

The second inequality follows by observing that I[st = 0] = 1− I[st = 1].

As a corollary of Proposition 2.5, when we initialize w0 = π−1/2, we can improve the bound

of the discrepancy by a half.

Corollary 2.6. If w is the weight of the herding dynamics in Proposition 2.5 and it is

initialized at w0 = π − 1/2, then for T ∈ N, we have:

∣∣∣∣∣
τ+T∑
t=τ+1

I[st = 1]− Tπ

∣∣∣∣∣ ≤ 1

2
,

∣∣∣∣∣
τ+T∑
t=τ+1

I[st = 0]− T (1− π)

∣∣∣∣∣ ≤ 1

2
(2.29)

The proof immediately follows Equation 2.28 by plugging τ = 0 and w0 = π − 1/2. In fact,

setting w0 = π − 1/2 corresponds to the condition in the greedy algorithm interpretation in

Section 2.4. One can see this by constructing an equivalent herding dynamics with a feature
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of constant norm as:

φ′(x) =

 1 if x = 1

−1 if x = 0
(2.30)

When initializing the weight at the moment w′0 = φ̄′ = 2π − 1, one can verify that this

dynamics generates the same sample sequence as the original one and their weights are the

same up to a constant factor of 2, i.e. w′t = 2wt,∀t ≥ 0. The new dynamics satisfies the two

assumptions in Section 2.4 and therefore the sample sequences in both dynamical systems

greedily minimize the error of the empirical probability (up to a constant factor):

∣∣∣∣∣ 1

T

T∑
t=1

φ′(x′t)− (2π − 1)

∣∣∣∣∣ = 2

∣∣∣∣∣ 1

T

T∑
t=1

I[xt = 1]− π

∣∣∣∣∣ (2.31)

This greedy algorithm actually achieves the optimal bound one can get with herding dynam-

ics in the 1-neuron model, which is 1/2.

We can view this as a dynamical system on the state space {−1, 1}, i.e. st+1 = Ft(s[1:t];w0).

We note that the map depends on the entire history, {s1, ..st}. This same information is

equivalently stored in the current value of the parameter wt. However, marginalizing over

w, the system has infinite memory as shown in Figure 2.5. One can also compute the

complexity of the state sequences, which is defined as the total number possible sequences of

length T . This number turns out to be exactly T + 1, which is the absolute bare minimum

for sequences that are not eventually periodic. These facts imply that our neuron model

generates Sturmian sequences for irrational values of π which are precisely defined to be the

non-eventually periodic sequences of minimal complexity Lu & Wang (2005). (For a proof,

please see Welling & Chen (2010).)
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Figure 2.10: Cones in parameter space
{w1, w2} that correspond to the discrete
states s1, ..., s6. Arrows indicate the trans-
lation vectors associated with the cones.

w1 

w2 

Figure 2.11: Fractal attractor set for herd-
ing with two parameters. The circles repre-
sent the feature-vectors evaluated the states
s1, ..., s6. Hausdorff dimension for this ex-
ample is between 0 and 1.

2.6.2 Weak Chaos in the Herding Dynamics

Now let us consider herding in a general setting with D states and each state is associated

with a K dimensional feature vector. The update equation for the weights 2.7 can be viewed

as a series of translations in the parameter space, w → w + ρ(x), where each discrete state

x ∈ X corresponds to one translation vector (i.e. ρ(x) = φ̄− φ(x)). See Figure 2.10 for an

example with D = 6 and K = 2. The parameter space is partitioned into cones emanating

from the origin, each corresponding to a state according to Equation 2.6. If the current

location of the weights is inside cone x, then one applies the translation corresponding to

that cone and moves along ρ(x) to the next point. This system is an example of what is

known as a piecewise translation (or piecewise isometry more generally) (Goetz, 2000).

It is clear that this system has zero Lyapunov exponents3 everywhere (except perhaps on

3The Lyapunov exponent of a dynamical system is a quantity that characterizes the rate of separation
of infinitesimally close trajectories. Quantitatively, two trajectories in phase space with initial separation
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the boundaries between cones but since this is a measure zero set we will ignore these).

As the evolution of the weights will remain bounded inside some finite ball the evolution

will converge on some attractor set. Moreover, the dynamics is non-periodic in the typical

case (more formally, the translation vectors must form an incommensurate (possibly over-

complete) basis set; for a proof see Appendix B of Welling & Chen (2010)). It can often be

observed that this attractor has fractal dimension (see Figure 2.11 for an example). All these

facts clearly point to the idea that herding is on the edge between full chaos (with positive

Lyapunov exponents) and regular periodic behavior (with negative Lyapunov exponents). In

fact, herding is an example of weak chaos, which is usually defined through its (topological)

entropy. We will study the entropy of herding in the next subsection. Figure 2.1 shows

another example of the fractal attractor set and the attractor bifurcation phenomenon which

is often observed in chaos systems.

Herding is a dissipative system in the sense that there are many locations where a point

has more than one pre-image. At these places it becomes obviously impossible to determine

wt−1 from wt. In other words, we can not run the system backwards in time, i.e. it is time

irreversible. We interpret these regions as “entropy sinks,” i.e. regions where entropy is

destroyed. These entropy sinks are full dimensional (i.e. of dimension K). On the other

hand, entropy is also generated on the boundaries between the cones. We call these K − 1

dimensional areas “entropy sources.” It is here that a region gets split into two (or more)

regions and the points in one half become completely uncorrelated with points in the other

half.

Note that in breaking a region in two we do not expand the volume of our space at a

microscopic level. However at the sinks, regions overlap and we do indeed lose volume there.

So, we can conclude that the volume will only decrease as time moves on. Whether the

volume will become zero or reach a pedestal remains an open question. For the case of single

|δZ(0)| diverge (provided that the divergence can be treated within the linearized approximation) at a rate
given by |δZ(t)| ≈ eλt|δZ(0)| where λ is the Lyapunov exponent.
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neuron model, the attractor is the entire interval (π− 1, π]. For a general case with a higher

dimension, we conjecture that (under the right conditions) the volume will shrink to zero

leading to fractal attractors4.

Although the K − 1-dimensional entropy sources do not generate K-dimensional volume at

a microscopic level, they do generate volume at a coarse grained level by pushing apart the

two halves of the region that it splits. It is this process which is usually referred to when

we speak of the second law of thermodynamics, namely that the entropy of a system always

increases. Starting with a small (infinitely dense) region we will indeed find that at a coarse

grained level it will expand and converge on a stable attractor set. This despite the fact that

it will loose K-dimensional volume. Again this picture suggests a fractal structure of the

attractor set.

2.6.3 Topological Entropy

In this section we will estimate the entropy production rate of herding. This will inform us

further of the properties of this system and how it processes information.

From Figure 2.10 we see that the sequence s1, s2, ... can be interpreted as the symbolic system

of the continuous dynamical system defined for the parameters w. A sequence of symbols

(states) is sometimes referred to as an “itinerary.” Every time w falls inside a cone we record

its label which equals the state x. The topological entropy for the symbolic system can be

easily defined by counting the total number of subsequences of length T , which we will call

M(T ). One may think of this as a dynamical language where the subsequences are called

“words.” The topological entropy is defined as,

h = lim
T→∞

h(T ) = lim
T→∞

logM(T )

T
(2.32)

4We have numerically verified this statement for some two dimensional cases.
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It was rigorously proven in Goetz (2000) that M(T ) grows polynomially in T for general

piecewise isometries, which implies that the topological entropy vanishes for herding. It is

however interesting to study the growth of M(T ) as a function of T to get a sense of how

chaotic its dynamics is.

To count the number of subsequences of length T , we can study the T -step herding map

that results from applying herding T steps at a time. The original cones are now further

subdivided into smaller convex polygons, each one labeled with the sequence s1, s2, ..., sT that

the points inside the polygon will follow during the following T steps. Thus as we increase

T , the number of these polygons will increase and it is exactly the number of those polygons

which partition our parameter space that is equal to the number of possible subsequences.

We first claim that every polygon, however small, will break up into smaller sub-pieces after

a finite amount of time. This is proven in Welling & Chen (2010). In fact, we further

conjecture that in a typical herding system every pair of points will break up as well, which,

if true, would infer that the diameter of the polygons must shrink. A partition with this

property is called a generating partition.

Thus, to estimate the rate with which the number of sequences grow, we need to estimate

how quickly a partition breaks up into smaller pieces. Define c(t) to be the total number of

cells (polygons) at time t. Recall that the cells split when they overlap with a cone-boundary.

The probability that that happens is proportional to the diameter of the cell, which scales

as d(t) ∼ c(t)−
1
K where K is the number of dimensions (which is equal to the number of

herding parameters). This follows because c(t) ≈ (D/d(t))K with D the size of the initial

cell. At time t the probability of splitting a particular cell is π ∼ d(t)/L where L is the

diameter of the volume over which the cells are distributed. Therefore, the change in the

expected number of cells between time t and t+dt equals the number of cells at time t times
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the probability of a cell splitting: dc(t) = c(t)π(t)dt. Which then gives,

dc(t) = c(t)π(t)dt ∼ c(t)d(t)dt ∼ c(t)1−
1
K dt (2.33)

which leads to the solution: c(t) ∼ tK . It has been rigorously proven that the growth rate

must have an exponent less or equal than K (Goetz, 2000), but we conjecture based on

the above argument and some preliminary numerical simulations that it is actual equal to

K for herding in the typical case (a.k.a. with an incommensurate translation basis, see

Appendix B of Welling & Chen (2010)). Thus, if we accept this conjecture, then the entropy

H(T ) = Th(T ) of a sequence of length T (for T large enough) is given by,

H(T ) = K log(T ) (2.34)

This result is interesting, because it implies that there may be more learnable information

in a herding sequence than in a sequence of IID samples as will be discussed below.

2.6.4 Learnable Information in the Herding Sequence

Let us consider the task of inferring the firing rate of a neuron from a binary sequence

(presence or absence of a signal). Suppose the firing rate, π, is an irrational number in this

section. When the sequence is generated with herding dynamics, in the previous section we

estimated the dominant contribution to the entropy of a herding sequence to be Htop(T ) ∼

K log(T ) with K the number of parameters (K = 1 in this case).

In the Bayesian framework, consider the binary sequence as generated by random sampling

from a Bernoulli distribution where we use a Beta-prior on the parameter π. This results in

an exchangeable sequence of samples (no longer IID due to the fact we integrate over the π

which induces dependencies) and we want to infer the posterior distribution of π given that
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sequence. We can compute the Kolmogorov-Sinai entropy of the sequence. The dominant

part of that sequence grows linearly in T , i.e. Hext = hT . As explained in Bialek et al. (2001)

however, this extensive contribution will not contribute to the predictive information defined

as the mutual information between the future and past sequence. The authors argue that it is

the sub-extensive part of the entropy that should be interpreted as the amount of predictive

information about the future. In fact the authors go one step further in stating that sub-

extensive entropy is a good measure of the complexity of the sequence where both regular and

random sequences have low complexity. The dominant contribution of the sub-extensive part

for posterior sampling can easily be computed as Hsub(T ) = 1
2
K log T (with K = 1 for the

Beta-Bernoulli distribution). This sub-extensive entropy is equal the minimum description

length as it measures the number of bits required to encode the learnable (predictable) part

of the sequence. It can also be derived as the bits-back term (Hinton & Zemel, 1994) in the

Bayesian evidence but now applied to the parameters instead of the hidden variables.

Comparing to the entropy of herding5 we can draw two important conclusions: I) The

entropy of herding does not have an extensive component, which we believe is due to infinite

memory nature. Thus, all the information in a herding sequence is useful for prediction

and no bits are wasted on unpredictable randomness. II) The entropy of herding can grow

faster by a factor of two than the sub-extensive part of the entropy of the Bayesian evidence.

From this we conclude that the samples of herding can be interpreted as a filtered version of

samples obtained from sampling from the corresponding Bayesian model (a Beta-Bernoulli

distribution in this case) where the useful signal has been separated from a noisy background.

(The term “noisy” is being used in its more general interpretation as useless for prediction.)6.

5We do not expect that the topological entropy and the Kolmogorov-Sinai entropy will differ significantly
in their leading order behavior. The KS-entropy can be identified with the Hsub.

6It is interesting to note that the authors of Bialek et al. (2001) comment on the equivalence of information
generated through parameter tying or through other types of infinite range correlations in the data.
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2.7 Summary of Contributions

The herding algorithm was proposed by Welling (2009a) and the study on the statistical

properties of herding was also mainly attributed to him. My contributions in this chapter

include:

• Discussed the negative auto-correlation of the sample sequence generated by herding

with a quantitative measurement in Section 2.3.3.

• Applied herding on the Ising model in Section 2.5.2.

• Analyzed the low-discrepancy property of herding on the single neuron model in Section

2.6.1

• Provided a quantitative estimation of the topological entropy in Section 2.6.3
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Chapter 3

Generalized Herding

The moment matching property in Proposition 2.1 and 2.2 requires only a mild condition

on the L2 norm of the dynamic weights. That provides us with great flexibility in modifying

the original algorithm for more practical implementation as well as a larger spectrum of

applications. In this chapter, we will first give a general condition on the recurrence of the

weight sequence, from which we discuss how to generalize the herding algorithm. We show

three examples extensions of herding, two of which retain the moment matching property

and the other one does not but achieves the minimum matching distance in a constraint

problem.

3.1 A General Condition for Recurrence - The Percep-

tron Cycling Theorem

The moment matching property of herding relies on the recurrence of the weight sequence

(Corollary 2.4) whose proof again relies on the premise that the maximization is carried out

exactly in the herding update equation 2.6. However, the number of model states is usually
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exponentially large (e.g. |X | = Jm when x is a vector of m discrete variables each with J

values) and it is intractable to find a global maximum in practice. A local maximizer has to

be employed instead. One wonders if the features averaged over samples will still converge

on the input moments when the samplers are suboptimal states? In this section we give

a general and verifiable condition for the recurrence of the weight sequence based on the

perceptron cycling theorem (Minsky & Papert, 1969), which consequently suggests that the

moment matching property may still hold at the rate of O(1/T ) even with a relaxed herding

algorithm.

The invention of the perceptron (Rosenblatt, 1958) goes back to the very beginning of AI

more than half a century ago. Rosenblatt’s very simple, neurally plausible learning rule

made it an attractive algorithm for learning relations in data: for every input xi, make a

linear prediction about its label: y∗it = sign(wT
t−1xit) and update the weights as,

wt = wt−1 + xit(yit − y∗it). (3.1)

A critical evaluation by Minsky & Papert (1969) revealed the perceptron’s limited represen-

tational power. This fact is reflected in the behavior of Rosenblatts learning rule: if the data

is linearly separable, then the learning rule converges to the correct solution in a number of

iterations that can be bounded by (R/γ)2, where R represents the norm of the largest input

vector and γ represents the margin between the decision boundary and the closest data-case.

However, “for data sets that are not linearly separable, the perceptron learning algorithm

will never converge” (quoted from Bishop et al. (2006)).

While the above result is true, the theorem in question has something much more powerful

to say. The “perceptron cycling theorem” (PCT) (Minsky & Papert, 1969) states that for

the inseparable case the weights remain bounded and do not diverge to infinity.

Consider a sequence of vectors {wt}, wt ∈ RD, t = 0, 1, . . . generated by the iterative
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procedure in Algorithm 3.1.

Algorithm 3.1 Algorithm to generate the sequence {wt}.
V is a finite set of vectors in RD.
w0 is initialized arbitrarily in RD.
for t = 0→ T (T could be ∞) do

wt+1 = wt + vt, where vt ∈ V satisfies wT
t vt ≤ 0

end for

PCT was initially introduced in Minsky & Papert (1969) to show the boundedness of the

sequence of wt. It had a gap in the proof that was fixed in Block & Levin (1970) with the

following theorem (with slight changes in notation):

Theorem 3.1 (Boundedness Theorem). ‖wt‖ ≤ ‖w0‖ + M,∀t ≥ 0 where M is a constant

depending on V but not on w0.

The theorem still holds when V is a finite set in a Hilbert space. The PCT leads to the

boundedness of the perceptron weights where we identify vt = xit+1(yit+1 − y∗it+1
), a finite set

V = {xi(yi − y∗i )|yi = ±1, y∗i = ±1, i = 1, . . . , N} and observe

wT
t vt = wT

t xit+1(yit+1 − y∗it+1
) = |wT

t xit+1|(sign(wT
t xit+1)yit+1 − 1) ≤ 0 (3.2)

When the data is linearly separable, Rosenblatt’s learning rule will find a w such that

wTvi = 0,∀i and the sequence of wt converges. Otherwise, there always exists some vi such

that wTvi < 0 and PCT guarantees the weights are bounded.

The same theorem also applies to the herding algorithm by identifying vt = φ̄ − φ(st+1)

with st+1 defined in Equation 2.6, a finite set V = {φ̄− φ(x)|x ∈ X}, and observing that

wT
t vt = wT

t φ̄−wT
t φ(st+1) ≤ 0 (3.3)

It is now easy to see that, in general, herding does not converge because under very mild

conditions we can always find an st+1 such that wT
t vt < 0. More importantly, the bounded-
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ness theorem (or PCT) provides a general condition for the recurrence property and hence

the moment matching property of herding. Inequality 3.3 is easy to be verified at running

time and does not require st+1 to be the global optimum.

3.2 Generalizing the Herding Algorithm

PCT ensures that the average features from the samples will match the moments at a fast

convergence rate as long as the algorithm we are running satisfies the following conditions:

1. The set V is finite,

2. wT
t vt = wT

t φ̄−wT
t φ(st) ≤ 0,∀t,

This set of mild conditions allows us to generalize the original herding algorithm easily.

Firstly, the PCT provides a theoretical justification for using a local search algorithm that

performs partial maximization. For example, we may start the local search from the state

we ended up in during the previous iteration (a so-called persistent chain (Younes, 1989;

Neal, 1992; Yuille, 2004; Tieleman, 2008)). Or, one may consider contrastive divergence-like

algorithms (Hinton, 2002), in which the sampling or mean field approximation is replaced

by a maximization. In this case, maximizations are initialized on all data-cases and the

weights are updated by the difference between the average over the data-cases minus the

average over the {si} found after (partial) maximization. In this case, the set V is given

by: V = {φ̄ − 1
D

∑D
i=1 φ(si)|si ∈ X ,∀i}. For obvious reasons, it is now guaranteed that

wT
t vt ≤ 0.

Secondly, we often use mini-batches of size d < D in practice instead of the full data set. In

this case, the cardinality of the set V is enlarged to, e.g., |V | = C(d,D)Km, with C(d,D)
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representing the “d choose D” ways to compute the sample mean φ̄(d) based on a sub-

set of d data-cases. The negative term remains unaltered. Since the PCT still applies:∥∥ 1
τ

∑τ
t=1 φ̄(d),t − 1

τ

∑τ
t=1φ(st)

∥∥
2

= O(1/τ). Depending on how the mini-batches are picked,

convergence onto the overall mean φ̄ can be either O(1/
√
τ) (random sampling with replace-

ment) or O(1/τ) (sampling without replacement which has picked all data-cases after dD/de

rounds).

Besides changing the way we compute the positive and negative terms in vt, generalizing the

definition of features will allow us to learn a much wider scope of models beyond the fully

visible MRFs as discussed in the following sections.

3.3 Herding Partially Observed Random Field Models

The original herding algorithm only works for fully visible MRFs because in order to compute

the average feature vector of the training data we have to observe the state of all the variables

in a model. Welling (2009b) extends herding to partially observed MRFs (POMRFs) which

can be considered as an instance of our generalized herding algorithm. However, the proposed

algorithm is essentially non-parametric because it requires to access all the data cases instead

of the average feature vector at every iteration. We introduce a parametric version of herding

that runs on POMRFs in this thesis and evaluate its performance on an image compression

application.

3.3.1 Herding for POMRFs (Welling, 2009b)

Consider a MRF with discrete random variables (x, z) where x will be observed and z will

remain hidden. A set of feature functions is defined on x and z, {φα(x, z)}, each associated
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with a weight wα. Given these quantities we can write the following Gibbs distribution,

P (x, z; w) =
1

Z(w)
exp

(∑
α

wαφα(x, z)

)
(3.4)

The log-likelihood function with a dataset D = {xi}Di=1 is defined as

`(w) =
1

D

D∑
i=1

log

(∑
zi

exp
(
wTφ(xi, zi)

))
− logZ(w) (3.5)

Analogous to the duality relationship between MLE and MaxEnt for fully observed MRFs,

we can write the log-likelihood of a POMRF as

` = max
{Qi}

min
R

1

D

D∑
i=1

H(Qi)−H(R)+
∑
α

wα

(
1

D

D∑
i=1

EQi(zi)[φα(xi, zi)]− ER(x,z)[φα(x, z)]

)
(3.6)

where {Qi} are variational distributions on z, and R is a variational distribution on (x, z).

The dual form of MLE turns out as a minimax problem on 1
D

∑D
i=1H(Qi) − H(R) with a

set of constraints

1

D

D∑
i=1

EQi(zi)[φα(xi, zi)] = ER(x,z)[φα(x, z)] (3.7)

We want to achieve high entropy for the distributions {Qi} and R, and meanwhile the average

feature vector on the training set with hidden variables marginalized out should match the

expected feature w.r.t. to joint distribution of the model. The weights wα act as Lagrange

multipliers enforcing those constraints.

Similar to the derivation of herding for fully observed MRFs, we now introduce a temperature

in Equation 3.5 by replacing w with w/T . Taking the limit T → 0 of `T
def
= T`, we see

that the entropy terms vanish. For a given value of w and in the absence of entropy, the
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optimal distribution {Qi} and R are delta-peaks and their averages can thus be replace with

maximizations, resulting in the objective,

`0(w) =
1

D

D∑
i=1

max
zi

wTφ(xi, zi)−max
s

wTφ(s) (3.8)

where we denote s = (x, z).

Taking a gradient descent update on `0 with a fixed learning rate (η = 1) defines the herding

algorithm on POMRFs:

z∗it = arg max
zi

wT
t−1φ(xi, zi),∀i (3.9)

s∗t = arg max
s

wT
t−1φ(s) (3.10)

wt = wt−1 +

[
1

D

D∑
i=1

φ(xi, z
∗
it)

]
− φ(s∗t ) (3.11)

We use a superscript “∗” to denote states obtained by maximization. These equations are

similar to herding for the fully observed case, but different in the sense that we need to impute

the unobserved variables zi for every data-case separately through maximization. The weight

update also consist of a positive “driving term,” which is now a changing average over data-

cases, and a negative term, which is identical to the corresponding term in the fully observed

case.

3.3.2 Moment Matching Property

We can prove the boundedness of the weights with PCT by identifying

vt =
[

1
D

∑D
i=1 φ(xi, z

∗
i,t+1)

]
− φ(s∗t+1), a finite set V = {vt({zi}, s)|zi ∈ Xz,∀i, s ∈ X}, and
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observing the inequality

wT
t vt =

[
1

D

D∑
i=1

wT
t φ(xi, z

∗
i,t+1)

]
−wT

t φ(s∗t+1) (3.12)

=

[
1

D

D∑
i=1

max
zi

wT
t φ(xi, zi)

]
−max

s
wT
t φ(s) ≤ 0 (3.13)

The last inequality holds because the second term maximizes over more variables than every

term in the summation. Again, we do not have to be able to solve the difficult optimization

problems of Equation 3.9 and 3.10. Partial progress in the form of a few iterations of

coordinate-wise descent is often enough to satisfy the condition in Equation 3.12 which

can be checked easily. Welling (2009b) also proposes a tractable version of herding that is

guaranteed to satisfy PCT by starting the maximization for s∗t from the training data points.

Following a similar proof as Proposition 2.2, we obtain the fast moment matching property

of herding on POMRFs:

Proposition 3.2. There exists a constant R such that herding on a partially observed MRF

satisfies

∣∣∣∣∣1τ
τ∑
t=1

1

D

D∑
i=1

φα(xi, z
∗
it)−

1

τ

τ∑
t=1

φα(s∗t )

∣∣∣∣∣ ≤ 2R

τ
,∀α (3.14)

Notice that besides a sequence of samples of the full state {s∗t} that form the joint distribution

in the herding algorithm, we also obtain a sequence of samples of the hidden variables {z∗it}

for every data case xi that forms the conditional distribution of P (zi|xi). Those consistencies

in the limit of τ → ∞ in Proposition 3.2 are in direct analogy to the maximum likelihood

problem of Equation 3.5 for which the following moment matching conditions hold at the

MLE for all α,

1

D

D∑
i=1

EP (zi|xi;wMLE)[φα(xi, zi)] = EP (x,z;wMLE)[φα(x, z)] (3.15)
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These consistency conditions alone are not sufficient to guarantee a good model. After all,

the dynamics could simply ignore the hidden variables by keeping them constant and still

satisfy the matching conditions. In this case the hidden and visible subspaces completely

decouple, defeating the purpose of using hidden variables in the first place. Note that the

same holds for the MLE consistency conditions. However, an MLE solution also strives for

high entropy in the hidden states. We observe in practice that the herding dynamics usually

also induces entropy in the distributions for z avoiding the decoupling phenomenon described

above.

3.3.3 Parametric Herding Algorithms

In the herding algorithm on fully visible MRFs, we can first collect the average features from

the data and then run herding with these quantities only. The average features are playing

the role of parameters that shape the distribution of the generated samples. However, for

herding on POMRFs, we are required to store all the data in order to compute the weight

updates in Equation 3.11 because the positive term is a function of both the visible variables

and the current weights, and cannot be computed ahead of time. We should view this

method as inherently non-parametric as illustrated in Figure 2.3. For instance, the samples

can be used to generate a non-parametric kernel estimate of the density function, or the

hidden representations can be used as a basis for nearest-neighbor classification. However, it

makes one wonder if one can define a parametric variant of herding that decouples the data

and replaces them with a collection of parameters.

We consider two approaches to running herding dynamics with hidden variables with a finite

set of parameters.

The first approach is proposed in Welling (2009b). It replaces the weight-dependent features

in the positive term of Equation 3.11 by average features over time. Noticing that the hidden
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variable z∗it is a function of xi and wt−1, and data enters herding only in the positive term so

as to compute z∗it at the current weight setting, we resort to replacing that weight-dependent

term by the the average features, called rates, that marginalizes out the distribution of

weights (equivalently the distribution of hidden variables). This can be achieved through

the following online averaging process:

rt =
t− 1

t
rt−1 +

1

t
φ̄t, t = 1, . . . (3.16)

with φ̄t = 1
D

∑D
i=1 φ(xi, z

∗
it) and r0 = 0. Once the learning phase has finished, we can

decouple the data and run herding with the rates r instead:

wt = wt−1 + r− φ(s∗t ) (3.17)

We can show that PCT conditions hold with this parametric approach and therefore the

moment matching property will still be kept in the sense

lim
τ→∞

1

τ

τ∑
t=1

φα(s∗t ) = rα ≈ lim
τ→∞

1

τ

τ∑
t=1

φ̄α(wt,D) (3.18)

where the right hand side represents the average features that would be obtained from

the non-parametric algorithm. Note however that this is an approximation to the original

dynamics since we replace the positive term which is a function of the weights by constants.

The number of parameters in this approach is the same as the number of features.

We propose a second approach, called parametric herding (Chen & Welling, 2010), to provide

a more flexible parametric model and to potentially mimic the exact herding dynamics

better by learning regression functions rα(w) to approximate φ̄α(w). Following the nonlinear

dynamical system paradigm of herding with a mapping:

wt = F (wt−1,D) = wt−1 + φ̄(wt−1,D)− φ(s∗t (wt−1)) (3.19)
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we note that the mapping only depends on the data through the functions φ̄(wt−1,D).

Therefore, if we can learn a set of parametrized regression functions {rα(w)} that approxi-

mates this term, then we can decouple the data entirely and use r instead of φ̄. We would

have turned the nonparametric method into a parametric one.

Fortunately, learning the regression functions rα(w) is very simple in principle. The reason is

that by running the herding equations using data, we generate an unlimited dataset of pairs

{wt, φ̄α(wt)}. Hence,we can take any off-the-shelf regression method to learn the relation

between w and φ̄. Interestingly, we are using supervised learning techniques to solve an

unsupervised learning problem. Not unlike Welling et al. (2002) one can argue that the

system is “self-supervising.”

We take restricted Boltzman machines (RBMs) (Hinton, 2002) as an example of the POMRF

and show how to create and train the regression functions. An RBM is an MRF with a

bipartite graph structure. The set of features consists of unary features φj = xj, φk = zk,

and pairwise features φjk = xjzk, where we use j to index visible variable xj and k ∈

{1, . . . , K} to index hidden variable zk. Accordingly, we have a set of weights consisting of

wj, wk, wjk. Herding dynamics has been applied to RBMs (using the ±1 representation) in

Welling (2009b) to learn discriminative features. Now we consider how to derive a parametric

formulation for this dynamics. Since φ̄j = 1
D

∑D
i=1 xi,j is independent of w we do not need a

regression function for it. For the other features, a suitable regression function that respects

the bounds rjk ∈ [−1,+1] and rk ∈ [−1,+1] is given by,

rjk(w; A,π, b) =
M∑
m=1

πm tanh

(
b

(∑
j

wkjAjm + wk

))
Ajm (3.20)

rk(w; A,π, b) =
M∑
m=1

πm tanh

(
b

(∑
j

wkjAjm + wk

))
(3.21)

where A = {A·,m} is a matrix of M columns, each representing a prototype with a weight
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parameter πm. b is a scalar. The choice of this function is motivated by softening the

expressions for φ̄jk and φ̄k, which involve a maximization operation for z∗it in Equation 3.9,

and meanwhile introducing prototypes to replace the data. The softening is required in

order to compute gradients for optimizing the parameters of the regression function. But

that would forfeit the scale free property of herding because the regression functions r now

depend on the scale of w nonlinearly. The parameter b is then introduced to offset the scaling

effect.

We estimate the regression parameters by minimizing the average sum of squared residuals

(SSE) over the time:

C(A,π, b) =
1

T

T∑
t=1

SSE(t) (3.22)

SSE(t) =
∑
j

∑
k

(rjk(wt; A,π, b)− φ̄jk(wt))
2 +

∑
k

(rk(wt; A,π, b)− φ̄k(wt))
2

(3.23)

where wt is produced from herding. The objective function represents the expected SSE if

we assume that herding will sample from some (unknown) distribution p̂(w). Since herding

generates one pair of (wt, φ̄t) per iteration, it’s natural to run an online gradient descent

algorithm to update the parameters π,A, b.

One can verify that the PCT conditions will hold with the regression function above because

r(w) can be interpreted as a weighted average over a set of artificial data-cases. Therefore

we have the following moment matching property

lim
τ→∞

1

τ

τ∑
t=1

φα(s∗t ) = lim
τ→∞

τ∑
t=1

rα(wt) ≈ lim
τ→∞

1

τ

τ∑
t=1

φ̄(wt,D). (3.24)

More importantly, in contrast to the first approach, this parametric algorithm could approx-

imate the exact non-parametric dynamics with an arbitrarily high accuracy given a good
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regression model (in a trivial case, the parametric algorithm is exact if we treat all the

data-cases as columns in the parameter A). Also, we have more flexibility in the choice of

the model complexity in terms of the number of parameters and the form of the regression

function.

3.3.4 Application: Data Compression

We evaluate the performance of parametric herding with an application in binary image

compression. It has long been known that there are close connections between compression

performance and the ability to generalize to new (unseen) data (Rissanen, 1989). The cost of

compression, measured in bits, is usually divided into three separate terms: 1) The (constant)

cost of coding the model parameters, 2) the cost of coding the states of the hidden variables

of the model (linear in D) and 3) the cost of coding the residual errors (linear in D).

Optimal model complexity is achieved by trading off the first term against the latter two.

It was shown in Hinton & Zemel (1994) that by choosing the states of the hidden variables

stochastically according to its posterior p(z|D,θ) (where D denotes the dataset and θ denotes

the parameters) one will get back a refund equal to the entropy of this posterior distribution1.

This bits-back trick will sometimes be used in the following, although for some models, such

as the RBM, it will turn out to be intractable.

This encoding scheme corresponds to MAP estimation where in addition to the usual log-

likelihood terms certain regularizer terms (corresponding to log-priors for the parameters)

are present. A full Bayesian treatment would require choosing parameters stochastically

from its posterior distribution p(θ|D) and receiving another refund equal to the entropy of

this posterior distribution. However, to claim your refund, you need to be able to compute

the posterior p(θ|D) after all the data have been transmitted. In the case of MRF models

such as the RBM this is intractable and therefore unrealistic. For this reason we will omit

1Suboptimal “variational” distributions can also be used as a substitute for the posterior.
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this bits-back term. Instead, we will encode the model parameters up to a certain precision

(or quantization level), ∆, assuming a Gaussian distribution for the encoding. The cost of

this encoding is therefore equal to − log ∆− logN (θi) for every parameter. The value of ∆ is

chosen such that if we add independent uniform quantization noise in the range [−∆/2,∆/2]

to all the parameters, then the contribution of these perturbations constitute less than 1%

of the total compression rate.

3.3.4.1 Compression with vector quantization

The idea of VQ is to divide the data vector space into K partitions, and represent all the

points in a partition by a common vector a.k.a. codeword ck. If a data point xn is inside

the kth partition, we compress it by storing only the index k and the error x − ck. Given

a probability distribution of a signal s, the minimal coding length we can achieve is the

negative log-likelihood. Moreover, we can get arbitrarily close to that value with entropy

encoding on a large enough dataset. Hence, we will treat − log(p(s)) as the true coding

length.

For the binary image compression task in this section, we assume that the prior for data to

be in partition k is πk and we model the error at each pixel as an independent Bernoulli

random variable with probability p0k = P (xi,j 6= cjk),∀j. Also, we compress the parameters

{ck} as Bernoulli distributed random variables and {p0k, πk} as Normal distributed random

variables with a quantization level ∆. The total coding length is thus

L = Lparam + Lcode with Lcode =
D∑
i=1

[− log πzi − logB(I(xi 6= ck); p0zi)] (3.25)

where Lparam is the total coding length for all the parameters and zi is the index of the code

for ith data case.
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According to the bits-back argument (Hinton & Zemel, 1994), we can potentially encode

more cheaply by stochastically picking zi from some distribution q(z|xi) and claiming a

number of bits back after transmission equal to the entropy of this distribution H(q). Note,

however, that by sub-optimally picking the index we also incur a higher error. The optimal

encoding is achieved if we use the posterior for q, i.e.

q(z|xi) ∝ e−Lcode(ck,xi) (3.26)

With the bits-back scheme, we can show that the coding length becomes

Lcode =
D∑
i=1

[
− log

K∑
k=1

πkB(I(xn 6= ck); p0k)

]
(3.27)

which is equivalent to the negative log-likelihood of a mixture of Bernoulli distributions

(MoB) with the variables {zi} marginalized out.

3.3.4.2 Compression with Herding

Recall that herding, instead of defining a model explicitly, defines a model only implicitly

by generating a sequence of samples. As such, it is not immediately evident how to use it to

compress a data collection. Our approach will be to run herding for a very long time (e.g.

T = 107 iterations) starting at some randomly initialized values for the weights, w, at time

t = 0 and using the learned regression functions {rjk, rk}. In this way we will generate a

new codebook vector ct at every iteration given as the visible part, x∗t , of the sample s∗t at

iteration t. Note, that the receiver can also generate these codebooks, so they do not have

to be transmitted.

The initial values, w0, are sampled from a Normal distribution and communicated by sending

a random seed and a scale factor (the standard deviation) so that they can be replicated
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at the receiver’s end who uses the same random number generator. The time indices of the

samples now serve as our hidden variables in VQ and they will be encoded under a uniform

prior (a.k.a. all time indices are equally likely). We pick a time index for each data-case

(τi, ∀i) according to its posterior distribution which allows us to receive a modest refund

equal to the entropy of this posterior (which the receiver needs to compute after all data

has been transmitted). Incorporating this bits-back argument, we can compute the coding

length Lcode as:

Lcode =
D∑
i=1

[
− log

1

T

T∑
t=1

B(I(xi 6= ct); p0)

]
(3.28)

where T is the total number of iterations. Note that this equals a Bernoulli mixture model

with a number of components equal to the length of herding sequence.

We encode the model parameters A,π, b using Normal distributions. However, since the

prototypes very closely follow a mixture of two Gaussians model we use that for its encoding

(see Figure 3.1). The residual prediction errors are encoded using a Bernoulli distribution

with a single probability p0 of making an error.
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Figure 3.1: Histogram of the elements of prototypes A, trained on the USPS digit image dataset
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3.3.4.3 Compression with RBM

A natural question is how herding compares in terms of compression performance with its

associated energy based model (RBM). We have tested RBMs on the described compression

task in two distinct ways. The first method (RBM-S) is similar to the strategy employed

for herding but uses Gibbs sampling to generate a large codebook given by these samples.

Although sampling is random and thus unrepeatable in principle, this can be circumvented

on a digital computer using a pseudo-random number generator where again the sender and

receiver have to agree on the seed value (and a scale factor to sample the initial values from

a Normal distribution).

The second way to compress with RBMs (RBM-H) is to treat it as an auto-encoder, that

is, to map the data-vector to the latent state space of the RBM and transmit that latent

state (z) along with the reconstruction error. During decoding, the signal is recovered as

x = arg maxx p(x|z) + error. The optimal latent state is searched locally through hill

climbing for a minimal reconstruction error starting from the state arg maxz p(z|x). Both

the latent states and errors are encoded as Bernoulli random variables with probabilities

pk = p(zk = 1), qj = p(errorj = 1)2.

3.3.5 Experiments

We report compression results on the USPS Handwritten Digits dataset3 which consists

of 1100 examples of each digit 0 through 9 (totally 11,000 examples). Each image has 256

pixels and each pixel has a value within [0, 255] which we turned into a binary representation

through the mapping X ′j = 2I[Xj > 50] − 1. Each digit class was randomly split into 700

2It should be noted that for RBMs it is intractable to apply the bits-back argument. The reason is
that one needs the marginal distribution p(z) to encode the hidden units stochastically and if one uses a
variational distribution instead, it is intractable to compute the variational posterior distribution necessary
to reclaim the redundant bits.

3Downloaded from http://www.cs.toronto.edu/~roweis/data.html
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training and 400 test examples.

3.3.5.1 Regression Function Training

We train the regression functions on the USPS digit image dataset as follows. A MoB

model is first trained by the regular EM algorithm to provide sensible initializations for the

prototypes. The training is then divided into two phases. We first herd the parameters

of an RBM using the data and feed the pairs {w, φ̄(w)} to an online gradient descent

algorithm to train r(w). The resulting regression function has a small SSE in the area of

high probability under the distribution p̂(w). However, when we replace the data by the

prototypes (regression function), the distribution of the samples, p̂∗(w), is different from, but

similar to, p̂(w). We have found it beneficial to further fine-tune the regression functions by

collecting pairs {w, φ̄(w)} from herding using the latest estimates of the regression functions

instead of the data. In this second phase, we are actually attempting to minimize 〈SSE〉p̂∗(w).

Figure 3.2 shows the average SSE over 104 iterations when we run herding on images of digit

“8” with r(w). The plot with fine tuned regression functions has lower and more stable SSE

than those trained only by phase 1. Figure 3.3 shows some examples of learnt prototypes.

Next, we evaluate the estimated models in terms of Lcode (see Eqn. 3.28) by comparing the

compression performance of herding, with various numbers of prototypes, against that of

herding with data. The coding lengths are plotted in Figure 3.4a as a function of iteration.

We observe that running herding for a longer time will improve the compression performance

because it becomes increasingly likely that a sample will be generated to resemble the data-

case we wish to encode. However, there is a price to be paid, namely the fact that we need

to spend more bits to encode the time index of the sample. It is interesting that even after

1M iterations the curve is still descending.

We further note that we have omitted the cost of encoding the parameters in this plot, which
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Figure 3.2: Average SSE of the regression
functions over 104 iterations with 20 proto-
types for an RBM with 100 hidden units,
trained on 700 images. r(w) are trained
through only phase 1 (top) or both phases
(bottom).

Figure 3.3: Examples of tuned prototypes on
images of digit “8”.

explains why herding with data (Welling, 2009b) has the lowest coding cost4. However, one

should keep in mind that the latter method is not a realistic method to compress the data

(since it requires the data itself to run).

We also consider the first approach to parametrizing herding in Section 3.3.3. The rates

are estimated by running herding with data and averaging the values of φ̄t over time: r =

1
T

∑T
t=1 φ̄(wt). We refer this method as “ASS” as those rates play the role of average sufficient

statistics of a model. In Figure 3.4b, we compare the coding cost of herding driven by a

regression function (100 hidden units and various numbers of prototypes), data and ASS.

With 100 hidden units in the RBM, we need regression functions with about 200 prototypes

to achieve similar performance to the ASS method. However, one can decrease the model

complexity (save bits for encoding parameters) by reducing the number of prototypes without

changing the structure of RBM. This is not true for herding with ASS because one has to

reduce the number of hidden units in order to save bits for parameters which severely affects

4This was done to easily assess how accurately parametric herding approximates the original “nonpara-
metric” herding that requires all the data to run.
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(a) Comparison between parametric herding
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regression function (with M prototypes), data
itself, and ASS (with K hidden units).

Figure 3.4: Lcode for images of digit “8” by herding on an RBM with 100 hidden units.

the performance. Around the optimal model complexity (M/K = 20) for the subset of digits

“8” the coding cost of ASS is much higher than that of our proposed regression function.

3.3.5.2 Compression Performance

The various algorithms are compared in terms of their total coding length on the 16 × 16

USPS digit image dataset. We use a small set of images from the digit “8” and a larger set

including all the digits. The benchmark is to treat every pixel as an independent Bernoulli

random variable with a probability p. The average coding length of each pixel is then H(p),

where the minimum is achieved when p equals the percentage of binary pixels with value 1.

RBMs are trained using contrastive divergence with 10 steps (CD-10) (Hinton, 2002) or using

persistent CD (PCD) (Tieleman, 2008). Parameters such as the number of codewords for

VQ, the number of hidden units for RBM and herding, as well as the number of prototypes

for herding are found by a linear or grid search for a minimal coding length. The samples

from RBM-S are subsampled at a rate of 1 : 100 from their Gibbs sampling sequence to

reduce the autocorrelation (there is no extra coding cost involved for this but encoding
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Figure 3.5: Total coding length against the number of samples for herding (x-mark) and
RBM-S CD-10(circle)/PCD(square). The black line is the bench mark.

and decoding will be more time consuming). Parameter quantization is set by the method

described in section 3.3.4.

Figure 3.5 shows the decrease of the total coding length with the number of samples for

herding and RBM-S on the dataset of digit “8” and on the full set. As the number of

samples increases, the number of bits for encoding the errors decreases while that for indices

increases. Given enough iterations, these plots will most likely start to increase. However,

the minima are beyond the scope of our experiments. We find that herding always achieves

smaller coding length than RBMs with either training methods.

Figures 3.6 shows the coding length of various compression methods in three parts: model

complexity, bits for indices/codes and the errors. All the methods achieve about 60 ∼

70% compression ratio on digit “8” and 65 ∼ 70% on the whole dataset compared to the

benchmark. Although the differences are small, herding does seem to have the shortest

coding length.

The gap in coding length between herding and RBM methods, even at the first iteration in

figures 3.5a and 3.5b can be traced back to the fact that we can more cheaply encode the

prototypes shown in figure 3.3 using a mixture of two Gaussians (see figure 3.1) than we
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Figure 3.6: Method comparison on total coding length.

encode the weights of the RBM. In fact, the RBM weights were much more sensitive to their

quantization level ∆. To render the contribution of the quantization level negligible (i.e.

less than 1% of the total coding cost), we had to encode the RBM parameters to a higher

precision than the parameters for herding (i.e. the prototypes). If we discard the cost for

encoding parameters and only compare models with an equal number of parameters then

the remaining coding lengths Lcode are comparable.

Finally, we looked at compression performance on a test set. Suppose that we want to

compress a data stream of i.i.d. signals. A model can be trained with the first a few

samples, and then applied to the remaining data. According to the MDL principle, the

model with the minimal total coding length on the training data should also be optimal for

unseen test data. Hence, we compare these models with their optimal choice of parameters

in terms of MDL. We tested on 300 (unseen) images for each digit. The numbers of bits

for encoding time indices and errors, Lcode, are shown in figure 3.7 for images of a single

digit “8” and the full set. Note that Lcode is equal to the log-likelihood of the test data

(which the usual criterion for prediction performance) and that it doesn’t make much sense

to include the cost of encoding the parameters in this case. Again, herding is performing

well on both datasets. On digit “8”, Its test coding length is shorter than MoB and RBM-S

while marginally longer than RBM-H. On the full set, it is slightly better than all the other
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Figure 3.7: Coding length for test images.

algorithms.

3.4 Herding Discriminative Models

3.4.1 Conditional Herding

We have been talking about running herding dynamics in an unsupervised learning setting.

The idea of driving a nonlinear dynamical system to match moments can also be applied

to discriminative learning by incorporating labels into the feature functions. Recalling the

perceptron learning algorithm in Section 3.1, the learning rule in Equation 3.1 can be refor-

mulated in herding style:

y∗it = arg max
y∈{−1,1}

wT
t−1(xity) (3.29)

wt = wt−1 + xityit − xity
∗
it (3.30)

where we identify the feature functions as φj(x, y) = xjy, j = 1, . . . ,m, use mini-batches

of size 1 at every iteration, and do a partial maximization of the full state (x, y) with the

covariate x clamped at the input xit . The PCT guarantees that the moments (correlation be-

59



tween covariates and labels) ED[xy] from the training data are matched with EDxP (y∗|x)[xy
∗]

where p(y∗|x) is the model distribution implied by how the learning process generates y∗

with the sequence of weights wt. The voted perceptron algorithm (Freund & Schapire, 1999)

is an algorithm that runs exactly the same update procedure, applies the weights to make

a prediction on the test data at every iteration y∗test,t, and obtains the final prediction by

averaging over iterations y∗test = sign( 1
τ

∑τ
t=1 y

∗
test,t). This amounts to learning and predicting

based on the conditional expectation EP (y∗|x)[y = 1|xtest] in the language of herding.

Let us now formulate the conditional herding algorithm in a more general way (Gelfand

et al., 2010). Denote the complete state of a data-case by (x,y, z) where x is the visible

input variable, y is the label, and z is the hidden variable. Define a set of feature functions

{φα(x,y, z)} with associated weights {wα}. Given a set of training data-cases, D = {xi,yi},

and a test set Dtest = {xtest,j}, we run the conditional herding algorithm to learn the corre-

lations between the inputs and the labels and make predictions at the same time using the

following update equations:

z′it = arg max
zi

wT
t−1φ(xi,yi, zi),∀(xi,yi) ∈ D (3.31)

(y∗it, z
∗
it) = arg max

(yi,zi)

wT
t−1φ(xi,yi, zi),∀xi ∈ Dx (3.32)

wt = wt−1 +

[
1

D

D∑
i=1

φ(xi,yi, z
′
it)

]
−

[
1

D

D∑
i=1

φ(xi,y
∗
it, z

∗
it)

]
(3.33)

(y∗test,j,t, z
∗
test,j,t) = arg max

(yj ,zj)
wT
t φ(xtest,j,yj, zj),∀xtest,j ∈ Dtest (3.34)

In the positive term of Equation 3.33, we maximize over the hidden variables only, and in

the negative term we maximize over both hidden variables and the labels. The last equation

generates a sequence of labels, z∗test,j,t, that can be considered as samples from the conditional

distribution of the test input from which we obtain an estimate of the underlying conditional
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distribution:

P (y|xtest,j) ≈
1

τ

τ∑
t=1

I(y∗test,j,t = y) (3.35)

In general, herding systems perform better when we use normalized features: ‖φ(x, z,y)‖ =

R, ∀(x, z,y). The reason is that herding selects states by maximizing the inner product

wTφ and features with large norms will therefore become more likely to be selected. In

fact, one can show that states inside the convex hull of the φ(x,y, z) are never selected. For

binary (±1) variables all states live on the convex hull, but this need not be true in general,

especially when we use continuous attributes x. To remedy this, one can either normalize

features or add one additional feature5 φ0(x,y, z) =
√
R2

max − ||φ(x,y, z)||2, where Rmax =

maxx,y,z ‖φ(x,y, z)‖ with x only allowed to vary over the data-cases.

We may want to use mini-batches Dt instead of the whole training set for a more practical

implementation, and the argument on the validity of using mini-batches in section 3.2 applies

here as well. It is easy to observe that Rosenblatts’s perceptron learning algorithm is a special

case of conditional herding when there is no hidden variables, y is a single binary variable,

the feature function is φ = xy, and we use a mini-batch of size 1 at every iteration.

Compared to the herding algorithm on partially observed MRFs, the main difference is

that we do partial maximization in Equation 3.32 with a clamped visible input x on every

training data-case instead of a joint maximization on the full state. Notice that in this

particular variant of herding, the sequence of updates may converge when all the training

data-cases are correctly predicted, that is, y∗it = yi,∀i = 1, . . . , D at some t. For an example,

the convergence is guaranteed to happen for the percepton learning algorithm on a linearly

separable data set. We adopt the strategy in the voted perceptron algorithm (Freund &

Schapire, 1999) which stops herding when convergence occurs and uses the sequence of

5If in test data this extra feature becomes imaginary we simply set it to zero.
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weights up to that point for prediction in order to prevent the converged weights from

dominating the averaged prediction on the test data.

Clamping the input variables allows us to achieve the following moment matching property:

Proposition 3.3. There exists a constant R such that conditional herding with the update

equations 3.31-3.33 satisfies

∣∣∣∣∣ 1

D

D∑
i=1

1

τ

τ∑
t=1

φα(xi,y
∗
it, z

∗
it)−

1

D

D∑
i=1

1

τ

τ∑
t=1

φα(xi,yi, z
′
it)

∣∣∣∣∣ ≤ 2R

τ
,∀α (3.36)

The proof is straightforward by applying PCT where we identify

vt =

[
1

D

D∑
i=1

φ(xi,yi, z
′
it)

]
−

[
1

D

D∑
i=1

φ(xi,y
∗
it, z

∗
it)

]
, (3.37)

the finite set V = {v({z′i}, {y∗i }, {z∗i })|z′i ∈ Xz,y
∗
i ∈ Xy, z

∗
i ∈ Xz}, and observe the inequality

wT
t vt ≤ 0 because of the same reason as herding on POMRFs. Note that we require V to

be of a finite cardinality, which in return requires Xy and Xz to be finite sets, but there is

not any restriction on the domain of the visible input variables x. Therefore we can run

conditional herding with input x as continuous variables.

3.4.2 Zero Temperature Limit of CRF

We know that herding on MRFs can be understood as searching for the MLE in the zero

temperature limit. Analogously, we can interpret conditional herding as searching for MLE

on conditional random fields in the zero temperature limit.

Consider a CRF with the probability distribution defined as

P (y, z|x; w) =
1

Z(w,x)
exp

(∑
α

wαφα(x,y, z)

)
(3.38)
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where Z(w,x) is the partition function of the conditional distribution. The log-likelihood

function for a dataset D = {xi,yi}Di=1 is expressed as

`(w) =
1

D

D∑
i=1

(
log

(∑
zi

exp
(
wTφ(xi,yi, zi

))
− logZ(w,xi)

)
(3.39)

Let us introduce the temperature T by replacing w with w/T and take the limit T → 0 of

`T
def
= T`. We then obtain the familiar piecewise linear Tipi function

`0(w) =
1

D

D∑
i=1

(
max
zi

wTφ(xi,yi, zi)−max
yi,zi

wTφ(xi,yi, zi)

)
(3.40)

Running gradient descent updates on `0(w) immediately gives us the update equations of

conditional herding 3.31-3.33.

Similar to the duality relationship between MLE on MRFs and the MaxEnt problem, MLE

on CRFs is the dual problem of maximizing the entropy of the conditional distributions

while enforcing the following constraints:

1

D

D∑
i=1

EP (z|xi,yi) [φα(xi,yi, z)] =
1

D

D∑
i=1

EP (y,z|xi) [φα(xi,y, z)] ,∀α (3.41)

When we run conditional herding, those constraints are satisfied with the moment matching

property in Proposition 3.3, but how to encourage high entropy during the herding dynamics

is still an open problem. We suggest some heuristics to achieve high entropy in the next

experimental subsection. Nevertheless, the negative auto-correlation in the weight sequence

allows us to learn the conditional model more efficiently than the ML learning procedure

especially in the presence of hidden variables. Another difference lies in the test phase.

While the prediction of a CRF with MLE is made with the most probable label value at a

point estimate of the parameters, conditional herding resorts to a majority voting strategy as

in the voted perceptron algorithm. The regularization effect via averaging over predictions
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Figure 3.8: Discriminative Restricted Boltzmann Machine model of distribution p(y, z|x).

provides more robust performance as shown later.

3.4.3 Experiments

We studied the behavior of conditional herding on two artificial and four real-world data

sets, comparing its performance to that of the voted perceptron (Freund & Schapire, 1999)

and that of discriminative RBMs (Larochelle & Bengio, 2008). The experiments on artificial

and real-world data are discussed separately in Section 3.4.3.1 and 3.4.3.2.

We studied conditional herding in the discriminative RBM (dRBM) architecture illustrated

in Figure 3.8, that is, we use the following parameterization

wTφ(x,y, z) = xTWz + yTBz + θTz + αTy. (3.42)

where W, B, θ and α are the weights, z is a binary vector and y is a binary vector in a

1-of-K scheme.

Per the discussion in Section 3.4.1, we added an additional feature φ0(x) =
√
R2

max − ||x||2

with Rmax = maxi ‖xi‖ in all experiments.
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Figure 3.9: Decision boundaries of VP, CH, and dRBMs on two artificial data sets.

3.4.3.1 Artificial Data

To investigate the characteristics of voted perceptron (VP), discriminative RBM (dRBM)

and conditional herding (CH), we used the techniques discussed above to construct decision

boundaries on two artificial data sets: (1) the banana data set; and (2) the Lithuanian data

set. We ran VP and CH for 1, 000 epochs using mini-batches of size 100. The decision

boundary for VP and CH is located at the location where the sign of the prediction y∗test

changes. We used conditional herders with 20 hidden units. The dRBMs also had 20 hidden

units and were trained by running conjugate gradients until convergence. The weights of the

dRBMs were initialized by sampling from a Gaussian distribution with a variance of 10−4.

The decision boundary for the dRBMs is located at the point where both class posteriors

are equal, i.e., where p(y∗test = −1|x̃test) = p(y∗test = +1|x̃test) = 0.5.

Plots of the decision boundary for the artificial data sets are shown in Figure 3.9. The results

on the banana data set illustrate the representational advantages of hidden units. Since VP

selects data points at random to update the weights, on the banana data set, the weight

vector of VP tends to oscillate back and forth yielding a nearly linear decision boundary6.

6On the Lithuanian data set, VP constructs a good boundary by exploiting the added ‘normalizing’
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This happens because VP can regress on only 2 + 1 = 3 fixed features. In contrast, for CH

the simple predictor in the top layer can regress onto M = 20 hidden features. This prevents

the same oscillatory behavior from occurring.

3.4.3.2 Real-World Data

In addition to the experiments on synthetic data, we also performed experiments on four

real-world data sets - namely, (1) the USPS data set, (2) the MNIST data set, (3) the UCI

Pendigits data set, and (4) the 20-Newsgroups data set. The USPS data set consists of 11,000,

16× 16 grayscale images of handwritten digits (1, 100 images of each digit 0 through 9) with

no fixed division. The MNIST data set contains 70, 000, 28× 28 grayscale images of digits,

with a fixed division into 60, 000 training and 10, 000 test instances. The UCI Pendigits

consists of 16 (integer-valued) features extracted from the movement of a stylus. It contains

10, 992 instances, with a fixed division into 7, 494 training and 3, 498 test instances. The

20-Newsgroups data set contains bag-of-words representations of 18, 774 documents gathered

from 20 different newsgroups. Since the bag-of-words representation comprises over 60, 000

words, we identified the 5, 000 most frequently occurring words. From this set, we created a

data set of 4, 900 binary word-presence features by binarizing the word counts and removing

the 100 most frequently occurring words. The 20-Newsgroups data has a fixed division into

11, 269 training and 7, 505 test instances. On all data sets with real-valued input attributes

we used the ‘normalizing’ feature described above.

The data sets used in the experiments are multi-class. We adopted a 1-of-K encoding,

where if yi is the label for data point xi, then yi = {yi,1, ..., yi,K} is a binary vector such

that yi,k = 1 if the label of the ith data point is k and yi,k = −1 otherwise. Performing the

maximization in Eqn. 3.32 is difficult when K > 2. We investigated two different procedures

for doing so. In the first procedure, we reduce the multi-class problem to a series of binary

feature.
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decision problems using a one-versus-all scheme. The prediction on a test point is taken as

the label with the largest online average. In the second procedure, we make predictions on

all K labels jointly. To perform the maximization in Eqn. 3.32, we explore all states of y

in a one-of-K encoding - i.e. one unit is activated and all others are inactive. This partial

maximization is not a problem as long as the ensuing configuration satisfies wT
t vt ≤ 0 7.

The main difference between the two procedures is that in the second procedure the weights

W are shared amongst the K classifiers. The primary advantage of the latter procedure is

its less computationally demanding than the one-versus-all scheme.

We trained the dRBMs by performing iterations of conjugate gradients (using 3 linesearches)

on mini-batches of size 100 until the error on a small held-out validation set started increasing

(i.e., we employed early stopping) or until the negative conditional log-likelihood on the

training data stopped coming down. Following Larochelle & Bengio (2008), we use L2-

regularization on the weights of the dRBMs; the regularization parameter was determined

based on the generalization error on the same held-out validation set. The weights of the

dRBMs were initialized from a Gaussian distribution with variance of 10−4.

CH used mini-batches of size 100. For the USPS and Pendigits data sets CH used a burn-in

period of 1, 000 updates; on MNIST it was 5, 000 updates; and on 20 Newsgroups it was

20, 000 updates. Herding was stopped when the error on the training set became zero 8.

The parameters of the conditional herders were initialized by sampling from a Gaussian

distribution. Ideally, we would like each of the terms in the energy function in Eqn. 3.42 to

contribute equally during updating. However, since the dimension of the data is typically

much greater than the number of classes, the dynamics of the conditional herding system

will be largely driven by W. To negate this effect, we rescaled the standard deviation of the

7Local maxima can also be found by iterating over y∗,ktest, z
∗,k
test,j , but the proposed procedure is more

efficient.
8We use a fixed order of the mini-batches, so that if there are D data cases and the batch size is d, if the

training error is 0 for dD/de iterations, the error for the whole training set is 0.
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Gaussian by a factor 1/M with M the total number of elements of the parameter involved

(e.g. σW = σ/(dim(x) dim(z)) etc.). We also scale the learning rates η by the same factor

so the updates will retain this scale during herding. The relative scale between η and σ was

chosen by cross-validation. Recall that the absolute scale is unimportant (see Section 3.4.1

for details).

In addition, during the early stages of herding, we adapted the parameter update for the

bias on the hidden units θ in such a way that the marginal distribution over the hidden

units was nearly uniform. This has the advantage that it encourages high entropy in the

hidden units, leading to more useful dynamics of the system. In practice, we update θ as

θt+1 = θt + η
Dt

∑
it

(1 − λ) 〈zit〉 − z∗it , where it indexes the data points in the mini-batch at

time t, Dt is the size of the mini-batch, and 〈zit〉 is the batch mean. λ is initialized to 1 and

we gradually half its value every 500 updates, slowly moving from an entropy-encouraging

update to the standard update for the biases of the hidden units.

VP was also run on mini-batches of size 100 (with a learning rate of 1). VP was run until

the predictor started overfitting on a validation set. No burn-in was considered for VP.

The results of our experiments are shown in Table 3.1. In the table, the best performance

on each data set using each procedure is typeset in boldface. The results reveal that the

addition of hidden units to the voted perceptron leads to significant improvements in terms

of generalization error. Furthermore, the results of our experiments indicate that conditional

herding performs on par with discriminative RBMs on the MNIST and USPS data sets and

better on the 20 Newsgroups data set. The 20 Newsgroups data is high dimensional and

sparse and both VP and CH appear to perform quite well in this regime. Techniques to

promote sparsity in the hidden layer when training dRBMs exist (see Larochelle & Bengio

(2008)), but we did not investigate them here. It is also worth noting that CH is rather

resilient to overfitting. This is particularly evident in the low-dimensional UCI Pendigits

data set, where the dRBMs start to badly overfit with 500 hidden units, while the test
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One-Versus-All Procedure
XXXXXXXXXXXXData Set

Technique VP Discriminative RBM Conditional herding
100 200 100 200

MNIST 7.69% 3.57% 3.58% 3.97% 3.99%

USPS 5.03% (0.4%) 3.97%
(0.38%)

4.02%
(0.68%)

3.49%
(0.45%)

3.35%
(0.48%)

UCI Pendigits 10.92% 5.32% 5.00% 3.37% 3.00%

20 Newsgroups 27.75% 34.78% 34.36% 29.78% 25.96%

Joint Procedure
XXXXXXXXXXXXData Set

Technique VP Discriminative RBM Conditional herding
50 100 500 50 100 500

MNIST 8.84% 3.88% 2.93% 1.98% 2.89% 2.09% 2.09%

USPS
4.86% 3.13% 2.84% 4.06% 3.36% 3.07% 2.81%

(0.52%) (0.73%) (0.59%) (1.09%) (0.48%) (0.52%) (0.50%)

UCI Pendigits 6.78% 3.80% 3.23% 8.89% 3.14% 2.57% 2.86%

20 Newsgroups 24.89% – 30.57% 30.07% – 25.76% 24.93%

Table 3.1: Generalization errors of VP, dRBMs, and CH on 4 real-world data sets. dRBMs
and CH results are shown for various numbers of hidden units. The best performance on
each data set is typeset in boldface; missing values are shown as ‘-’. The std. dev. of the
error on the 10-fold cross validation of the USPS data set is reported in parentheses.

error for CH remains level. This phenomenon is the benefit of averaging over many different

predictors.

3.5 Inconsistent Moments

We have described herding as a nonlinear dynamical system to match the moments of a

training data set. PCT combined with Proposition 2.1 or 2.2 guarantees that the average

features of the samples will converge to the input moments as along as we obtain a good local

maximum at every iteration. However, when we consider more generally an input moment

vector that is not necessarily an average over a set of data cases or any distribution, we may

have a set of inconsistent moments in the following sense:

Definition 3.1. A vector φ̄ ∈ RD is said to be inconsistent with respect to a set of states

69



X with a feature mapping φ : X → RD if there does not exist a probability distribution over

X , P , such that

φ̄ = Ex∼P [φ(x)]

Herding is not able to match the input moments in that case. In this section, we first

illustrate the benefit of being capable to handle inconsistent moments with an example in

computer vision, and then show theoretically that herding corrects the inconsistency by

searching for the closest consistent moment vector to the input in the sense of L2 distance.

3.5.1 Piecewise Trained CRF in Computer Vision

The CRF model has been a standard approach to combine local features into a global

conditional distribution over labels in computer vision. For instance, CRFs have been used

extensively in image segmentation and labeling (Blake et al., 2004; Kumar & Hebert, 2006;

He et al., 2004), as well as object recognition (Quattoni et al., 2007), image denoising and

image restoration (Tappen et al., 2007), and stereo (Pal et al., 2010). One first defines

potential functions φα(xα,yα) where yα is a subset of the labels associated with potential φα

and xα are input variables. The label subsets indexed by α are assumed to overlap and form

a loopy graph over the labels y. For instance, the subsets could correspond to all pixels and

all pairs of pixels in an image. These local potentials are combined in a CRF which specifies

a joint probability distribution over all labels by

Pcrf-1(y|x) =
1

Z
exp

[∑
α

wαφα(xα,yα)

]
(3.43)

{wα} are model parameters, one associated with each potential function, that are typically

learned from data. As mentioned in section 3.4.2 maximum likelihood training of such a

model with respect to some dataset with empirical distribution P̂ (y|x) has the intuitive
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property that expectations of the potential functions under the model match those of the

training data

EPcrf-1
[φα] = EP̂ [φα] (3.44)

While this is quite elegant, it poses a practical problem that each potential function φα has

a distinct parameter wα to be estimated. In typical image labeling problems, there may be

thousands of weights to learn (e.g. one for every pixel and pair of pixels for every image).

In other words, there is less than one pixel of information per parameter, leading to extreme

over-fitting.

To avoid this explosion of parameters, a typical approach is to share parameters across

potential functions. For instance, if we have pixel-wise and pairwise potential functions we

could use a single parameter λ to trade off their relative importance.

One of the main questions we wish to address here is how to most effectively use the infor-

mation of local discriminative classifiers pα(yα|xα) whose parameters are trained on all the

pixels of an image or a training set of images. In the CRF approach one can incorporate these

piecewise trained local classifiers by taking the log probabilities as local potential functions

so that φα(xα,yα) = log(pα(yα|xα)). For example, Fulkerson et al. (2010) use the following

CRF model for segmentation

Pcrf-2(y|x) =
1

Z
exp [−E(y|x)] (3.45)

E(y|x) =
∑
i

log(pi(yi|xi)) + λ
∑
i,j

log(pi,j(yi 6= yj|xi, xj)) (3.46)

Unfortunately, in such a locally trained model, there is no longer reason to expect that the

model matches the training data in the previous sense that EPcrf-2
[φα] = EP̂ [φα] since we have

only one parameter to tune and a very large collection of these moment constraints (number
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of pixels plus number of neighboring pairs of pixels).

Instead, we might like to impose that our global model at least still approximately matches

the constraints,

EP [φα] = Epα [φα] (3.47)

where P̂ has been replaced with pα. For features of the form φα,c(yα) = I[yα = c], this

condition implies that the joint distribution marginalizes down to local distributions

∑
y\yα

Pcrf-2(y|x) = pα(yα|xα) (3.48)

The herding algorithm 2.6, 2.7 provides a solution to matching the local marginals by generat-

ing a sequence of label samples {yt} using the features {φα,c(yα)}. The resulting distribution

represented by the sampled sequence would satisfy the condition in 3.48 as long as the input

moment vector, i.e. the local marginals, is consistent and the PCT is satisfied. Moreover, the

convergence rate is optimally fast given that we approximate the probabilities with Monte

Carlo averages, and in particular much faster than the typical O(1/
√
T ) convergence for

stochastically generated averages. Not having an explicit model is not a problem for the

applications we have in mind. For instance, in image segmentation the dynamical system

will generate a sequence of segmentations of the input image. From this sequence we can

extract the final segmentation by averaging.

However, with independently trained local classifiers, local marginals are likely to be in-

consistent, in which case condition 3.48 cannot be satisfied for any joint distribution. It

hence becomes necessary to study the behavior of the herding algorithm with inconsistent

marginals, or generally inconsistent moments.
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3.5.2 Convergence Analysis with Inconsistent Moments

Let us consider a general setting of herding with features {φα} on state variable x ∈ X

and inconsistent input moments φ̄ (i.e. {Epα [φα(xα,yα)]} in the example of the previous

section). Define the marginal polytope as the convex hull of the feature vectors of all the

possible states:

M def
= conv{φ(x)|x ∈ X}. (3.49)

One can show that the input moment vector φ̄ is inconsistent if and only if it does not reside

on M. Given inconsistent moments, if we want to train an MRF using gradient descent

without regularization, the parameters will diverge. For vanilla herding defined in Equation

2.6-2.7, it means that the PCT condition cannot always be satisfied as illustrated in Figure

3.10 and the norm of parameters wt will also diverge at a linear rate. Nevertheless, we can

still obtain a stationary distribution of states xt from the herding sequence. The potential

numerical problems caused by the divergence of wt can be easily prevented by taking an

additional normalization step w← w/K and η ← η/K for some K. This global scaling will

not affect the state sequence st in any way. The most important consequence of inconsistent

moments is that the moments of the sampling distribution do not converge to φ̄ any more.

Instead, we prove in the following paragraphs that the moments orthogonally project onto

the marginal polytope.

Denote the sampling average of the features generated by herding up to time T as φ̃
T

=

1
T

∑T
t=1 φ(st). We now claim that the following property holds:

Proposition 3.4. Assume φ̄ is outside the marginal polytope M and the learning rate ηα

is constant. Let φ̄M be the L2 projection of φ̄ on M. Then the average feature vector of the

herding dynamics φ̃
T

converges to φ̄M at the rate of O(1/T ).

73



Figure 3.10: An example of inconsistent
moments. Each green point represents
the feature vector of a state. The PCT
condition is not satisfied when w is in the
shown direction. The feature vector av-
eraged over samples converges to the pro-
jection of φ̄ on M.

Figure 3.11: The assumption of an acute
angle ∠φφ̄Mφ̄.

Proof. Since herding is scale free with respect to the learning rate, we can assume ηα = 1

without loss of generality. We first construct another sequence of weights

w̃0 = w0, w̃t = w̃t−1 + φ̄M − φ(st) (3.50)

where st is drawn by the regular herding dynamics following Equation 2.6 and 2.7. Then

to prove the proposition, it suffices to prove that the new sequence {w̃t} satisfies PCT, and

consequently ‖w̃t‖ is bounded.

Let us give the following lemma before moving on

Lemma 3.5. (φ̄− φ̄M)T (φ− φ̄M) ≤ 0, ∀φ ∈M

Proof. Assume there exists a point φ ∈M s.t. the inequality does not hold, then the angle

∠φφ̄Mφ̄ is an acute angle, and hence as shown in figure 3.11 we can always find a point on

the segment connecting φ and φ̄M, φ∗, such that ‖φ∗− φ̄‖2 < ‖φ̄M− φ̄‖2. This contradicts

with the fact that φ∗ is in M and φM is the projection of φ̄.
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According to the definition of st in Equation 2.6, wT
Tφ(sT+1) ≥ wT

Tφ(x),∀x ∈ X . Since

φ̄M ∈ M, it can be represented by a convex combination of features {φ(x)} with a set of

coefficients {πi}, i.e. φ̄M =
∑

i πiφ(xi), πi > 0,∀i, and
∑

i πi = 1. Then we know that

wT
T φ̄M =

∑
i

πiw
T
Tφ(xi) ≤ wT

Tφ(sT+1) (3.51)

Also, comparing the update equation of w̃ in Equation 3.50 and that of w in Equation 2.7,

one can observe that

w̃T = wT − T (φ̄− φ̄M) (3.52)

Combined with Lemma 3.5 and inequality 3.51 we get

w̃T
T (φ(sT+1)− φ̄M) = wT

T (φ(sT+1)− φ̄M)− T (φ̄− φ̄M)T (φ(sT+1)− φ̄M) ≥ 0 (3.53)

which shows that the sequence {w̃t} satisfies PCT by identifying vt = φ(sT+1)− φ̄M. This

concludes the proof.

Following Equation 3.52 we can verify that wt will diverge linearly since w̃T is bounded and

φ̄− φ̄M is constant. As another immediate consequence of Proposition 3.4, herding always

improves the initial set of moments φ̄, which drives herding dynamics through equations 2.6

and 2.7, in the following sense:

Corollary 3.6. Given a feature vector φ̄ that is an approximation to the expected feature

w.r.t. some unknown distribution, φ̄true. When running herding dynamics with φ̄, the limit

of the empirical average of features will not increase the L2 error. Specifically, ‖φ̄M −

φ̄true‖2 < ‖φ̄− φ̄true‖2 when φ̄ /∈M, and φ̃
T → φ̄ otherwise.

The proof is trivial. Since any true expectation φ̄true must be inside the marginal polytope,

according to Lemma 3.5, ∠φtrueφ̄Mφ̄ is an obtuse angle which leads to Corollary 3.6.
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As discussed in section 2.3.2, changing the value of the constant scalar learning rate η does

not change the generated sequence of states. However, when the moment is inconsistent and

we use a set of constant learning rates ηα where ηα depends on the feature index α, then the

limiting average feature φ̄M would depend on the relative values of ηα. To see this, we can

construct an equivalent herding sequence with a fixed learning rate η = 1 and new features

{√ηαφα}. Then Proposition 3.4 still applies except that the L2 distance is weighted by
√
ηα.

So the learning rates control the relative importance of features.

Back to the image segmentation example, when we consider φ as φα,c(yα) = I[yα = c],

then the marginal probabilities of herding samples will converge to the closest consistent

marginals in M.

3.5.3 Application: Image Segmentation

Inconsistent marginals are common in image segmentation. Conditional probabilities of

groups of variables can come from various sources such as color, texture, context, etc. We

consider an example of two types of possibly inconsistent probabilities in this thesis: unary

conditional probabilities {pi(yi|xi)} on super-pixels and pairwise conditional probabilities

{pij(yi 6= yj|xi, xj)} on neighboring super-pixels. The former provides local class distribu-

tions, and the latter suggests the existence of boundaries.

The CRF approach uses the energy defined in Equation 3.46 with a single parameter λ. The

best assignment with lowest energy is inferred as the segmentation output, and the best

value of λ is estimated on a validation set using grid search.

Our herding algorithm follows equations 2.6 and 2.7 with two types of features: I(yi = c)

and I(yi 6= yj). The learning rate ηα is scale free in the sense that multiplying all ηα by the

same factor does not change the output of label sequence yt. So without loss of generality
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we may set the learning rates for unary features to 1, and those for pairwise features as λ.

The value of λ is used to trade off the strength of these two sources of information. The

final segmentation for herding is obtained by maximization and averaging,

y∗i = arg max
c

∑
t

I[yit = c] ∀i (3.54)

Notice that the role of the parameter λ is different between the CRF and herding approaches.

In the CRF, λ controls the strength of smoothness. Increasing λ always increases smoothness.

However, herding tries the respect all the probabilities, and λ measures how much attention

we pay to each of these two sources of information. Increasing λ not only increases the

smoothness where pij(yi 6= yj) is small, but also forces an edge where pij(yi 6= yj) is large.

As a special case, for a system of N super-pixels with λ � 1 and pij(yi 6= yj) = 0 for all

neighbors in the label graph, the pairwise term dominates the system, and all super-pixels

will take on the same value.

We apply herding to image segmentation on two datasets, the PASCAL VOC 2007 segmenta-

tion competition and GrabCut to illustrate its effectiveness. It is compared to the multiclass

classifier with local appearance cues only, and to the traditional CRF approach.

3.5.3.1 PASCAL VOC 2007

On the PASCAL VOC 2007 dataset, we follow a similar experimental setting as that of

Fulkerson et al. (2010) and perform segmentation on the level of super-pixels. Each image

is first over-segmented by the global probability of boundary (gPb) method (Arbelaez et al.,

2011). The threshold is set to 0 to make sure most boundaries are retained. SIFT features

are then extracted and quantized in order to build a visual dictionary. A local multiclass

SVM is trained to provide unary marginals pi(yi|xi) using histograms of the visual words in
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each super-pixel and its neighbors at a distance of at most N . The larger N is, the more

context information is available for the local classifier, the less noise in the feature histogram

but also the more blurred the boundaries between super-pixels become. By increasing N,

the segmentations of the local classifier changes from inaccurate and noisy but with clear

sharp boundaries to more accurate and smooth but with blurred boundaries (see the results

of the local method of N = 0 in Figure 3.14 and N = 3 in Figure 3.12). The gPb algorithm

provides the probability of a boundary between two super-pixels, i.e. the pairwise marginals

pij(yi 6= yj|x). The VOC test set includes 210 images, and the “trainval” set is split randomly

into a training set of 322 images and a validation set of 100 images. The local classifier is

trained on the training set, and the (hyper-)parameters of the CRF and herding are estimated

on the validation set.

For the local models, we predict the super-pixel labels based on the output of SVMs. For the

CRF models, the MAP label is inferred using the graphcut algorithm from Fulkerson et al.

(2010) (see also Boykov & Kolmogorov, 2004; Boykov et al., 2001; Kolmogorov & Zabih,

2004) with an energy as in equations 3.46. The parameter λ is estimated by grid search on

the validation set. For the herding method, the maximization step in Eqn. 2.6 is also executed

using the graphcut. Because the original gPb score is trained on the BSDS dataset and a

lot of boundaries belonging to irrelevant categories of objects in the VOC dataset are not

considered, gPb should be calibrated first. The calibrated pairwise probability is computed

as PV OC(yi 6= yj|x) = PBSDS(yi 6= yj|x)α, where α controls how sparse the boundaries in the

VOC dataset are. The parameters λ and α are estimated on the validation set by first fixing

α = 1, estimating λ by grid search and then fixing λ and estimating α. More iterations

can be done for better performance. Notice that for CRF, the function of λ and α appears

in the same position in the pairwise term λα log(P (yi 6= yj|xi, xj))I(yi 6= yj), and a second

parameter is therefore redundant.

Figure 3.12 shows some examples of the test images, results of different algorithms as well as
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Figure 3.12: Examples of segmentation on Pascal VOC 2007 data set. Images on each
line starting from left to right are respectively: (a) the original image, (b) ground truth
segmentation, results of (c) local classifier, (d) CRF and (e) herding, results with intensity
proportional to the posterior probability of the (f) local classifier and (g) herding, and (h) the
herding estimate of the pairwise probability of the existence of a boundary (the corresponding
posterior probability for CRF cannot be easily obtained). Neighboring superpixels of a
distance up to 3 hops are used for training local SVM. Best viewed in color.

their posterior probabilities. The local classifiers are trained on features from a neighborhood

of N = 3. So the unary class distribution is already smoothed to some extent (compared to

figure 3.14 for the case of N=0). But herding still leads to better smoothness and locates

the boundaries more accurately. Most boundaries occur in the place with strong pairwise

probabilities. CRF provides similar benefits as herding for regularizing the local classifiers.

We evaluate the performance of these three models by two measurements. The first one

is the average accuracy adopted by the VOC 2007 Competition. It measures the average

recall of pixels for each category. The second measurement is the one adopted by the VOC

competition after 2007. It measures the average of the intersection over union ratio for each

category. The results of both evaluation methods are shown in figure 3.13. The results

show that both herding and CRF increase the accuracy in most cases, and herding always

achieves the best accuracy except for N = 2 by the second measurement. The reduction
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Figure 3.13: Average accuracy of segmentations by the local SVM classifier (cross), CRF
(circle) and herding (square) with different number of neighboring superpixels used for ex-
tracting local features. N denotes the maximal distance of the neighboring superpixel used.
The left plot uses the 2007 segmentation benchmark criteria (average recall). The plot on
the right uses the 2010 criteria on the 2007 dataset (average overlap).
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Local 46 7 15 10 8 10 31 51 34 17 6 16 41 23 58 50 18 21 15 36 39 26
Recall CRF 56 20 12 2 15 7 33 52 59 8 10 8 31 20 68 55 12 15 15 49 36 28

Herd 62 3 16 3 7 7 38 58 50 15 2 11 58 24 70 54 20 23 14 47 39 30
Local 50 2 6 8 2 0 13 21 14 2 2 4 8 10 24 20 6 8 5 12 10 11

Overlap CRF 65 1 8 0 2 0 15 30 17 3 0 4 5 10 37 24 9 8 5 18 13 13
Herd 60 2 4 4 3 5 23 28 15 4 0 5 20 12 31 22 6 8 3 18 12 14

Table 3.2: Accuracies per category and the average accuracy of PASCAL VOC 2007 dataset.
Each model uses the N value that maximizes the average test accuracy. Top table shows
recall (PASCAL 2007 benchmark) the bottom table shows overlap (PASCAL 2010 bench-
mark)

of the advantage of herding compared to CRF in the second measurement may be due to

the fact that false positive detections appear frequently in the background which does not

reduce the recall of the background category by much, but will reduce the intersection over

union ratio of the detected category.

Remarkably, herding performs much better than the local method when N = 0. The accu-

racy is improved from 14% to 22% on the first measurement and 4% to 9% on the second
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measurement, while CRF does not help at all. The local classifier performs poorly because

the histogram feature is computed from very few pixels as discussed in Fulkerson et al. (2010).

Thus regularization on the pairwise term should improve the prediction. It turns out that

the optimal value of λ for herding is about 1.1 × 103 which means the importance of the

pairwise feature is
√
λ ≈ 33 times higher than the unary feature, matching our expectation.

On the other hand, the best value for CRF is only about 1.1. The difference in the choice

of λ leads to the significant difference in the segmentations as shown with a typical example

in Figure 3.14. Herding outputs a highly smoothed result with clear boundaries while the

CRF does not noticeably change the decision of the local classifier.

Two properties of herding previously stated in section 3.5.3 would help explain the distinct

choices of λ. Firstly, with a large λ, herding tries to average the distribution of superpixels

in a smooth area. Although the local SVMs give very noisy results, the average distributions

still contain strong signals about the true category. In contrast, the CRF computes the

product of distributions which makes the noise in the final distribution even worse. So CRF

has to choose a small λ. To verify this hypothesis, we trained a CRF with energy as a

linear function of features P (yi|xi) and P (yi 6= yj|xi, xj), that also computes the average

of distributions when λ is large. The new CRF chooses a large λ (≈ 22) as expected and

the accuracy is improved to 16% and 7% respectively. However Figure 3.14 shows that the

result is oversmoothed because of the high penalty of boundaries. Secondly, herding not only

increases smoothness in flat areas but also encourages boundaries at strong edges. That is

why herding still captures the shape of the object correctly even with a large value of λ.

81



Figure 3.14: A typical example of segmentations when N = 0. The top 2 images are the
original image and the ground truth segmentation. The remaining 4 images are respectively
the segmentation of the local model, CRF, herding and a CRF with linear potential functions.
The local model is so noisy because the histogram of SIFT features is computed from very
few pixels.

3.5.3.2 GrabCut9

We also ran herding on the GrabCut data set, which consists of 50 images of a foreground

object on a natural background10. The objective on the GrabCut images is to perform hard

foreground/background segmentation.

The GrabCut data set contains two labeled trimaps for each image, where a trimap is a

labeling of pixels as foreground, background or undetermined (see Figure 3.15). The ‘lasso’

trimap contains a rough segmentation of the image obtained using a lasso or pen tool.

9This work was done by Andrew Gelfand and is described in Chen et al. (2011b).
10http://www.research.microsoft.com/vision/cambridge/segmentation/
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Figure 3.15: Example of segmentation on GrabCut data set (Chen et al., 2011b). Images
from left to right are the ‘expert’ ground truth trimap, ‘lasso’ trimap, over segmentation into
superpixels, unary marginal probabilities from local classifiers and unary marginal probabil-
ities after herding. In the trimaps, black pixels are background, white pixels are foreground
and light gray pixels are undetermined. In the last two images, whiter values indicate larger
P (yi = 1|x).

The ‘expert’ trimap is a ground truth labeling obtained by tracing the boundary of the

foreground image at the pixel level. Performance on the GrabCut data set is assessed via

the segmentation error rate (SER), which is the number of misclassified pixels in the set of

undetermined pixels (where the set of undetermined pixels does not include the undetermined

pixels in the expert trimap).

As with the PASCAL data set we train a binary classifier to provide unary marginals and use

the gPb method to provide pairwise marginals. Since we have a trimap for each image and

can easily identify pixels that are foreground and background, we train a different binary

(foreground/background) classifier for each image based on two color models (denoted as

CM1 and CM2 respectively). We compare three different methods on the GrabCut data: 1)

Local model; 2) CRF model; and 3) Herding.

The results are shown in Tabel 3.3. The segmentation error rate was computed across the

set of undetermined pixels in the test set of images. From these results we see that the

addition of pairwise marginals that encode boundary information gives a big gain over the

local, independent model. Herding obtains slightly smaller segmentation error than CRF in

both local color models. See Chen et al. (2011b) for details.
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Segmentation Error Rate (SER)
Local Model CRF Herding
CM 1 CM 2 CM 1 CM 2 CM 1 CM 2

10.45% 10.46% 6.35% 6.58% 6.28% 6.29%

Table 3.3: Segmentation error rate for local model, CRF and herding on the GrabCut data
set.

3.5.4 Application: Predicting the Game Go

Coming back to the example in the introduction, we want to predict the final territory of

each player in a Go game based on the current state of an incomplete game. We denote by

a vector C = {Black,White, Empty}N the stones of an incomplete game with N = 19× 19

being the number of positions, and denote by a vector S = {−1, 1}N the final territory,

where sn = 1 (−1) means that the nth position is occupied by the black (white) player.

We build up the joint distribution by looking at conditional probabilities of small patches

Epα [Sα = sα|Cα = cα] where α denotes the position of a small patch and cα is its stone

colors. Figure 1.1 shows an example of the conditional probability when the patch is a pair

of neighboring stones. We also consider larger patches such as a square or a cross shape of

five stones.

These conditional probabilities can be estimated trivially using the empirical frequencies in

a training set. A uniform prior is applied to reduce the noise in the empirical estimation.

Given an incomplete game c, we obtain a set of local predictions of the final territory on each

patch {Epα [Sα = sα|Cα = cα]}α. We can then use them as the input moments of features,

I[Sα = sα], and run herding to produce samples of the final territory of the whole board,

{st}. The average of these samples are treated as our prediction. Since the conditional

probabilities are computed independently at each location, we have again the problem of

inconsistent moments. From the analysis in Section 3.5.2, the joint distribution of S from

herding will minimize its L2 distance from the input local conditional distributions.

84



When the conditioning state vector cα is all Empty, a local classifier cannot tell which player

is more influential in this area. Therefore, we combine two local predictions with inverse

patterns as a single input moment in this case Epα [Sα = sα or Sα = ¬sα|Cα is all Empty],

which allows the herding algorithm to assign all the probability to either sα or ¬sα when

neighboring patterns have a strong preference to one player, instead of imposing a constraint

to assign equal probabilities both states.

Stern et al. (2004) propose a CRF model with features defined on patches of single stones,

φi(si) = si, and neighboring stone pairs, φ(si, sj) = sisj. Their corresponding model pa-

rameters are functions of C: hi(ci) and wi,j(ci, cj). The MLE of the parameters is learned

on a training set with two inference methods: a generalization of Swendsen-Wang sampler

(Swendsen & Wang, 1987) and loopy belief propagation (BP) (Murphy et al., 1999). As the

difference of the predictive performance between those two methods is not significant with

respect to cross entropy as shown in Figure 4 of Stern et al. (2004) and the algorithm with

the Swendsen-Wang sampler is much slower than loopy BP, we compare herding with the

CRF model trained and tested with loopy BP only in this thesis.

We train and test our predictive models on a data set of 25089 games by professional players11.

We prune the games that are not complete, and use the GNU GO program12 to obtain the

final territory of the remaining games. The data set is then split into a training set of

5993 games and a test set of 2595 games. We follow the practice in Stern et al. (2004) to

train herding and CRF (compute the conditional probabilities for herding and learn MLE

for CRF) at three stages: 20, 80, and 150 moves, and evaluate the predictive performance

at these respective stages on the test set using the metric of cross entropy between actual

11Provided by http://gokifu.com.
12Downloaded from http://www.gnu.org/software/gnugo.
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Figure 3.16: Cross entropy of final territory prediction on the test set by CRF and herding
at Move 20, 80, and 150.

territory outcomes, s, and predicted territory outcomes, s′:

H =
1

N

N∑
n=1

[s′n log sn + (1− s′n) log(1− sn)] (3.55)

Figure 3.16 shows the cross entropy on the test set by CRF and herding. The mean of the

cross entropy for both CRF and herding as well as the variance for CRF decrease at later

stages of games (more moves). This is reasonable since when a game is close to complete, it

becomes easier to predict the final territory. Compared to CRF, herding has smaller variance

across different games throughout all the stages. It also achieves better average prediction

than the CRF at an early stage (Move 20) with both lower mean and smaller variance. But

as the game progresses, the advantage diminishes, and it is eventually outperformed by the

CRF at a later stage (Move 80).

We compare the predictions of these two methods with a rule based commercial software,

“Many Faces of Go,” using an exemplary game in Figure 3.17. We can see the apparent

difference between the predictions of herding and CRF. Herding tends to make conservative
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predictions especially in empty areas such as the middle of the board at Move 20. It is

confident only when one player has a clearly stronger influence, for instance, in the upper

right corner. In contrast, CRF tends to be overconfident about its predictions as shown in

those empty areas at Move 20 and 80. This problem is also mentioned in Stern et al. (2004)

where the Swendsen-Wang sampling algorithm achieves better predictions than loopy BP

(Figure 2). However, it still appears to be overconfident especially at the early stages when

there are few stones nearby. As the game progresses, it becomes increasingly clear whose

territory the remaining empty areas belong to. In that case we should be able to make a

confident prediction about those areas according to their surrounding stones’ color and the

CRF method shows superior performance to herding as shown at Move 150. Also, we notice

that CRF is capable of detecting captured stones such as the two white stones in the lower

middle part at Move 80 and 150 although it often makes false positive mistakes at early

stages of a game. In contrast, herding usually has conservative predictions for captured

stones.

3.6 Summary of Contributions

My contributions to this chapter are summarized as follows:

• Proposed the Perceptron Cycling Theorem as a general condition for the moment

matching property of herding in Section 3.1.

• Designed the regression function of the parametric herding algorithm in Section 3.3.3

and applied it to data compression.

• Conducted the experiments of conditional herding on real-world data in Section 3.4.3.2

jointly with Andrew Gelfand and Lauren Van Der Maaten.
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(a) Many Faces of Go, Move 20 (b) Herding, Move 20 (c) CRF, Move 20

(d) Many Faces of Go, Move 80 (e) Herding, Move 80 (f) CRF, Move 80

(g) Many Faces of Go, Move 150 (h) Herding, Move 150 (i) CRF, Move 150

Figure 3.17: Territory predictions of “Many faces of go,” herding and CRF at three stages:
Move 20, 80, and 150. For the latter 2 methods, the large circles represent current stones.
Small squares represent final territory prediction from −1 (maximum white square) to +1
(maximum black square).
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• Analyzed the convergence property of the herding algorithm with inconsistent moments

in Section 3.5.2.

• Applied herding to image segmentation on the PASCAL VOC 2007 dataset in Section

3.5.3.1 and game prediction in Section 3.5.4.

I would like to acknowledge of contributions from my collaborators:

• Max Welling proposed the idea of generalized herding with hidden variables (Section

3.3.1) and labels (Section 3.4.1). He also suggested training a regression function to

parameterize the herding algorithm in Section 3.3.3 and proposed the idea of applying

herding to problems with inconsistent moments such as image segmentation and game

prediction.

• Charless Fowlkes provided the code of the gPb algorithm in Section 3.5.3.

• Lauren Van Der Maaten conducted the experiments of conditional herding on artificial

data in Section 3.4.3.1.

• Andrew Gelfand applied herding to image segmentation on the GrabCut dataset.
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Chapter 4

Herding as a Sampling Algorithm

A learning algorithm for a probabilistic model takes as input an empirical distribution and

outputs another distribution according to some inductive criterion so that it will generalize

to unobserved data. A sampling algorithm can be considered similarly as a process that

takes as input a target distribution and output another distribution, which is represented

by a sequence of samples. The difference between these two algorithms is that the sampling

algorithm requires the output distribution to recover the input exactly. In previous chap-

ters we have been discussing the advantage of using herding to learn a model with a fast

convergence rate on a set of features. It would be natural to consider applying herding as a

sampling algorithm. The resulting deterministic sampling algorithm enjoys fast convergence

on estimating the ergodic averages, which makes it a promising alternative to Monte Carlo

methods based on random sampling.

Currently all of the random sampling methods use pseudo-random number generator as the

source of randomness, which is essentially deterministic. Tribble (2007) shows that replacing

the pseudo-random numbers with a uniformly distributed sequence improves the quality of

the Monte Carlo estimator. The idea of directly designing deterministic algorithms for
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sampling from distributions has been proposed in various works (Niederreiter, 1992; Tribble,

2007; Holroyd & Propp, 2010; Murray & Elliott, 2012) but the domain of their applications or

the condition for ergodicity is still limited. The introduction of “herded sampling” algorithms

would potentially make a meaningful contribution in this direction.

Breuleux et al. (2010) made the first attempt on applying herding as a sampling method.

They ran the “rates-herding” algorithm, the first parametric herding approach described in

Section 3.3.3 with moments computed at MLE, to draw samples from a restricted Boltz-

mann machine and showed a faster mixing rate in the state space than Gibbs sampling.

However, the stationary distribution of “rates-herding” is not guaranteed to match the tar-

get distribution and therefore may generate samples that have low probability in the original

model.

In this chapter, we introduce two extensions of herding as sampling algorithms, one for

discrete state spaces and the other for continuous state spaces. We show the efficiency of

herding in estimating the expected value of functions of interest compared to Monte Carlo

methods and discuss the conditions under which the sampling distribution converges to the

input distribution.

4.1 Herded Gibbs

In Section 2.6.1 we applied herding to draw samples of a binary state neuron model with

a one-dimensional feature. It is trivial to observe that given any firing probability π, the

distribution of the samples obeys the Bernoulli distribution Bern(π) due to the moment

matching property. This application can be extended to draw samples from a discrete state

variable. Let X denote a discrete random variable with n states, X ∈ {1, 2, . . . , n}. Denote

by π a discrete probability distribution with πi
def
= P (X = i) ∈ [0, 1] and

∑n
i=1 πi = 1. Let
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us choose a set of n features for X with each feature being an indicator function of one

state, φi(X) = I[X = i]. Then the feature vector φ(X) is actually an 1-of-n encoding of the

discrete variable. When we run herding with those features and an input distribution π, the

moment vector equals the discrete distribution φ̄ = π and the inner product in Equation 2.6

for ith state is simply wi. Therefore, the maximization step in Equation 2.6 involves finding

the largest component of the weight vector X(t) = arg maxi∈{1,2,...,n}w
(t−1)
i , and the weight

update step in Equation 2.7 adds every component by their corresponding probability πi and

then subtracts the selected component by 1. Following the moment matching property, we

can show that the sampling distribution π̂ converges to the target distribution π as O(1/T ).

Note, however, that the domain of this application is narrow. Importantly, it is not able

to sample from unnormalized multivariate probability distributions. This is very limiting

because the problem of sampling from unnormalized distributions is at the heart of the field

of Bayesian inference and the probabilistic programming approach to artificial intelligence

(Lunn et al., 2000; Carbonetto et al., 2005; Milch & Russell, 2006; Goodman et al., 2008).

At the same time, despite great progress in Monte Carlo simulation, the celebrated Gibbs

sampler continues to be one of the most widely-used algorithms. For example, it is the

inference engine behind popular statistics packages (Lunn et al., 2000), several tools for text

analysis (Porteous et al., 2008), and Boltzmann machines (Ackley et al., 1985; Hinton &

Salakhutdinov, 2006). The popularity of Gibbs stems from its simplicity of implementation

and the fact that it is a very generic algorithm. Without any doubt, it would be remarkable

if we could design generic deterministic Gibbs samplers with fast (theoretical and empirical)

rates of convergence.

An extension of herding was proposed by de Freitas et al. (Fang, 2012; Bornn et al., 2013)

to draw samples from unnormalized discrete probability distribution following an analogy to

the Gibbs sampling algorithm, referred to as herded Gibbs. Note that the basic component of

Gibbs sampling is to draw a random sample for one variable from a normalized conditional
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distribution. By replacing the random sampling component with the aforementioned herding

algorithm that samples from a normalized discrete distribution, we obtain a deterministic

variant of the popular Gibbs sampling algorithm. Instead of matching the joint distribution,

herded Gibbs is designed to match the conditional distribution at every step.

In this thesis, we analyse its convergence properties. We prove that the deterministic Gibbs

algorithm converges to the target distribution for two special distributions, a distribution of

an empty graphical model and a distribution of a fully-connected graphical model. Particu-

larly, it achieves a convergence rate of O(1/T ) for the latter distribution. Suitable conditions

for the convergence on a general distribution are still open for future investigation.

4.1.1 Herded Gibbs Sampling

For a graph of discrete nodes G = (V,E), where the set of nodes are the random variables

V = {Xi}Ni=1, Xi ∈ X , let π denote the target distribution defined on G.

Gibbs sampling is one of the most popular methods to draw samples from π. Gibbs alternates

(either systematically or randomly) the sampling of each variable Xi given XN (i) = xN (i),

where i is the index of the node, and N (i) denotes the neighbors of node i. That is, Gibbs

generates each sample from its full-conditional distribution p(Xi|xN (i)).

Herded Gibbs replaces the sampling from full-conditionals with herding at the level of the

full-conditionals. That is, it alternates a process of matching the full-conditional distributions

p(Xi = xi|XN (i)). To do this, herded Gibbs defines a set of auxiliary weights {wi,xN (i)
} for

any value of Xi = xi and XN (i) = xN (i). For ease of presentation, we assume the domain of

Xi is binary, X = {0, 1}, and we use one weight for every i and assignment to the neighbors

xN (i). The herded sampling step is therefore implemented with Equation 2.24, 2.25. Herded

Gibbs can be trivially generalized to the multivariate setting by employing weight vectors in

93



Algorithm 4.1 Herded Gibbs Sampling.

Input: T .
Step 1: Set t = 0. Initialize X(0) in the support of π and w

(0)
i,xN (i)

in (π(Xi = 1|xN (i)) −
1, π(Xi = 1|xN (i))).
for t = 1→ T do

Step 2: Pick a node i according to some policy. Denote w = w
(t−1)
i,x

(t−1)
N (i)

.

Step 3: If w > 0, set x
(t)
i = 1, otherwise set x

(t)
i = 0.

Step 4: Update weight w
(t)

i,x
(t)
N (i)

= w
(t−1)
i,x

(t−1)
N (i)

+ π(Xi = 1|x(t−1)
N (i) )− x(t)i

Step 5: Keep the values of all the other nodes x
(t)
j = x

(t−1)
j ,∀j 6= i and all the other

weights w
(t)
j,xN (j)

= w
(t−1)
j,xN (j)

,∀j 6= i or xN (j) 6= x
(t−1)
N (i) .

end for
Output: x(1), . . . ,x(T )

R|X | instead of scalars and using the sampling procedure described at the beginning of this

section.

If the binary variable Xi has four binary neighbors XN (i), we must maintain 24 = 16 weight

vectors. Only the weight vector corresponding to the current instantiation of the neighbors

is updated, as illustrated in Algorithm 4.1. The memory complexity of herded Gibbs is

exponential in the maximum node degree. Note that the algorithm is a deterministic Markov

process with state (X,W).

The initialization in step 1 guarantees that X(t) always remains in the support of π. For a

deterministic scan policy in step 2, we take the value of variables x(tN), t ∈ N as a sample

sequence. Throughout the section all experiments employ a fixed variable traversal for sample

generation. We call one such traversal of the variables a sweep.

As herded Gibbs sampling is a deterministic algorithm, there is no stationary probability

distribution of states. Instead, we examine the average of the sample states over time and

hypothesize that it converges to the joint distribution, our target distribution, π. To make the

treatment precise, we need the following definition (see Figure 4.1 for a visual interpretation):

Definition 4.1. For a graph of discrete nodes G = (V,E), where the set of nodes V =
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Figure 4.1: Distribution over time at the end of every sweep and the transition kernel of
herded Gibbs.

{Xi}Ni=1, Xi ∈ X , P
(τ)
T is the empirical estimate of the joint distribution obtained by averaging

over T samples acquired from G. P
(τ)
T is derived from T samples, collected at the end of every

sweep over N variables, starting from the τ th sweep:

P
(τ)
T (X = x) =

1

T

τ+T−1∑
k=τ

I(X(kN) = x) (4.1)

Our goal is to prove that the limiting average sample distribution over time converges to the

target distribution π. Specifically, we want to show the following:

lim
T→∞

P
(τ)
T (x) = π(x),∀τ ≥ 0 (4.2)

If this holds, we also want to know what the convergence rate is in the metric of the total

variation distance:

Definition 4.2. Let P and Q be two probabilistic distributions on X . The total variation

distance between P and Q is

dv(P,Q)
def
= sup

A∈F
|P (A)−Q(A)| = 1

2
||P −Q||1. (4.3)
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where F is the σ-algebra of subsets of the sample space X .

In the following two subsections, we will discuss the convergence conditions for two special

graph structures, an empty graph and a fully-connected graph.

4.1.2 Convergence on Empty Graphs

We begin the theoretical analysis with a graph of one binary variable. In that case, herded

Gibbs reduces to the regular herding algorithm as discussed in Section 2.6.1. Proposition

2.5 and corollary 2.6 show that the invariant set of the dynamics is the interval (π − 1, π],

and the error of the sampling probability converges to the input Bernoulli distribution at a

rate of 1/T , or 1/2T if initialized properly.

When w is outside the invariant interval, it is easy to observe that w will move into it mono-

tonically at a linear speed in a transient period. So we will always consider an initialization

of w ∈ (π− 1, π] in this subsection. Since w(t) is now restricted to the interval of unit length

(π − 1, π], we can take a one-to-one mapping w ← w mod 1 (we define 1 mod 1 = 1) and

think of w as updated by a constant translation vector in a circular unit interval (0, 1] as

shown in Figure 4.2. That is,

w(t) = (w(t−1) + π) mod 1, x(t) =

 1 if w(t−1) ≤ π

0 otherwise
(4.4)

Now let us consider an empty graph with N variables. All the variables are independent of

each other and herded Gibbs reduces to running N one-variable chains in parallel. Denote

the marginal distribution πi
def
= π(Xi = 1).
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Figure 4.2: Equivalent weight dynamics for
a single variable.

Figure 4.3: Dynamics of herding with two in-
dependent variables.

Examples of failing convergence in the presence of rational ratios between the πis were

observed in Bach et al. (2012). There the need for further theoretical research on this

matter was pointed out. The following theorem provides formal conditions for convergence

in the restricted domain of empty graphs.

Theorem 4.1. For an empty graph, when herded Gibbs has a fixed scanning order, and

{1, π1, . . . , πN} are rationally independent, the empirical distribution P
(τ)
T converges to the

target distribution π as T →∞ for any τ ≥ 0.

A set of n real numbers, x1, x2, . . . , xn, is said to be rationally independent if for any set of

rational numbers, a1, a2, . . . , an, we have
∑n

i=1 aixi = 0 ⇔ ai = 0,∀1 ≤ i ≤ n. The proof of

Theorem 4.1 makes use of Kronecker-Weyl’s theorem (Weyl, 1916) on uniform distributed

sequences.

Proof of Theorem 4.1. For an empty graph of N independent vertices, the dynamics of the

weight vector w are equivalent to a constant translation mapping in an N -dimensional
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circular unit space (0, 1]N , as shown in Figure 4.3:

w(t) = (w(t−1) + π) mod 1 = · · · = (w(0) + tπ) mod 1 (4.5)

x
(t)
i =

 1 if w
(t−1)
i < πi

0 otherwise
, ∀1 ≤ i ≤ N (4.6)

The Kronecker-Weyl theorem Weyl (1916) states that the sequence w̃(t) = tπ mod 1, t ∈ Z+

is equidistributed (or uniformly distributed) on the unit hypercube (0, 1]N if and only if

(1, π1, . . . , πN) is rationally independent. Since we can define a one-to-one volume preserving

transformation between w̃(t) and w(t) as (w̃(t)+w(0)) mod 1 = w(t), the sequence of weights

{w(t)} is also uniformly distributed on (0, 1]N .

Define the mapping from a state value xi to an interval of wi as

Ai(x) =

 (0, πi] if x = 1

(πi, 1] if x = 0
(4.7)

and let |Ai| be its measure. We obtain the limiting distribution of the joint state as

lim
T→∞

P
(τ)
T (X = x) = lim

T→∞

1

T

T∑
t=1

I

[
w(t−1) ∈

N∏
i=1

Ai(xi)

]

=
N∏
i=1

|Ai(xi)| (Uniform distribution of w)

=
N∏
i=1

π(Xi = xi) (Definition of Ai)

= π(X = x) (Independent variables) (4.8)
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The rate of convergence of P
(τ)
T on π depends on the rate of convergence of wt on the uni-

form distribution. While rationally independence among {πi} is the necessary and sufficient

condition for the sequence of wt to be uniformly distributed, aka. equidistributed, a fast

rate of convergence relies on stronger properties of {πi}. This problem is closely related to

the areas of Diophantine approximation, low discrepancy sequence, and Quasi Monte Carlo

methods (Niederreiter, 1992). Particularly, one would achieve a fast convergence rate in the

form of O(log(T )d/T ) with d a constant, if {wt} is a low-discrepancy sequence. Niederreiter

(1973) gave an upper bound on the discrepancy of the sequence {tπ mod 1}, t = 1, . . . , T as

a function of the “type” of the set {πi} which describes the “badness” of a set of irrational

numbers being simultaneously approximated by rational numbers (Definition 6.1).

Theorem 4.2 (Theorem 6.1 in (Niederreiter, 1973) with slight change in notations). Let

π = (π1, . . . , πN) be an N-tuple of irrationals of type η = 1. Then the discrepancy DT (w) of

the sequence w = tπ mod 1, t = 1, 2, . . . , satisfies

DT (w) = O(T−1+ε) for every ε > 0. (4.9)

It then follows from Equation 4.8 that the total variation distance between P
(τ)
t and π would

also decay at a rate in the same order

Theorem 4.3. If the set of marginal probabilities π = (π1, . . . , πN) is an N-tuple of irra-

tionals of type η = 1, the total variation distance between P
(τ)
T and π satisfies

dv(P
(τ)
T , π) = O(T−1+ε) for every ε > 0. (4.10)

Note however that it is a very restrictive condition for the set π to be of type 1. We will

leave the relationship between the convergence rate and the property of a typical set of π

for future study.
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4.1.3 Convergence on Fully-Connected Graphs

While the convergence of herded Gibbs on empty graphs relies on the value of the marginal

probabilities, we can prove that on fully-connected graphs herded Gibbs always converges

to the target distribution even in the presence of rational ratios between the probabilities.

Moreover, herded Gibbs achieves a convergence rate of O(1/T ) with a O(log(T )) burn-

in period on this type of graphs. That is faster than both Gibbs sampling with a rate

of O(1/
√
T ) and Quasi Monte Carlo methods with a typical rate of O(log(T )d/T ). We

formalize the above statement in Theorem 4.4.

Theorem 4.4. For a fully-connected graph, when herded Gibbs has a fixed scanning order

and a Dobrushin coefficient of the corresponding Gibbs sampler η < 1, there exist constants

l > 0, and B > 0 such that

dv(P
(τ)
T − π) ≤ λ

T
,∀T ≥ T ∗, τ > τ ∗(T ) (4.11)

where λ = 2N(1+η)
l(1−η) , T ∗ = 2B

l
, τ ∗(T ) = log 2

1+η

(
(1−η)lT

4N

)
, and dv(δπ)

def
= 1

2
||δπ||1.

If we ignore the burn-in period and start collecting samples simply from the beginning, we

achieve a convergence rate of O( log(T )
T

) as stated in the following corollary.

Corollary 4.5. When the conditions of Theorem 4.4 hold, and we start collecting samples

at the end of every sweep from the beginning, the error of the sample distribution is bounded

by:

dv(P
(τ=0)
T − π) ≤ λ+ τ ∗(T )

T
= O(

log(T )

T
), ∀T ≥ T ∗ + τ ∗(T ∗) (4.12)

Theorem 4.4 gives a convergence rate on the joint distribution. We provide a lower (upper)
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bound for the value of constant l (B) later in Equation A.7 when proving Proposition 4.6 in

the appendix. The constant l has an exponential term, with N in the exponent, leading to

an exponentially large constant in the convergence rate λ. This is, however, unavoidable for

any sampling algorithm when considering the convergence on a joint distribution with 2N

states.

As for the marginal distributions, it is obvious that the convergence rate of herded Gibbs is

also bounded by O(1/T ) because marginal probabilities are linear functions of the joint dis-

tribution. However, in practice, we observe very rapid convergence results for the marginals,

so stronger theoretical results about the convergence of the marginal distributions seem

plausible.

There is another algorithm in the literature with the same O(1/T ) convergence rate known

as stack walk mechanism (Holroyd & Propp, 2010). Herded Gibbs on a fully-connected graph

is reminiscent of the stack mechanism when considering the joint state of the graph as a state

in the stack walk. Both of the algorithms are deterministic, use a set of auxiliary variables

to guide the state transition, and both achieve a convergence rate of O(1/T ). However,

these two algorithms are not equivalent. Firstly, herded Gibbs is based on Gibbs sampling

algorithm and uses different kernels for different variables, while the stack mechanism uses a

single kernel. Secondly and more importantly, herding uses one weight for every conditioning

state in order to match the conditional distribution π(Yi|X−i), while the stack mechanism

uses one stack for every joint state in order to match the transition probability T (Y|X),

i.e. two separate stacks for every conditioning state in the Gibbs setting. Nevertheless,

exploring the relationship between these two algorithms will help us understand both better,

and the tools used in their proofs might be applied to the other as well.

The proof of Theorem 4.4 and Corollary 4.5 is provided in Appendix A. We only describe

the outline here and give main results obtained in the proof.
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4.1.3.1 Notation

We first introduce a few notations that are necessary to understand the main results in the

proof. Assume without loss of generality that in the systematic scanning policy, the variables

are sampled in the order 1, 2, · · · , N .

State Distribution

• Denote by X+ the support of the distribution π, that is, the set of states with positive

probability.

• We use τ to denote the time in terms of sweeps over all of the N variables, and t

to denote the time in terms of steps where one step constitutes the updating of one

variable. For example, at the end of τ sweeps, we have t = τN .

• Recall the sample/empirical distribution, P
(τ)
T , presented in Definition 4.1.

• Denote the sample/empirical distribution at the ith step within a sweep as P
(τ)
T,i , τ ≥

0, T > 0, 0 ≤ i ≤ N , as shown in Figure 4.4:

P
(τ)
T,i (X = x) =

1

T

τ+T−1∑
k=τ

I(X(kN+i) = x).

This is the distribution of T samples collected at the ith step of every sweep, starting

from the τ th sweep. Clearly, P
(τ)
T = P

(τ)
T,0 = P

(τ−1)
T,N .

• Denote the distribution of a regular Gibbs sampling Markov chain after L sweeps of

updates over the N variables with π(L), L ≥ 0.

For a given time τ , we construct a Gibbs Markov chain with initial distribution π0 =

P
(τ)
T and the same scanning order of herded Gibbs, as shown in Figure 4.5.

Transition Kernel
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Figure 4.4: Distribution over time within a sweep.

• Denote the transition kernel of regular Gibbs for the step of updating a variable Xi

with Ti, and for a whole sweep with T .

By definition, π0T = π1. The transition kernel for a single step can be represented as

a 2N × 2N matrix:

Ti(x,y) =

 π(Xi = yi|x−i), if x−i = y−i

0, otherwise
, 1 ≤ i ≤ N,x,y ∈ {0, 1}N (4.13)

where x is the current state vector of N variables, y is the state of the next step,

and x−i denotes all the components of x excluding the ith component. If π(x−i) = 0,

the conditional probability is undefined and we set it with an arbitrary distribution.

Consequently, T can also be represented as:

T = T1T2 · · · TN .

• Denote the Dobrushin ergodic coefficient Brémaud (1999) of the regular Gibbs kernel

with η ∈ [0, 1]. When η < 1, the regular Gibbs sampler has a geometric rate of

convergence of

dv(π
(1) − π) = dv(T π(0) − π) ≤ ηdv(π

(0) − π),∀π(0). (4.14)

A common sufficient condition for η < 1 is that π(X) is strictly positive.
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• Consider the sequence of sample distributions P
(τ)
T , τ = 0, 1, · · · in Figures 4.1 and 4.4.

We define the transition kernel of herded Gibbs for the step of updating variable Xi

with T̃ (τ)
T,i , and for a whole sweep with T̃ (τ)

T .

Unlike regular Gibbs, the transition kernel is not homogeneous. It depends on both

the time τ and the sample size T . Nevertheless, we can still represent the single step

transition kernel as a matrix:

T̃ (τ)
T,i (x,y) =

 P
(τ)
T,i (Xi = yi|x−i), if x−i = y−i

0, if x−i = y−i

, 1 ≤ i ≤ N,x,y ∈ {0, 1}N , (4.15)

where P
(τ)
T,i (Xi = yi|x−i) is defined as:

P
(τ)
T,i (Xi = yi|x−i) =

Nnum

Nden

Nnum = TP
(τ)
T,i (X−i = x−i, Xi = yi) =

τ+T−1∑
k=τ

I(X(kN+i)
−i = x−i, X

(kN+i)
i = yi)

Nden = TP
(τ)
T,i−1(X−i = x−i) =

τ+T−1∑
k=τ

I(X(kN+i−1)
−i = x−i), (4.16)

where Nnum is the number of occurrences of a joint state, and Nden is the number of

occurrences of a conditioning state in the previous step. When π(x−i) = 0, we know

that Nden = 0 with a proper initialization of herded Gibbs, and we simply set T̃ (τ)
T,i = Ti

for these entries. It is not hard to verify the following identity by expanding every term

with its definition

P
(τ)
T,i = P

(τ)
T,i−1T̃

(τ)
T,i

and consequently,

P
(τ+1)
T = P

(τ)
T T̃

(τ)
T

with

T̃ (τ)
T = T̃ (τ)

T,1 T̃
(τ)
T,2 · · · T̃

(τ)
T,N .

104



4.1.3.2 Outline of Proof

Herded Gibbs is designed to sample from the target distribution by matching conditional

distributions. The approximation error of each full-conditional, π(Xi = 1|xN (i)), is controlled

by one weight, wi,xN (i)
. Proposition 2.5 shows that the error is bounded by 1/T where T in

the context of herded Gibbs is the number of times the weight wi,xN (i)
is updated. Unlike

regular herding where every weight is updated every iteration, in herded Gibbs whether a

weight is selected to be updated in step 4 of Algorithm 4.1 depends on whether it matches

the current state of its neighbors, i.e., XN (i) = xN (i). Therefore, in order to match every

full-conditional, it is essential for every weight to be updated at a sufficiently large rate. The

following proposition says that every joint state of the graph will be visited at least at a

linear rate, and consequently every weight will be updated at least at the same rate.

Proposition 4.6. If a graph is fully connected, herded Gibbs sampling scans variables in

a fixed order, and the corresponding Gibbs sampling Markov chain is irreducible, then for

any state x ∈ X+ and any index i ∈ [1, N ], the state is visited at least at a linear rate.

Specifically,

∃l > 0, B > 0, s.t.,∀i ∈ [1, N ],x ∈ X+, T ∈ N, s ∈ N
s+T−1∑
k=s

I
[
X(t=Nk+i) = x

]
≥ lT −B (4.17)

The proof is given in Appendix A.1 where we also provide a lower bound for the visiting

rate in Equation A.7.

Following Proposition 4.6, we are able to show that the transition kernel of herded Gibbs

T̃ (τ)
T approximates the kernel of regular Gibbs T with an error upper bounded by O(1/T ).

Proposition 4.7. For a fully connected graph, if the herded Gibbs has a fixed scanning

order and the corresponding Gibbs sampling Markov chain is irreducible, then for any τ ≥ 0,
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Figure 4.5: Transition kernels and relevant distances for the proof of Theorem 4.4.

T ≥ T ∗
def
= 2B

l
where l and B are the constants in Proposition 4.6, the following inequality

holds:

‖T̃ (τ)
T − T ‖∞ ≤

4N

lT
(4.18)

The proof is given in Appendix A.2.

With basic tools ready, we can now study the distribution distance between the target

distribution π and the empirical distribution P
(τ)
T . The detailed proof is provided in Appendix

A.3 and the main idea is as follows. To study the change of distance after one sweep,

we construct an auxiliary regular Gibbs sampling Markov chain initialized at π(0) = P
(τ)
T ,

as shown in Figure 4.5. The Gibbs chain has geometric convergence to π, and following

Proposition 4.7 the distance between the Gibbs and herded Gibbs chains after one sweep is

bounded by O(1/T ). When the distance between π and P
(τ)
T is large enough, the geometric

convergence rate to π dominates the discrepancy of herded Gibbs and thus we infer that

P
(τ)
T converges to π as a function of τ geometrically. This burn-in period ends when the

discrepancy of herded Gibbs becomes small enough so that the geometric decrease in the

Gibbs chain is on par with the error O(1/T ). To round-off the proof, we must find a limiting
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value for τ . The proof concludes with an O(log(T )) burn-in for τ .

4.1.4 Convergence Condition on Generic Graphs

Despite the favorable convergence property of herded Gibbs on empty and fully-connected

graphs, we have no mathematical guarantees on the convergence rate for a generic graph. In

fact, one can easily construct synthetic examples for which herded Gibbs does not seem to

converge to the true marginals and joint distribution. For an example, Figure 4.6 shows the

total variation distance between P
(τ=0)
T and π as a function of the sample size T for a graph

with four nodes. For the empty graph (Figure 4.6a) and fully-connected graph (Figure 4.6b),

the distance keeps decreasing as predicted by Theorem 4.1 and 4.4. For an incomplete graph,

herded Gibbs converges toward the target distribution for some scanning order (Figure 4.6c)

and the error stays at a nonzero value for other orders (Figure 4.6d). The exact conditions

under which herded Gibbs converges for sparsely connected graphs are still unknown.

We refer readers to Bornn et al. (2013) for more (synthetic and real data) experiments, where

we demonstrate that the new algorithm outperforms Gibbs sampling and mean field methods

in the domain of sampling from sparsely connected probabilistic graphical models, such as

grid-lattice Markov random fields (MRFs) for image denoising and conditional random fields

(CRFs) for natural language processing.

4.2 Herding in a Continuous State Space

We have been restricting the herding algorithm to draw samples in a discrete state space so

far. This is partly because the convergence proof with PCT requires a finite set of feature

vectors. More importantly, when herding works on a continuous state space with a finite

number of features, imposing a finite number of constraints using the moment matching
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(c) Incomplete graph. Four variables are con-
nected in a loop 1-2-3-4-1. Sampling in the or-
der 1-3-2-4-1-. . . . Herded Gibbs converges on
the target distribution.
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(d) Incomplete graph. Four variables are con-
nected in a loop 1-2-3-4-1. Sampling in the or-
der 1-2-3-4-1-. . . . Herded Gibbs does not con-
verge on the target distribution.

Figure 4.6: Reciprocal of the total variation distance between P
(τ=0)
T and π as a function

of the sample size T . The distance is computed on a Boltzmann machine with four binary
nodes. The parameters are shared across all the figure but in some figures part or all of the
edges are removed to make an incomplete graph.

property can not sufficiently control the infinite number of degrees of freedom in continuous

spaces leading to strange artifacts in the samples. For instance, herding in a continuous

space with features given by the mean and variance may produce two delta-peaks instead of

a Gaussian. To overcome this we wish to perform herding on an infinite number of features

implying the need to switch to a kernel representation.
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4.2.1 Kernel Herding

To achieve that, we will start from the duel view of herding in Section 2.4. As we “marginalize

out” the weight vector w, the kernel trick is straightforward.

In this section, we generalize the definition of the state features, φ : X → H, as a mapping

into a Reproducing Kernel Hilbert Space (RKHS) H with inner product 〈·, ·〉. The moments

φ̄ = Ex∼p[φ(x)] correspond to the mean operator associated with the input distribution p(x)

in H, i.e. for any function in H, f(x) = 〈wf ,φ(x)〉, we have Ex∼p[f(x)] = 〈wf , φ̄〉.

We have implicitly assumed that there are many more discrete states than features. This

has the effect that we only “control” the error in a small subspace of the full state space.

The natural question is whether we can take the (nonparametric) limit where the number of

features is infinite. This is in fact rather straightforward because under the dual view, the

herding update equation 2.15 only depends on the inner product

k(x,x′)
def
= 〈φ(x),φ(x′)〉 (4.19)

The kernel herding procedure (Chen et al., 2010) becomes:

sT+1 = arg max
x

Ex′∼p[k(x,x′)]− 1

T + 1

T∑
t=1

k(x, st) (4.20)

The error is now defined under the norm of the Hilbert space

E2T
def
= ‖φ̄− 1

T

T∑
t=1

φ(st)‖2H (4.21)

ET with an infinite dimensional kernel measures the distance between p and the empirical

measure p̂T (x) = 1
T

∑T
t=1 δ(x, st) given by the herding samples.

This algorithm iteratively constructs an empirical distribution p̂T (x) that is close to the true
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distribution p(x). At each iteration, it searches for a new sample to add to the pool. It is

attracted to the regions where p is high but repelled from regions where samples have already

been “dropped down”. The kernel determines how we should measure distances between

distributions. Note that for many distributions explicit expressions for Ex′∼p[k(x,x′)] have

been obtained. See Jebara & Kondor (2003) for details.

4.2.2 Convergence in Hilbert Space

We show in the next paragraphs that the pseudo-samples generated by kernel herding inherit

the fast O(T−1) decrease in error. Recall the definition of marginal polytopeM in Equation

3.49. It follows that φ̄ ∈ M since X contains the support of p. If ‖φ(x)‖ ≤ R for all

x ∈ X it follows that ‖φ̄‖ ≤ R and consequently by the triangle inequality we have that

‖φ̄− φ(x)‖ ≤ 2R, ∀x.

Proposition 4.8. Assume that p is a distribution with support contained in X and assume

that ‖φ(x)‖ ≤ R for all x ∈ X . Moreover assume φ̄ is in the relative interior of the marginal

polytope M. Then the error ET of Equation 4.21 will decrease as O(T−1).

Proof. We first show that ‖wt‖ is bounded for all t. For this we introduce the centered

marginal polytope

C :=M− µp = conv {φ(x)− µp|x ∈ X} . (4.22)

Using C the update equations become

wt+1 = wt − ct where ct := argmaxc ∈ C 〈wt, c〉 . (4.23)
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This allows us to write the increment in the norm of the parameter vector ‖wt+1‖ via

‖wt‖2 − ‖wt+1‖2 = 2 〈wt, ct〉 − ‖ct‖2 (4.24)

≥ 2 ‖ct‖
[
‖wt‖

〈
wt

‖wt‖
,

ct
‖ct‖

〉
−R

]

The inequality follows from ‖ct‖ ≤ 2R. If we can show

〈
wt

‖wt‖
,

ct
‖ct‖

〉
=: γt ≥ γ∗ > 0 (4.25)

for all w then it follows immediately that ‖w‖ ≤ R/γ∗: in this case we have ‖w‖ γt − R ≥

(R/γ∗)γ∗ −R = 0.

To see 4.25 recall that µp is contained inside the relative interior of M, i.e. there exists an

ε-ball around µp that is contained in M. Consequently γ∗ ≥ ε.

Since ‖wt‖ =
∥∥∥w0 + Tµp −

∑T
t=1 φ(xt)

∥∥∥ ≤ R/γ∗ it follows by dividing by T that

∥∥∥∥∥µp − T−1
T∑
t=1

φ(xt)

∥∥∥∥∥ ≤ T−1[‖w0‖+R/γ∗]. (4.26)

This proves the claim of O(T−1) convergence to µp.

Corollary 4.9. Herding converges at the fast rate even when 2.6 is only carried out with

some error provided that we obtain samples xt+1 ∈ X which satisfy

〈
wt

‖wt‖
,
φ(xt+1)− µp
‖φ(xt+1)− µp‖

〉
≥ ρ̄ > 0 (4.27)

This condition is reminiscent of Boosting algorithms where the weak learner is not required to

generate the optimal solution within a given set of hypotheses but only one that is sufficiently

good with regard to a nonzero margin. It is also related to the perceptron cycling theorem
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(Block & Levin, 1970) where X is assumed to have finite cardinality but which guarantees

convergence even when ρ̄ = 0.

We can allow µp to lie on a facet of M in which case we have the following corollary.

Corollary 4.10. Whenever µp lies on a facet of the marginal polytope M it suffices that

we restrict ourselves to optimization over the vertices generating the facet. In this case, µp

lies within the relative interior of the now restricted polytope.

Compared to the PCT condition that requires a finite domain of the update vector v, Propo-

sition 4.8 and its corollaries apply to an infinite set of X as well. However, Proposition 4.8

and 4.9 assume that φ̄ is in the relative interior ofM and 4.10 assumes that φ̄ is on a facet

of M. As pointed out by Bach et al. (2012), these assumptions do not hold for infinite

dimensional kernel functions such as the Gaussian kernel. So Proposition 4.8 is not sufficient

to prove that the empirical distribution of herding samples will converge to p. Nevertheless,

even with an infinite dimensional kernel on a continuous state space, we find in experiments

that the error ET decays at a rate close to O(T−1). See Figure 4.8 for an example of the

linear decrease of error with a Gaussian kernel.

Under the condition of Proposition 4.8, we want to show that the convergence rate of the

error ET , O(T−1), implies that the error of any integral over a function in our RKHS will

also converge at the same fast rate:

Proposition 4.11. For any f ∈ H, the error |Ep[f ] − Ep̂T [f ]| will decrease as O(T−1).

Moreover this condition holds uniformly, that is sup‖f‖≤1 |Ep[f ] − Ep̂T [f ]| also decreases at

rate O(T−1).

To prove this we will need the following lemma,
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Lemma 4.12 (Koksma Hlawka Inequality). For any f ∈ H we have

|E[f ]p − E[f ]p̃T | ≤ ‖f‖H ‖µp − µp̃T ‖H (4.28)

The above inequality is the simply a consequence of the Cauchy Schwartz inequality. It

is known as the Koksma-Hlawka inequality in the analysis of Quasi Monte Carlo methods.

Clearly, with this lemma proposition 4.11 follows. In fact, this technique was used by Song

et al. (2008) in the context of density estimation. The key novelty in the present paper is

that we have a simple and explicit algorithm for obtaining fast rates of approximation which

are considerably better than the O(T−
1
2 ) rates usually available via sampling.

The above proposition shows that kernel herding generates “super samples” that are much

more informative than iid samples: for every n herding samples we will need O(n2) iid

samples to achieve the same error reduction. This fast convergence behavior is reminiscent

of Quasi Monte Carlo integration. The Quasi Monte Carlo methods first generate a sequence

of uniformly distributed samples deterministically and then use those samples to approximate

the Monte Carlo average. They usually achieve a convergence rate of O(log(T )d/T ) where

d is a constant. However, the regular Quasi Monte Carlo method generates samples subject

to a uniform distribution only and therefore is not as flexible as kernel herding that adjusts

itself to the input distribution. An extension of Quasi Monte Carlo methods, known as

Markov Chain Quasi Monte Carlo (Chen et al., 2011a) combines the deterministic process

with Markov chains so that one can generate samples from a generic distribution with a

faster convergence rate than MCMC methods. But the fast convergence rate is contingent

on a strong contraction condition on the transition kernel of the Markov chain. Another

related work on deterministic sampling (Huszar & Duvenaud, 2012) proves that an even

faster convergence rate is available when assigning a weight for every sample. It shows

that optimally weighted kernel herding is equivalent to Bayesian quadrature methods. Note
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however that the extra speed up comes with a higher time and space complexity, which is

due to the calculation of the optimal weights.

4.2.3 Experiments

In this section, we want to show that herding is able to draw better samples than random

sampling from the true distribution. We first illustrate the behavior of herding on low di-

mensional synthetic data, compare the approximation of integrals between the super samples

and iid samples, and then show an application where we compress the size of a collection

of posterior samples required for computing the predictive probability of Bayesian logistic

regression.

4.2.3.1 Synthetic Data: Matching the True Distribution

We first visualize herding on a 2-D state space. We randomly construct a 2 dimensional Gaus-

sian mixture (GM) model with 20 components whose equiprobability contours are shown in

Figure 4.7. With a Gaussian kernel, the integral in 4.20 can be analytically calculated

implying that we can run herding directly on the GM distribution.

A few auxiliary samples are first drawn uniformly to provide a reasonable starting point for

the maximization steps. Then, we sequentially generate super-samples by 4.20. At each

iteration, starting from the best auxiliary sample that maximizes 4.20, we run a gradient

ascent algorithm to obtain a new super sample. Figure 4.8 shows the linear increase of 1/ET

as a function of T .

In Figure 4.7, the first 20 super samples are plotted in comparison with 20 iid samples from

the GM model. For iid samples, due to the inherent randomness, some modes receive too

many points while others get too few or even none. In contrast, the samples from herding
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Figure 4.7: First 20 samples form herding (red squares) versus i.i.d. random sampling
(purple circles).

Figure 4.8: Linear relationship between 1/ET and T

always try to repel from each other and are distributed optimally (given earlier samples) to

represent the density function.

Since the expectation of any function in a model can be approximated by summation over

its samples, we are interested in how well the super samples can be used to estimate these
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averages. We generate a 5 dimensional GM model with 100 components as the target distri-

bution p. We compute the error of the expectation of four functions: the first three moments,

and a nonlinear function. For the mth moment, m = 1, 2, 3, we first calculate the average of

xmi,t over t (the index of herding samples) in each dimension as a function of T (the number

of super samples). Then the RMSE of the estimated moments over all the dimensions is

computed as

err(ST ) =

(
1

d

d∑
i=1

(〈xmi 〉ST − 〈xmi 〉p)2
) 1

2

(4.29)

For the fourth function, we use a sine of the norm of a point: f(x) = sin ‖x‖. In comparison,

we compute the mean and standard deviation of the errors obtained by a set of random sam-

ples as the benchmark. The results are shown in Figure 4.9 with their estimated convergence

rates. The error of approximation by herding is much smaller than random sampling with

the same number of points for all the 4 functions, also their convergence rates are close to

the theoretical value O(T−1).

4.2.3.2 Synthetic Data: Matching empirical distribution

When the integration in 4.20 cannot be computed analytically, it would be difficult to run

herding to accurately match the true distribution especially in high dimensional spaces.

However, if we have a set of random samples, D, from the distribution, it is straightforward

to run herding to match the empirical distribution. We can thereby represent the true

distribution by the super samples S with the same accuracy as D but with many fewer

samples. A set of 105 iid samples is drawn from a 5-D GM model, and then herding is run

taking D as the true distribution. Since in this case p in the 4.20 is taken to be the empirical

distribution, the integral is simply a summation over all the points in D.

We again compare the estimation of function expectations between herding and random
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Figure 4.9: Error in estimating the expectation of four functions, by herding (blue) and
random sampling (green) as a function of the number of samples. The decreasing speed of
the upper bound of the error is shown on top of each figure.

samples. However, this time we can compute two errors, one on the empirical distribution

D and the other on the true distribution p. See the results in Figure 4.10. Since the

distribution of S will converge to the empirical distribution, the error between S and D will

keep decreasing as in Figure 4.9 while the error between S and p will not. Instead, it will

converge to the error incurred by the empirical distribution relative to p and this is the point

where the set S is large enough to replace D. We can find from Figure 4.10 that for 105

iid samples, we only need at most 2000 super samples for the first three functions, and 104

for the last function to achieve similar precision. This is a significant reduction whenever

evaluating f is expensive, e.g. in active learning problems.
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Figure 4.10: Error in estimating the expectation of four functions by herding on the true
distribution p (red) and the empirical distribution D (blue) as a function of the number of
samples. The convergence rate of the error on D (measured as slope of the upper bound of
the herding error) is shown on top of each figure. The error of random sampling on p (green)
is also plotted for comparison.

4.2.3.3 Approximating the Bayesian Posterior

Next we consider the task of approximating the predictive distribution of a Bayesian model.

Alternatively, this idea can be applied to find a small collection of good predictive models to

be used in bagging. Assume we have drawn a large number of parameters, D, using MCMC

from the posterior distribution (or we have learned a large number of predictors on bootstrap

samples). For reasons of computational efficiency, we may not want to use all the samples at

test time. One choice is to down-sample the MCMC chain by randomly sub-sampling from

D. Another choice is to run herding on the empirical distribution. With the convergence
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property on any function in the Reproducing Kernel Hilbert Space, we know that prediction

by S will converge to that by D. Furthermore, we can get a significant speed up with a few

super samples during the prediction phase without much loss of accuracy.

We use the spambase data set from the UCI machine learning repository1 for the experiment,

which has 4601 instances with 57 real attributes and 1 binary class label. The data set is split

into a training set of 3000 data points and a test set of 1601 data points. A logistic regression

model is built with a Gaussian prior on the weights θ. The training set is whitened by PCA

and then fed into the model to draw posterior samples by the Metropolis-Hasting algorithm

with a Gaussian proposal distribution. The resulting set D consists of 105 samples sub-

sampled by a factor of 100 from the Markov chain to reduce the autocorrelation. We whiten

D using PCA and run herding on this empirical distribution with an isotropic Gaussian

kernel with σ = 10. This is equivalent to run herding on the original parameter set with

a Gaussian kernel whose covariance matrix is a multiple of the covariance matrix of D. At

each iteration, we use the sample of θ from D that maximizes (4.20) as a new super sample,

without any further local maximization. This corresponds to running herding in the discrete

domain, X = D, and all the theoretical conclusions in section 2 also apply to this case.

We compare the predictions made by S with those made by the whole set D on the test

data. Figure 4.11 shows the RMSE of the predictive probability by herding over all the test

data points as a function of the number of super samples.

RMSE2(ST ,D) =
1

N

N∑
n=1

 1

T

T∑
t=1

p(yn|xn, θt)−
1

|D|

|D|∑
i=1

p(yn|xn, θi)

2

(4.30)

For comparison, we randomly draw a subset of D by bootstrap sampling and compute the

error in the same way (the performance of down-sampling the Markov chain or randomly

sampling without replacement is very similar to random sampling, and is thus not shown in

1http://archive.ics.uci.edu/ml
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Figure 4.11: RMSE of the predicted probability of herding (blue) and a random subset (blue)
w.r.t. the whole sample set.

the figure). We can easily observe the advantage of herding over random sampling. The error

of herding decreases roughly as O(T−0.75), while the error of random sampling decreases as

O(T−0.5).

Now we would like to estimate how many super samples are needed to achieve the same

precision as D on the true posterior. Assume for now that the samples in D are iid.

Then the average predictive probability p(yn|xn,D) = 1
|D|
∑|D|

i=1 p(yn|xn, θi) is the average

of |D| independent, unbiased estimates. Since we can compute the standard deviation of

these estimates on D, the standard deviation of the average predictive probability becomes

std(p(yn|xn,D)) = std(p(yn|xn, θi))/
√
|D|, and then its mean over all test data points gives

an estimate of the standard deviation of the error in general, which is the dashed line in

Figure 4.11.
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We can decompose the error of herding on the true posterior

RMSE(ST , p) ≤ RMSE(ST ,D) + RMSE(D, p) ≈ RMSE(ST ,D) + std(p(yn|xn,D).

(4.31)

When the first term is smaller than the second term, the error of herding mainly comes from

the error of D, and we can claim that drawing more herding samples will not improve the

prediction much. Since the MCMC samples in D are not independent, the error of D can

only be larger than the estimated value, and we will need even fewer samples to reach the

same accuracy. In our experiment, for a set of 105 samples, we only need 7000 super samples.

In fact, we have drawn another much larger set of 2.5×106 posterior samples, p̃, and estimate

the error of S on p by RMSE(S, p̃) (the red line in Figure 4.11). We find that the line starts

to level off with even fewer (about 3000) super samples and the converged value equals

RMSE(D, p̃). In summary, we can compress the set of parameters by 93% or 97%.

In Figure 4.12, we show the classification accuracy of herding on the test set. In comparison,

we also draw the accuracy of the whole sample set (red), and 10 random subsets of D. The

prediction of herding converges fast to that of D which is considered ground truth for the

herding algorithm. In contrast, the prediction made by random subsets fluctuates strongly.

In particular, we only need about 20 super-samples to get the same accuracy as D, while we

need about 200 random samples.

4.3 Summary of Contributions

Section 4.1 and 4.2 are basically restatements of Chen et al. (2010) and Bornn et al. (2013)

respectively with an expansion of discussion in Section 4.1.2 and an additional experiment

in Section 4.1.4. My contributions to this chapter are summarized as follows:
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Figure 4.12: Prediction accuracy of herding (black), 10 random subsets (cyan) and the whole
sample set (red).

• Analyzed the conditions and the rate of convergence for herded Gibbs sampling. I also

conducted the illustrative experiments in Section 4.1.4.

• Conducted the experiments of kernel herding in Section 4.2.3.

I would like to acknowledge of contributions from my collaborators:

• Nando de Freitas proposed the herded Gibbs sampling algorithm in Section 4.1.1.

• Jing Fang and Mareija Eskelin applied herded Gibbs sampling to more comprehensive

experiments. Readers are referred to Fang (2012) and Bornn et al. (2013) for detailed

comparisons of herded Gibbs with other algorithms.

• Luke Bornn and Max Welling helped to formulate the idea of herded Gibbs and con-

tributed to the editing of Bornn et al. (2013).

• The idea of kernel herding in Section 4.2.1 was proposed by Alex Smola and Max

Welling. The theoretical analysis in Section 4.2.2 was contributed by Alex Smola.
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Chapter 5

Conclusion

The herding algorithm was proposed in Welling (2009a) as an alternative to the maximum

likelihood estimation for Markov random fields. It skips the parameter estimation step and

directly converts a set of moments from the training data into a sequence of model parameters

accompanied by a sequence of model states. By integrating the intractable training and

testing steps in the regular machine learning paradigm, herding provides a more efficient

way of learning and predicting in MRFs.

In this thesis, we study the statistical properties of herding. We show that herding dynamics

introduces negative auto-correlation in the sample sequence which helps to speed up the

mixing rate of the sampler in the state space. Quantitatively, the negative auto-correlation

leads to a fast convergence rate of O(1/T ) between the sampling statistics and the input

moments. That is significantly faster than the rate ofO(1/
√
T ) that an ideal random sampler

would obtain for an MRF at MLE.

We further provide a condition, the PCT, for the fast moment matching property, which is

then used to derive extensions of the herding algorithm for a wider range of applications.

Parametric versions of herding are introduced to run the dynamics efficiently in the presence
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of hidden variables. A discriminative learning variant is proposed for supervised problems.

We also study an exception with inconsistent moments. The PCT condition does not hold

any more in that case, but we show that herding can still be applied for applications such

as image segmentation and game prediction.

As a dynamical system, it is worthwhile studying the weak-chaos behavior of herding. We

show that the attractor set of herding usually has a fractal dimension. A typical sequence

of the dynamical parameters is not periodic. So unlike the maximum likelihood point esti-

mation, the distribution of the parameters is spread in an infinite set. Also, that sequence

is not yet chaotic. So there exists longer distance auto-correlation compared to chaotic se-

quences and Markov process, indicated by the Lyapunov exponent equal to zero. We make

a conjecture for this type of dynamics that the contained information is more than both

periodic sequences and sequences generated by a random sampler.

This information-rich process is advantageous over a random process when applied as a

sampling algorithm. We show that when we employ a large enough number of features to

eliminate the remaining degrees of freedom or take advantage of the rational independence

among moments, the sample sequence of herding is likely to converge to the input distri-

bution. Moreover, the rate of convergence is as high as O(1/T ) under certain conditions,

a significant speed up compared to MCMC methods. The fast convergence rate is reminis-

cent of other deterministic methods such as Quasi Monte Carlo methods (Niederreiter, 1992;

Tribble, 2007) and the Rotor-Router dynamics (Holroyd & Propp, 2010).

5.1 Future Work

Despite the success of herding in many applications of training and sampling probabilistic

models, there are a lot of open theoretical questions that demand further investigation.

124



One of the most important questions is to identify the inductive criterion of the herded

learning algorithm. We know that the moments of the sample distribution are matched to

the input data, but we do not know how the remaining degrees of freedom are determined.

In other words, given a set of average statistics, what criterion does herding employ to

generate the distribution of samples? Can we find an objective function that the sample

distribution of herding actually optimizes? Can we design a herding algorithm to implement

the maximum entropy criterion? Moreover, how is the sample distribution affected by free

parameters in the design of herding dynamics, such as the initialization, the relative ratio of

the learning rates across features, the accuracy of the approximate maximization step, etc.

Another research direction is on the weak chaotic properties of the herding dynamics. While

we have some intuitive understanding of the dynamics, a rigorous analysis of its important

properties such as the form of the attractor set and the topological entropy is still missing. For

example, we observe in practice that the attractor set of herding with no hidden variables

is invariant to its initialization. Deriving a theoretical proof on this observation would

undoubtedly provide useful guidance for better and more generic implementations of the

algorithm. Generally speaking, herding reveals the connection between statistical learning

and dynamical systems. A better understanding on this relationship may bring a completely

new approach to machine learning.

When applied as a sampling algorithm, herding shows a distinctive advantage over Monte

Carlo methods in terms of its fast convergence rate. However, the algorithms on both

discrete and continuous state spaces are still in their preliminary stages and have limitations

in terms of either space or time complexity. Also, the condition for herded Gibbs with a

generic graph structure to converge on the target distribution is still open for future study.

So is a convergence proof for kernel herding with an infinite dimensional kernel. Given the

close connection between the herding sampler and Quasi Monte Carlo methods, we hope to

borrow the theoretic tools from that domain for our analysis in the future.
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Appendix A

Proof of Theorems in Section 4.1.3

A.1 Proof of Proposition 4.6

We prove in this section that every joint state in the support of the target distribution is

visited, at least, at a linear rate. This result will be used to measure the distance between

the Gibbs and herded Gibbs transition kernels.

Denote the minimum nonzero conditional probability as

πmin = min
1≤i≤N,π(xi|x−i)>0

π(xi|x−i).

The following lemma, which is needed to prove Proposition 4.6, gives an inequality between

the number of visits of two sets of states in consecutive steps.

Lemma A.1. For any integer i ∈ [1, N ] and two sets of states X,Y ⊆ X+ with a mapping

F : X→ Y that satisfies the following condition:

∀x ∈ X,F(x)−i = x−i, ∪x∈XF (x) = Y, (A.1)
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we have that, for any s ≥ 0 and T > 0, the number of times Y is visited in the set of steps

Ci = {t = kN + i : s ≤ k ≤ k+T −1} is lower bounded by a function of the number of times

X is visited in the previous steps Ci−1 = {t = kN + i− 1 : s ≤ k ≤ k + T − 1} as:

∑
t∈Ci

I
[
X(t) ∈ Y

]
≥ πmin

∑
t∈Ci−1

I
[
X(t) ∈ X

]
− |Y| (A.2)

Proof. As a complement to Condition A.1, we can define F−1 as the inverse mapping from Y

to subsets of X so that for any y ∈ Y, x ∈ F−1(y), we have x−i = y−i, and ∪y∈YF−1(y) = X.

Consider any state y ∈ Y, when y is visited in Ci, the weight wi,y−i is active. Let us denote

the set of all the steps in [sN + 1, s(N + T ) + N ] when wi,y−i is active by Ci(y−i), that is,

Ci(y−i) = {t : t ∈ Ci,X(t)
−i = y−i}. Applying Lemma 2.5 we get

∑
t∈Ci

I
[
X(t) = y

]
≥ π(yi|y−i)|Ci(y−i)| − 1 ≥ πmin|Ci(y−i)| − 1. (A.3)

Since the variables X−i are not changed at steps in Ci, we have

|Ci(y−i)| =
∑
t∈Ci−1

I
[
X

(t)
−i = y−i

]
≥
∑
t∈Ci−1

I
[
X(t) ∈ F−1(y)

]
. (A.4)

Combining the fact that ∪y∈YF
−1(y) = X and summing up both sides of Equation A.3 over

Y proves the lemma:

∑
t∈Ci

I
[
X(t) ∈ Y

]
≥
∑
y∈Y

πmin

∑
t∈Ci−1

I
[
X(t) ∈ F−1(y)

]
− 1

 ≥ πmin

∑
t∈Ci−1

I
[
X(t) ∈ X

]
−|Y|.

(A.5)

Remark A.2. A fully connected graph is a necessary condition for the application of Lemma

2.5 in the proof. If a graph is not fully connected (N(i) 6= −i), a weight wi,yN(i)
may be shared

133



by multiple full conditioning states. In this case Ci(y−i) is no longer a consecutive sequence

of times when the weight is updated, and Lemma 2.5 does not apply here.

Now let us prove Proposition 4.6 by iteratively applying Lemma A.1.

Proof of Proposition 4.6. Because the corresponding Gibbs sampler is irreducible and any

Gibbs sampler is aperiodic, there exists a constant t∗ > 0 such that for any state y ∈ X+,

and any step in a sweep, i, we can find a path of length t∗ for any state x ∈ X+ with a

positive transition probability, Path(x) = (x = x(0),x(1), . . . ,x(t∗) = y), to connect from x

to y, where each step of the path follows the Gibbs updating scheme. For a strictly positive

distribution, the minimum value of t∗ is N .

Denote τ ∗ = dt∗/Ne and the jth element of the path Path(x) as Path(x, j). We can define

t∗ + 1 subsets Sj ⊆ X+, 0 ≤ j ≤ t∗ as the union of all the jth states in the path from any

state in X+:

Sj = ∪x∈X+Path(x, j)

By definition of these paths, we know S0 = X+ and St∗ = {y}, and there exits an integer

i(j) and a mapping Fj : Sj−1 → Sj, ∀j that satisfy the condition in Lemma A.1 (i(j) is the

index of the variable to be updated, and the mapping is defined by the transition path).

Also notice that any state in Sj can be different from y by at most min{N, t∗− j} variables,

and therefore |Sj| ≤ 2min{N,t∗−j}.
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Let us apply Lemma A.1 recursively from j = t∗ to 1 as

s+T−1∑
k=s

I
[
X(t=Nk+i) = y

]
≥

s+T−1∑
k=s+τ∗

I
[
X(t=Nk+i) = y

]
=

s+T−1∑
k=s+τ∗

I
[
X(t=Nk+i) ∈ St∗

]
≥ πmin

s+T−1∑
k=s+τ∗

I
[
X(t=Nk+i−1) ∈ St∗−1

]
− |St∗|

≥ · · ·

≥ πt
∗

min

s+T−1∑
k=s+τ∗

I
[
X(t=Nk+i−t∗) ∈ S0 = X+

]
−

t∗−1∑
j=0

πjmin|St∗−j|

≥ πt
∗

min(T − τ ∗)−
t∗−1∑
j=0

πjmin2min{N,j}. (A.6)

The proof is concluded by choosing the constants

l = πt
∗

min, B = τ ∗πt
∗

min +
t∗−1∑
j=0

πjmin2min{N,j}. (A.7)

Note that the values for l and B in Equation A.7 provide a lower bound for the linear rate

of Proposition 4.6. After proving Theorem 4.4, we know that the largest value for l should

be maxx π(x) or simply π(x) if we allow l to depend on x.

A.2 Proof of Proposition 4.7

The following proposition shows that T̃ (τ)
T is an approximation to the regular Gibbs sampler’s

transition kernel T with an error of O(1/T ).
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Proof. When x 6∈ X+, we have the equality T̃ (τ)
T,i (x,y) = Ti(x,y) by definition. When x ∈ X+

but y 6∈ X+, then Nden = 0 (see the notation of T̃ (τ)
T for definition of Nden) as y will never be

visited and thus T̃ (τ)
T,i (x,y) = 0 = Ti(x,y) also holds. Let us consider the entries in T̃ (τ)

T,i (x,y)

with x,y ∈ X+ in the following.

Because X−i is not updated at ith step of every sweep, we can replace i− 1 in the definition

of Nden by i and get

Nden =
τ+T−1∑
k=τ

I(X(kN+i)
−i = x−i).

Notice that the set of times {t = kN+ i : τ ≤ k ≤ τ +T −1,Xt
−i = x−i)}, whose size is Nden,

is a consecutive set of times when wi,x−i is updated. By Lemma 2.5, we obtain a bound for

the numerator

Nnum ∈ [Ndenπ(Xi = yi|x−i)− 1, Ndenπ(Xi = yi|x−i) + 1]⇔

|P (τ)
T,i (Xi = yi|x−i)− π(Xi = yi|x−i)| = |

Nnum

Nden

− π(Xi = yi|x−i)| ≤
1

Nden

. (A.8)

Also by Proposition 4.6, we know every state in X+ is visited at a linear rate, there hence

exist constants l > 0 and B > 0, such that the number of occurrence of any conditioning

state x−i, Nden, is bounded by

Nden ≥
τ+T−1∑
k=τ

I(X(kN+i) = x) ≥ lT −B ≥ l

2
T, ∀T ≥ 2B

l
. (A.9)

Combining equations (A.8) and (A.9), we obtain

|P (τ)
T,i (Xi = yi|x−i)− π(Xi = yi|x−i)| ≤

2

lT
, ∀T ≥ 2B

l
. (A.10)

Since the matrix T̃ (τ)
T,i and Ti differ only at those elements where x−i = y−i, we can bound

136



the L1 induced norm of the transposed matrix of their difference by

‖(T̃ (τ)
T,i − Ti)

T‖1 = max
x

∑
y

|T̃ (τ)
T,i (x,y)− Ti(x,y)|

= max
x

∑
yi

|P (τ)
T,i (Xi = yi|x−i)− π(Xi = yi|x−i)|

≤ 4

lT
, ∀T ≥ 2B

l
(A.11)

Observing that both T̃ (τ)
T and T are multiplications of N component transition matrices,

and the transition matrices, T̃ (τ)
T and Ti, have a unit L1 induced norm as:

‖(T̃ (τ)
T,i )T‖1 = max

x

∑
y

|T̃ (τ)
T,i (x,y)| = max

x

∑
y

P
(τ)
T,i (Xi = yi|x−i) = 1 (A.12)

‖(Ti)T‖1 = max
x

∑
y

|Ti(x,y)| = max
x

∑
y

P (Xi = yi|x−i) = 1 (A.13)

we can further bound the L1 norm of the difference, (T̃ (τ)
T −T )T . Let P ∈ RN be any vector

with nonzero norm. Using the triangular inequality, the difference of the resulting vectors

after applying T̃ (τ)
T and T is bounded by

‖P (T̃ (τ)
T − T )‖1 =‖P T̃ (τ)

T,1 . . . T̃
(τ)
T,N − PT . . . TN‖1

≤‖P T̃ (τ)
T,1 T̃

(τ)
T,2 . . . T̃

(τ)
T,N − PT1T̃

(τ)
T,2 . . . T̃

(τ)
T,N‖1+

‖PT1T̃ (τ)
T,2 T̃

(τ)
T,3 . . . T̃

(τ)
T,N − PT1T2T̃

(τ)
T,3 . . . T̃

(τ)
T,N‖1+

. . .

‖PT1 . . . TN−1T̃ (τ)
T,N − PT1 . . . TN−1TN‖1 (A.14)
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where the i’th term is

‖PT1 . . . Ti−1(T̃ (τ)
T,i − Ti)T̃

(τ)
T,i+1 . . . T̃

(τ)
T,N‖1 ≤ ‖PT1 . . . Ti−1(T̃

(τ)
T,i − Ti)‖1 (Unit L1 norm, Eqn. A.12)

≤ ‖PT1 . . . Ti−1‖1
4

lT
(Eqn. A.11)

≤ ‖P‖1
4

lT
(Unit L1 norm, Eqn. A.13)

(A.15)

Consequently, we get the L1 induced norm of (T̃ (τ)
T − T )T as

‖(T̃ (τ)
T − T )T‖ = max

P

‖P (T̃ (τ)
T − T )‖1
‖P‖1

≤ 4N

lT
, ∀T ≥ 2B

l
, (A.16)

A.3 Proof of Theorem 4.4

When we initialize the herded Gibbs and regular Gibbs with the same distribution (see

Figure 4.5), since the transition kernel of herded Gibbs is an approximation to regular Gibbs

and the distribution of regular Gibbs converges to the invariant distribution, we expect that

herded Gibbs also approaches the invariant distribution.

Proof of Theorem 4.4. Construct an auxiliary regular Gibbs sampling Markov chain initial-

ized with π(0)(X) = P
(τ)
T (X) and the same scanning order as herded Gibbs. As η < 1, the

Gibbs Markov chain has uniform geometric convergence rate as shown in Equation (4.14).

Also, the Gibbs Markov chain must be irreducible due to η < 1 and therefore Proposition 4.7

applies here. We can bound the distance between the distributions of herded Gibbs after one

sweep of all variables, P
(τ+1)
T , and the distribution after one sweep of regular Gibbs sampling,
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π(1) by

dv(P
(τ+1)
T − π(1)) = dv(π

(0)(T̃ (τ)
T − T )) =

1

2
‖π(0)(T̃ (τ)

T − T )‖1

≤ 2N

lT
‖π(0)‖1 =

2N

lT
, ∀T ≥ T ∗, τ ≥ 0. (A.17)

Now we study the change of discrepancy between P
(τ)
T and π as a function as τ .

Applying the triangle inequality of dv:

dv(P
(τ+1)
T − π) = dv(P

(τ+1)
T − π(1) + π(1) − π) ≤ dv(P

(τ+1)
T − π(1)) + dv(π

(1) − π)

≤ 2N

lT
+ ηdv(P

(τ)
T − π), ∀T ≥ T ∗, τ ≥ 0. (A.18)

The last inequality follows Equations (4.14) and (A.17). When the sample distribution is

outside a neighborhood of π, Bε1(π), with ε1 = 4N
(1−η)lT , i.e.

dv(P
(τ)
T − π) ≥ 4N

(1− η)lT
, (A.19)

we get a geometric convergence rate toward the invariant distribution by combining the two

equations above:

dv(P
(τ+1)
T − π) ≤ 1− η

2
dv(P

(τ)
T − π) + ηdv(P

(τ)
T − π) =

1 + η

2
dv(P

(τ)
T − π). (A.20)

So starting from τ = 0, we have a burn-in period for herded Gibbs to enter Bε1(π) in a finite

number of rounds. Denote the first time it enters the neighborhood by τ ′. According to the

geometric convergence rate in Equations A.20 and dv(P
(0)
T − π) ≤ 1

τ ′ ≤

⌈
log 1+η

2
(

ε1

dv(P
(0)
T − π)

)

⌉
≤
⌈
log 1+η

2
(ε1)
⌉

= dτ ∗(T )e. (A.21)
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After that burn-in period, the herded Gibbs sampler will stay within a smaller neighborhood,

Bε2(π), with ε2 = 1+η
1−η

2N
lT

, i.e.

dv(P
(τ)
T − π) ≤ 1 + η

1− η
2N

lT
, ∀τ > τ ′. (A.22)

This is proved by induction:

1. Equation (A.22) holds at τ = τ ′ + 1. This is because P
(τ ′)
T ∈ Bε1(π) and following

Eqn. A.18 we get

dv(P
(τ ′+1)
T − π) ≤ 2N

lT
+ ηε1 = ε2 (A.23)

2. For any τ ≥ τ ′ + 2, assume P
(τ−1)
T ∈ Bε2(π). Since ε2 < ε1, P

(τ−1)
T is also in the ball

Bε1(π). We can apply the same computation as when τ = τ ′+1 to prove dv(P
(τ)
T −π) ≤

ε2. So inequality (A.22) is always satisfied by induction.

Consequently, Theorem 4.4 is proved when combining (A.22) with the inequality τ ′ ≤

dτ ∗(T )e in Equation( A.21).

Remark A.3. Similarly to the regular Gibbs sampler, the herded Gibbs sampler also has a

burn-in period with geometric convergence rate. After that, the distribution discrepancy is in

the order of O(1/T ), which is faster than the regular Gibbs sampler. Notice that the length

of the burn-in period depends on T , specifically as a function of log(T ).

Remark A.4. Irrationality is not required to prove the convergence on a fully-connected

graph.

Proof. Since τ ∗(T ) is a monotonically increasing function of T , for any T ≥ T ∗+ τ ∗(T ∗), we

can find a number t so that

T = t+ τ ∗(t), t ≥ T ∗.
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Partition the sample sequence S0,T = {X(kN) : 0 ≤ k < T} into two parts: the burn-in period

S0,τ∗(t) and the stable period Sτ∗(t),T . The discrepancy in the burn-in period is bounded by

1 and according to Theorem 4.4, the discrepancy in the stable period is bounded by

dv(P̃ (St,T )− π) ≤ λ

t
.

Hence, the discrepancy of the whole set S0,T is bounded by

dv(P̃ (S0,T )− π) = dv

(
τ ∗(t)

T
P̃ (S0,τ∗(t)) +

t

T
P̃ (Sτ∗(t),T )− π

)
≤ dv

(
τ ∗(t)

T
(P̃ (S0,τ∗(t))− π

)
+ dv

(
t

T
(P̃ (Sτ∗(t),T )− π

)
≤ τ ∗(t)

T
dv(P̃ (S0,τ∗(t))− π) +

t

T
dv(P̃ (Sτ∗(t),T )− π)

≤ τ ∗(t)

T
· 1 +

t

T

λ

t
≤ τ ∗(T ) + λ

T
. (A.24)
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