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Abstract

PixelCNN achieves state-of-the-art results in
density estimation for natural images. Although
training is fast, inference is costly, requiring one
network evaluation per pixel; O(N) for N pix-
els. This can be sped up by caching activations,
but still involves generating each pixel sequen-
tially. In this work, we propose a parallelized
PixelCNN that allows more e�cient inference
by modeling certain pixel groups as condition-
ally independent. Our new PixelCNN model
achieves competitive density estimation and or-
ders of magnitude speedup - O(log N) sampling
instead of O(N) - enabling the practical genera-
tion of 512⇥ 512 images. We evaluate the model
on class-conditional image generation, text-to-
image synthesis, and action-conditional video
generation, showing that our model achieves the
best results among non-pixel-autoregressive den-
sity models that allow e�cient sampling.

1. Introduction
Many autoregressive image models factorize the joint dis-
tribution of images into per-pixel factors:

p(x1:T ) =
TY

t=1

p(xt |x1:t�1) (1)

For example PixelCNN (van den Oord et al., 2016b) uses
a deep convolutional network with carefully designed fil-
ter masking to preserve causal structure, so that all factors
in equation 1 can be learned in parallel for a given image.
However, a remaining di�culty is that due to the learned
causal structure, inference proceeds sequentially pixel-by-
pixel in raster order.
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“A yellow bird with a black head, orange eyes and an orange bill.”

Figure 1. Samples from our model at resolutions from 4 ⇥ 4 to
256⇥ 256, conditioned on text and bird part locations in the CUB
data set. See Fig. 4 and the supplement for more examples.

In the naive case, this requires a full network evaluation
per pixel. Caching hidden unit activations can be used to
reduce the amount of computation per pixel, as in the 1D
case for WaveNet (Oord et al., 2016; Ramachandran et al.,
2017). However, even with this optimization, generation is
still in serial order by pixel.

Ideally we would generate multiple pixels in parallel,
which could greatly accelerate sampling. In the autore-
gressive framework this only works if the pixels are mod-
eled as independent. Thus we need a way to judiciously
break weak dependencies among pixels; for example im-
mediately neighboring pixels should not be modeled as in-
dependent since they tend to be highly correlated.

Multiscale image generation provides one such way to
break weak dependencies. In particular, we can model cer-
tain groups of pixels as conditionally independent given a
lower resolution image and various types of context infor-
mation, such as preceding frames in a video. The basic idea
is obvious, but nontrivial design problems stand between
the idea and a workable implementation.

First, what is the right way to transmit global information
from a low-resolution image to each generated pixel of the
high-resolution image? Second, which pixels can we gen-



Parallel Multiscale Autoregressive Density Estimation

erate in parallel? And given that choice, how can we avoid
border artifacts when merging sets of pixels that were gen-
erated in parallel, blind to one another?

In this work we show how a very substantial portion of the
spatial dependencies in PixelCNN can be cut, with only
modest degradation in performance. Our formulation al-
lows sampling in O(log N) time for N pixels, instead of
O(N) as in the original PixelCNN, resulting in orders of
magnitude speedup in practice. In the case of video, in
which we have access to high-resolution previous frames,
we can even sample in O(1) time, with much better perfor-
mance than comparably-fast baselines.

At a high level, the proposed approach can be viewed as a
way to merge per-pixel factors in equation 1. If we merge
the factors for, e.g. xi and x j, then that dependency is “cut”,
so the model becomes slightly less expressive. However,
we get the benefit of now being able to sample xi and x j in
parallel. If we divide the N pixels into G groups of T pixels
each, the joint distribution can be written as a product of the
corresponding G factors:

p(x1:G
1:T ) =

GY

g=1

p(x(g)
1:T |x

(1:g�1)
1:T ) (2)

Above we assumed that each of the G groups contains ex-
actly T pixels, but in practice the number can vary. In
this work, we form pixel groups from successively higher-
resolution views of an image, arranged into a sub-sampling
pyramid, such that G 2 O(log N).

In section 3 we describe this group structure implemented
as a deep convolutional network. In section 4 we show
that the model excels in density estimation and can produce
quality high-resolution samples at high speed.

2. Related work
Deep neural autoregressive models have been applied to
image generation for many years, showing promise as a
tractable yet expressive density model (Larochelle & Mur-
ray, 2011; Uria et al., 2013). Autoregressive LSTMs
have been shown to produce state-of-the-art performance
in density estimation on large-scale datasets such as Ima-
geNet (Theis & Bethge, 2015; van den Oord et al., 2016a).

Causally-structured convolutional networks such as Pixel-
CNN (van den Oord et al., 2016b) and WaveNet (Oord
et al., 2016) improved the speed and scalability of train-
ing. These led to improved autoregressive models for video
generation (Kalchbrenner et al., 2016b) and machine trans-
lation (Kalchbrenner et al., 2016a).

Non-autoregressive convolutional generator networks have
been successful and widely adopted for image generation
as well. Instead of maximizing likelihood, Generative Ad-

versarial Networks (GANs) train a generator network to
fool a discriminator network adversary (Goodfellow et al.,
2014). These networks have been used in a wide variety of
conditional image generation schemes such as text and spa-
tial structure to image (Mansimov et al., 2015; Reed et al.,
2016b;a; Wang & Gupta, 2016).

The addition of multiscale structure has also been shown
to be useful in adversarial networks. Denton et al.
(2015) used a Laplacian pyramid to generate images in a
coarse-to-fine manner. Zhang et al. (2016) composed a
low-resolution and high-resolution text-conditional GAN,
yielding higher quality 256 ⇥ 256 bird and flower images.

Generator networks can be combined with a trained model,
such as an image classifier or captioning network, to gen-
erate high-resolution images via optimization and sam-
pling procedures (Nguyen et al., 2016). Wu et al. (2017)
state that it is di�cult to quantify GAN performance, and
propose Monte Carlo methods to approximate the log-
likelihood of GANs on MNIST images.

Both auto-regressive and non auto-regressive deep net-
works have recently been applied successfully to image
super-resolution. Shi et al. (2016) developed a sub-pixel
convolutional network well-suited to this problem. Dahl
et al. (2017) use a PixelCNN as a prior for image super-
resolution with a convolutional neural network. Johnson
et al. (2016) developed a perceptual loss function useful
for both style transfer and super-resolution. GAN variants
have also been successful in this domain (Ledig et al., 2016;
Sønderby et al., 2017).

Several other deep, tractable density models have recently
been developed. Real NVP (Dinh et al., 2016) learns
a mapping from images to a simple noise distribution,
which is by construction trivially invertible. It is built
from smaller invertible blocks called coupling layers whose
Jacobian is lower-triangular, and also has a multiscale
structure. Inverse Autoregressive Flows (Kingma & Sal-
imans, 2016) use autoregressive structures in the latent
space to learn more flexible posteriors for variational auto-
encoders. Autoregressive models have also been combined
with VAEs as decoder models (Gulrajani et al., 2016).

The original PixelRNN paper (van den Oord et al., 2016a)
actually included a multiscale autoregressive version, in
which PixelRNNs or PixelCNNs were trained at multiple
resolutions. The network producing a given resolution im-
age was conditioned on the image at the next lower reso-
lution. This work is similarly motivated by the usefulness
of multiscale image structure (and the very long history of
coarse-to-fine modeling).

Our novel contributions in this work are (1) asymptotically
and empirically faster inference by modeling conditional
independence structure, (2) scaling to much higher reso-
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lution, (3) evaluating the model on a diverse set of chal-
lenging benchmarks including class-, text- and structure-
conditional image generation and video generation.

3. Model
The main design principle that we follow in building the
model is a coarse-to-fine ordering of pixels. Successively
higher-resolution frames are generated conditioned on the
previous resolution (See for example Figure 1). Pixels are
grouped so as to exploit spatial locality at each resolution,
which we describe in detail below.

The training objective is to maximize log P(x; ✓). Since the
joint distribution factorizes over pixel groups and scales,
the training can be trivially parallelized.

3.1. Network architecture

Figure 2 shows how we divide an image into disjoint
groups of pixels, with autoregressive structure among the
groups. The key property to notice is that no two adjacent
pixels of the high-resolution image are in the same group.
Also, pixels can depend on other pixels below and to the
right, which would have been inaccessible in the standard
PixelCNN. Each group of pixels corresponds to a factor in
the joint distribution of equation 2.

Concretely, to create groups we tile the image with 2 ⇥ 2
blocks. The corners of these 2⇥2 blocks form the four pixel
groups at a given scale; i.e. upper-left, upper-right, lower-
left, lower-right. Note that some pairs of pixels both within
each block and also across blocks can still be dependent.
These additional dependencies are important for capturing
local textures and avoiding border artifacts.

Figure 3 shows an instantiation of one of these factors as a
neural network. Similar to the case of PixelCNN, at train-
ing time losses and gradients for all of the pixels within
a group can be computed in parallel. At test time, infer-
ence proceeds sequentially over pixel groups, in parallel
within each group. Also as in PixelCNN, we model the
color channel dependencies - i.e. green sees red, blue sees
red and green - using channel masking.

In the case of type-A upscaling networks (See Figure 3A),
sampling each pixel group thus requires 3 network evalua-
tions 1. In the case of type-B upscaling, the spatial feature
map for predicting a group of pixels is divided into contigu-
ous M ⇥ M patches for input to a shallow PixelCNN (See
figure 3B). This entails M2 very small network evaluations,
for each color channel. We used M = 4, and the shallow
PixelCNN weights are shared across patches.

1However, one could also use a discretized mixture of logistics
as output instead of a softmax as in Salimans et al. (2017), in
which case only one network evaluation is needed.

The division into non-overlapping patches may appear to
risk border artifacts when merging. However, this does not
occur for several reasons. First, each predicted pixel is di-
rectly adjacent to several context pixels fed into the upscal-
ing network. Second, the generated patches are not directly
adjacent in the 2K⇥2K output image; there is always a row
or column of pixels on the border of any pair.

Note that the only learnable portions of the upscaling mod-
ule are (1) the ResNet encoder of context pixels, and (2) the
shallow PixelCNN weights in the case of type-B upscaling.
The “merge” and “split” operations shown in figure 3 only
marshal data and are not associated with parameters.

Given the first group of pixels, the rest of the groups at
a given scale can be generated autoregressively. The first
group of pixels can be modeled using the same approach
as detailed above, recursively, down to a base resolution
at which we use a standard PixelCNN. At each scale, the
number of evaluations is O(1), and the resolution doubles
after each upscaling, so the overall complexity is O(log N)
to produce images with N pixels.

3.2. Conditional image modeling

Given some context information c, such as a text descrip-
tion, a segmentation, or previous video frames, we maxi-
mize the conditional likelihood log P(x|c; ✓). Each factor
in equation 2 simply adds c as an additional conditioning
variable. The upscaling neural network corresponding to
each factor takes c as an additional input.

For encoding text we used a character-CNN-GRU as in
(Reed et al., 2016a). For spatially structured data such as
segmentation masks we used a standard convolutional net-
work. For encoding previous frames in a video we used a
ConvLSTM as in (Kalchbrenner et al., 2016b).

4. Experiments
4.1. Datasets

We evaluate our model on ImageNet, Caltech-UCSD Birds
(CUB), the MPII Human Pose dataset (MPII), the Mi-
crosoft Common Objects in Context dataset (MS-COCO),
and the Google Robot Pushing dataset.

• For ImageNet (Deng et al., 2009), we trained a class-
conditional model using the 1000 leaf node classes.

• CUB (Wah et al., 2011) contains 11, 788 images
across 200 bird species, with 10 captions per image.
As conditioning information we used a 32⇥32 spatial
encoding of the 15 annotated bird part locations.

• MPII (Andriluka et al., 2014) has around 25K images
of 410 human activities, with 3 captions per image.
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Figure 2. Example pixel grouping and ordering for a 4 ⇥ 4 image. The upper-left corners form group 1, the upper-right group 2, and so
on. For clarity we only use arrows to indicate immediately-neighboring dependencies, but note that all pixels in preceding groups can
be used to predict all pixels in a given group. For example all pixels in group 2 can be used to predict pixels in group 4. For images, the
pixels in group 1 are copied from a lower-resolution image. For video, they can also be generated given the previous frames.

ResNet

ResNet, Split

Split Merge

Split MergeShallow PixelCNN Merge

A

B

Figure 3. A simple form of causal upscaling network, mapping from a K⇥K image to K⇥2K. The same procedure can be applied in the
vertical direction to produce a 2K ⇥ 2K image. In reference to figure 2, we use this type of network for the group 1 ! 2 factor. For the
1, 2! 3 factor, we apply the same technique but in the vertical direction, and subsample the even columns (starting from zero) to get the
group 3 pixels. For the 1, 2, 3! 4 factor, we first build a 2K ⇥ 2K input image with group 4 pixels zeroed. This is fed through a spatial
dimension-preserving ResNet, from which we subsample the output group 4 pixels. (A) In the simplest version, a deep convolutional
network (in our case ResNet) directly produces the right image from the left image, and merges column-wise. (B) A more sophisticated
version extracts features from a convolutional net, splits the feature map into spatially contiguous blocks, and feeds these in parallel
through a shallow PixelCNN. The result is then merged as in (A). Note that the entire pathway is trained end-to-end in both cases.

We kept only the images depicting a single person,
and cropped the image centered around the person,
leaving us about 14K images. We used a 32 ⇥ 32 en-
coding of the 17 annotated human part locations.

• MS-COCO (Lin et al., 2014) has 80K training images
with 5 captions per image. As conditioning we used
the 80-class segmentation scaled to 32 ⇥ 32.

• Robot Pushing (Finn et al., 2016) contains sequences
of 20 frames of size 64 ⇥ 64 showing a robotic arm
pushing objects in a basket. There are 50, 000 training
sequences and a validation set with the same objects
but di↵erent arm trajectories. One test set involves a
subset of the objects seen during training and another
involving novel objects, both captured on an arm and
camera viewpoint not seen during training.

All models for ImageNet, CUB, MPII and MS-COCO were
trained using RMSprop with hyperparameter ✏ = 1e � 8,
with batch size 128 for 200K steps. The learning rate was

set initially to 1e � 4 and decayed to 1e � 5.

For all of the samples we show, the queries are drawn from
the validation split of the corresponding data set. That
is, the captions, key points, segmentation masks, and low-
resolution images for super-resolution have not been seen
by the model during training.

When we evaluate negative log-likelihood, we only quan-
tize pixel values to [0, ..., 255] at the target resolution, not
separately at each scale. The lower resolution images are
then created by sub-sampling this quantized image.

4.2. Text and location-conditional generation

In this section we show results for CUB, MPII and MS-
COCO. For each dataset we trained type-B upscaling net-
works with 12 ResNet layers and 4 PixelCNN layers, with
128 hidden units per layer. The base resolution at which
we train a standard PixelCNN was set to 4 ⇥ 4.

To encode the captions we padded to 201 characters, then
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A  white large bird with orange legs and gray secondaries and primaries, and a short yellow bill.

KeypointsCaptions Samples

This is a large 
brown bird with a 
bright green head, 
yellow bill and 
orange feet.

With long brown 
upper converts 
and giant white 
wings, the grey 
breasted bird flies 
through the air.

A grey bird with a 
small head and 
short beak with 
lighter grey wing 
bars and a bright 
yellow belly.

Figure 4. Text-to-image bird synthesis. The leftmost column shows the entire sampling process starting by generating 4 ⇥ 4 images,
followed by six upscaling steps, to produce a 256 ⇥ 256 image. The right column shows the final sampled images for several other
queries. For each query the associated part keypoints and caption are shown to the left of the samples.

A woman in black work out clothes is kneeling on an exercise mat.

KeypointsCaptions Samples

A fisherman sitting 
along the edge of a 
creek preparing his 
equipment to cast.

Two teams of 
players are 
competing in a 
game at a gym.

A man in blue pants 
and a blue t-shirt, 
wearing brown 
sneakers, is 
working on a roof.

Figure 5. Text-to-image human synthesis.The leftmost column again shows the sampling process, and the right column shows the final
frame for several more examples. We find that the samples are diverse and usually match the color and position constraints.

fed into a character-level CNN with three convolutional
layers, followed by a GRU and average pooling over time.
Upscaling networks to 8 ⇥ 8, 16 ⇥ 16 and 32 ⇥ 32 shared
a single text encoder. For higher-resolution upscaling net-
works we trained separate text encoders. In principle all
upscalers could share an encoder, but we trained separably
to save memory and time.

For CUB and MPII, we have body part keypoints for birds
and humans, respectively. We encode these into a 32⇥32⇥
P binary feature map, where P is the number of parts; 17

for MPII and 15 for CUB. A 1 indicates the part is visible,
and 0 indicates the part is not visible. For MS-COCO, we
resize the class segmentation mask to 32 ⇥ 32 ⇥ 80.

For comparing and replicating quantitative results, an im-
portant detail is the type of image resizing used. For CUB,
MPII and MS-COCO we used the default TensorFlow bi-
linear interpolation resizing to the final image size, by
calling tf.image.resize images. Using other resizing
methods such as AREA resizing will still result in quality
samples, but di↵erent likelihoods.
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A man sitting at a desk covered with papers.

A young man riding on the back of a brown horse.

A professional baseball player is ready to hit the ball.
A large passenger jet taxis on an 
airport tarmac.

Old time railroad caboose sitting on track with two people 
inside.

Figure 6. Text and segmentation-to-image synthesis. The left column shows the full sampling trajectory from 4 ⇥ 4 to 256 ⇥ 256. The
caption queries are shown beneath the samples. Beneath each image we show the image masked with the largest object in each scene;
i.e. only the foreground pixels in the sample are shown. More samples with all categories masked are included in the supplement.

For all datasets, we then encode these spatial features us-
ing a 12-layer ResNet. These features are then depth-
concatenated with the text encoding and resized with bi-
linear interpolation to the spatial size of the image. If
the target resolution for an upscaler network is higher than
32 ⇥ 32, these conditioning features are randomly cropped
along with the target image to a 32⇥ 32 patch. Because the
network is fully convolutional, the network can still gen-
erate the full resolution at test time, but we can massively
save on memory and computation during training.

Figure 4 shows examples of text- and keypoint-to-bird
image synthesis. Figure 5 shows examples of text- and
keypoint-to-human image synthesis. Figure 6 shows ex-
amples of text- and segmentation-to-image synthesis.

CUB Train Val Test
PixelCNN 2.91 2.93 2.92
Multiscale PixelCNN 2.98 2.99 2.98
MPII Train Val Test
PixelCNN 2.90 2.92 2.92
Multiscale PixelCNN 2.91 3.03 3.03
MS-COCO Train Val Test
PixelCNN 3.07 3.08 -
Multiscale PixelCNN 3.14 3.16 -

Table 1. Text and structure-to image negative conditional log-
likelihood in nats per sub-pixel.

Quantitatively, the Multiscale PixelCNN results are not far
from those obtained using the original PixelCNN (Reed
et al., 2016c), as shown in Table 1. In addition, we in-

creased the sample resolution by 8⇥. Qualitatively, the
sample quality appears to be on par, but with much greater
realism due to the higher resolution.

Based on reviewer feedback, we performed an additional
experiment to study how much sample diversity arises from
the upscaling networks, as opposed to the base PixelCNN.
In the final appendix figure, we show for several 4 ⇥ 4
base images of birds, the resulting upscaled samples. Al-
though the keypoints are fixed so the pose cannot change
substantially, we observe a significant amount of variation
in the textures, background, and support structure (e.g. tree
branches and rocks that the bird stands on). The low-res
sample produced by the base PixelCNN seems to strongly
a↵ect the overall colour palette in the hi-res samples.

4.3. Action-conditional video generation

In this section we present results on Robot Pushing videos.
All models were trained to perform future frame prediction
conditioned on 2 starting frames and also on the robot arm
actions and state, which are each 5-dimensional vectors.

We trained two versions of the model, both versions using
type-A upscaling networks (See Fig. 3). The first is de-
signed to sample in O(T ) time, for T video frames. That
is, the number of network evaluations per frame is constant
with respect to the number of pixels.

The motivation for training the O(T ) model is that previous
frames in a video provide very detailed cues for predicting
the next frame, so that our pixel groups could be condition-
ally independent even without access to a low-resolution
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8x8 → 128x128 16x16 → 128x128 32x32 → 128x128

32x32 → 512x51216x16 → 512x5128x8 → 512x512

Figure 7. Upscaling low-resolution images to 128⇥ 128 and 512⇥ 512. In each group of images, the left column is made of real images,
and the right columns of samples from the model.

image. Without the need to upscale from a low-resolution
image, we can produce “group 1” pixels - i.e. the upper-left
corner group - directly by conditioning on previous frames.
Then a constant number of network evaluations are needed
to sample the next three pixel groups at the final scale.

The second version is our multi-step upscaler used in previ-
ous experiments, conditioned on both previous frames and
robot arm state and actions. The complexity of sampling
from this model is O(T log N), because at every time step
the upscaling procedure must be run, taking O(log N) time.

The models were trained for 200K steps with batch size 64,
using the RMSprop optimizer with centering and ✏ = 1e�8.
The learning rate was initialized to 1e � 4 and decayed by
factor 0.3 after 83K steps and after 113K steps. For the
O(T ) model we used a mixture of discretized logistic out-
puts (Salimans et al., 2017) and for the O(T log N) model
we used a softmax ouptut.

Table 2 compares two variants of our model with the origi-
nal VPN. Compared to the O(T ) baseline - a convolutional
LSTM model without spatial dependencies - our O(T )
model performs dramatically better. On the validation set,
in which the model needs to generalize to novel combina-
tions of objects and arm trajectories, the O(T log N) model
does much better than our O(T ) model, although not as well
as the original O(T N) model.

On the testing sets, we observed that the O(T ) model per-
formed as well as on the validation set, but the O(T log N)
model showed a drop in performance. However, this drop

does not occur due to the presence of novel objects (in fact
this setting actually yields better results), but due to the
novel arm and camera configuration used during testing 2.
It appears that the O(T log N) model may have overfit to
the background details and camera position of the 10 train-
ing arms, but not necessarily to the actual arm and object
motions. It should be possible to overcome this e↵ect with
better regularization and perhaps data augmentation such
as mirroring and jittering frames, or simply training on data
with more diverse camera positions.

The supplement contains example videos generated on the
validation set arm trajectories from our O(T log N) model.
We also trained 64 ! 128 and 128 ! 256 upscalers con-
ditioned on low-resolution and a previous high-resolution
frame, so that we can produce 256 ⇥ 256 videos.

4.4. Class-conditional generation

To compare against other image density models, we trained
our Multiscale PixelCNN on ImageNet. We used type-B
upscaling networks (Seee figure 3) with 12 ResNet (He
et al., 2016) layers and 4 PixelCNN layers, with 256 hidden
units per layer. For all PixelCNNs in the model, we used
the same architecture as in (van den Oord et al., 2016b).
We generated images with a base resolution of 8 ⇥ 8 and
trained four upscaling networks to produce up to 128⇥128
samples.At scales 64 ⇥ 64 and above, during training we
randomly cropped the image to 32 ⇥ 32. This accelerates
training but does not pose a problem at test time because

2From communication with the Robot Pushing dataset author.
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Model Tr Val Ts-seen Ts-novel
O(T) baseline - 2.06 2.08 2.07
O(TN) VPN - 0.62 0.64 0.64
O(T) VPN 1.03 1.04 1.04 1.04
O(T log N) VPN 0.74 0.74 1.06 0.97

Table 2. Robot videos neg. log-likelihood in nats per sub-pixel.
“Tr” is the training set, “Ts-seen” is the test set with novel arm
and camera configuration and previously seen objects, and “Ts-
novel” is the same as “Ts-seen” but with novel objects.

all of the networks are fully convolutional.

Table 3 shows the results. On both 32 ⇥ 32 and 64 ⇥ 64
ImageNet it achieves significantly better likelihood scores
than have been reported for any non-pixel-autoregressive
density models, such as ConvDRAW and Real NVP, that
also allow e�cient sampling.

Of course, performance of these approaches varies consid-
erably depending on the implementation details, especially
in the design and capacity of deep neural networks used.
But it is notable that the very simple and direct approach
developed here can surpass the state-of-the-art among fast-
sampling density models.

Model 32 64 128
PixelRNN 3.86 (3.83) 3.64(3.57) -
PixelCNN 3.83 (3.77) 3.57(3.48) -
Real NVP 4.28(4.26) 3.98(3.75) -
Conv. DRAW 4.40(4.35) 4.10(4.04) -
Ours 3.95(3.92) 3.70(3.67) 3.55(3.42)

Table 3. ImageNet negative log-likelihood in bits per sub-pixel at
32 ⇥ 32, 64 ⇥ 64 and 128 ⇥ 128 resolution.

Interestingly, the model often produced quite realistic bird
images from scratch when trained on CUB, and these sam-
ples looked more realistic than any animal image generated
by our ImageNet models. One plausible explanation for
this di↵erence is a lack of model capacity; a single network
modeling the 1000 very diverse ImageNet categories can
devote only very limited capacity to each one, compared
to a network that only needs to model birds. This sug-
gests that finding ways to increase capacity without slowing
down training or sampling could be a promising direction.

Figure 7 shows upscaling starting from ground-truth im-
ages of size 8⇥8, 16⇥16 and 32⇥32. We observe the largest
diversity of samples in terms of global structure when start-
ing from 8 ⇥ 8, but less realistic results due to the more
challenging nature of the problem. Upscaling starting from
32 ⇥ 32 results in much more realistic images. Here the
diversity is apparent in the samples (as in the data, condi-
tioned on low-resolution) in the local details such as the
dog’s fur patterns or the frog’s eye contours.

Model scale time speedup
O(N) PixelCNN 32 120.0 1.0⇥
O(log N) PixelCNN 32 1.17 102⇥
O(log N) PixelCNN, in-graph 32 1.14 105⇥
O(T N) VPN 64 1929.8 1.0⇥
O(T ) VPN 64 0.38 5078⇥
O(T ) VPN, in-graph 64 0.37 5215⇥
O(T log N) VPN 64 3.82 505⇥
O(T log N) VPN, in-graph 64 3.07 628⇥

Table 4. Sampling speed of several models in seconds per frame
on an Nvidia Quadro M4000 GPU. The top three rows were mea-
sured on 32⇥32 ImageNet, with batch size of 30. The bottom five
rows were measured on generating 64 ⇥ 64 videos of 18 frames
each, averaged over 5 videos.

4.5. Sampling time comparison

As expected, we observe a very large speedup of our model
compared to sampling from a standard PixelCNN at the
same resolution (see Table 4). Even at 32 ⇥ 32 we ob-
serve two orders of magnitude speedup, and the speedup
is greater for higher resolution.

Since our model only requires O(log N) network evalua-
tions to sample, we can fit the entire computation graph
for sampling into memory, for reasonable batch sizes. In-
graph computation in TensorFlow can further improve the
speed of both image and video generation, due to reduced
overhead by avoiding repeated calls to sess.run.

Since our model has a PixelCNN at the lowest resolution,
it can also be accelerated by caching PixelCNN hidden
unit activations, recently implemented b by Ramachandran
et al. (2017). This could allow one to use higher-resolution
base PixelCNNs without sacrificing speed.

5. Conclusions
In this paper, we developed a parallelized, multiscale ver-
sion of PixelCNN. It achieves competitive density estima-
tion results on CUB, MPII, MS-COCO, ImageNet, and
Robot Pushing videos, surpassing all other density models
that admit fast sampling. Qualitatively, it can achieve com-
pelling results in text-to-image synthesis and video gener-
ation, as well as diverse super-resolution from very small
images all the way to 512⇥ 512. Many more samples from
all of our models can be found in the appendix and supple-
mentary material.
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