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Abstract

We argue that when faced with big datasets, learning and inference algorithms should

compute updates using only subsets of data items. We introduce algorithms that use

sequential hypothesis tests to adaptively select such a subset of data points. The sta-

tistical properties of this subsampling process can be used to control the efficiency and

accuracy of learning or inference. In the context of learning by optimization, we test

for the probability that the update direction is no more than 90 degrees in the wrong

direction. In the context of posterior inference using MCMC, we test for the probability
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that our decision to accept or reject a sample is wrong. We experimentally evaluate our

algorithms on a number of models and datasets.

1 Introduction

In a time when data is growing at an exponential rate, computational considerations

play an increasingly central role in training predictive models. Where we used to have

enough time to wait until our learning algorithm had rigorously converged, we may

now need to build the best possible model in some fixed (possibly unknown) amount

of time. As such, in the context of big data, we care about the amount of predictive

accuracy gained per unit of computational time.

Stochastic gradient descent (SGD), in contrast to batch gradient descent (BGD), is

the archetypal example of an algorithm that, when well tuned, has the ability to gain

predictive accuracy quickly per unit of computation. This is easily understood when

imagining a dataset of infinite size: while BGD cannot perform even a single update,

SGD can iterate quickly to a good predictive model without seeing all the data.

SGD exploits the fact that learning problems form a special class of optimization

problems, in that its loss function often involves an average over data points. In each

iteration, SGD randomly selects a mini-batch of one or more data items, and uses the

mean of gradients from the data points in the mini-batch as a cheap approximation to the

true gradient of the loss function. This makes SGD a very efficient learning algorithm.

However, SGD ignores other useful information present in the mini-batch. In particular,

the variance of gradients indicates the redundancy of information conveyed by different
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data points in the mini-batch.

The amount of redundancy depends on the state of the model. When a model is

untrained, most data points will recommend a very similar update for the parameters in

order to improve the model. As an example, imagine learning the mean of a Gaussian

distribution. Far away from convergence, the mean is well outside the hull of the data

points and every data point will recommend an update in roughly the same direction.

But, close to convergence, when the current estimate of the mean is inside the data hull,

data points recommend updates in very different directions and one needs to average

over a larger subset of data points in order to get a clear picture. Thus, partially or un-

trained models have higher data redundancy than converged models (which have zero

redundancy). This notion of redundancy has been defined more formally as the “Learn-

ing Signal to Noise Ratio” (LSNR) in Welling (2014). LSNR measures the amount of

learning signal in a mini-batch of n data points relative to the uncertainty under resam-

pling the mini-batch. This quantity indeed has the intuitive property discussed above

that the LSNR increases if we increase the size of the mini-batch (n) but decreases as

the model gets closer to convergence.

In the first half of the paper, we will exploit these ideas by introducing a sequential

hypothesis test that tests for the probability that the gradient based on the current mini-

batch of data points is more than 90 degrees in the wrong direction. If this probability

is too high, we fail the hypothesis that we are moving within 90 degrees of the correct

update direction and request more data in our mini-batch to increase the accuracy of

our gradient. If we keep the confidence level in this test constant, this naturally leads

to a learning algorithm that automatically increases the mini-batch size and as such
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auto-tunes the hyper-parameters of it’s update schedule.

In the second part of the paper, we show that the same statistical properties of learn-

ing can be applied to improve the efficiency of Bayesian posterior inference when faced

with big datasets. Traditional versions of algorithms such as Markov Chain Monte

Carlo (MCMC) or variational inference, require processing the entire dataset in each

iteration and will not update when confronted with an infinite dataset. This implies

that even inference algorithms should use only subsets of data to make updates. Some

recent progress along these lines has been made, both in the context of variational in-

ference (Hoffman et al., 2013) and MCMC methods (Welling and Teh, 2011). But in

this paper, we will focus only on MCMC algorithms.

MCMC algorithms based on subsets of data may not sample from the correct dis-

tribution. One can decompose the total error (or risk) of some posterior average of

interest into a bias and a variance contribution. The bias results from using a sampling

procedure that samples from the wrong distribution while the variance is caused by ran-

domness of the sampling process. Traditional MCMC algorithms are asymptotically

unbiased but pay a high computational price by using all the data for every update. In

the context of very large datasets and acknowledging that in reality we only have a fi-

nite amount of time to generate a number of samples, this results in a high variance

contribution to the risk. We advocate algorithms that balance bias and variance con-

tributions more intelligently, by allowing procedures that generate lots of samples in a

short amount of computational time, but from a slightly biased distribution.

We develop a fast MCMC algorithm for posterior inference by approximating the

Metropolis-Hastings (MH) test with a sequential hypothesis test. We show that the
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MH test is essentially a decision problem that compares the mean difference in log-

likelihoods of the current and proposed parameter values to a threshold independent

of the data. By estimating this mean using a subset of the data, and also measuring

its variance, we can conduct hypothesis tests to approximate this decision. The test

fails if we do not have enough confidence to make a decision using the current mini-

batch, in which case we add more data to the mini-batch to increase the accuracy of

the comparison. The level of confidence necessary to reach a decision acts as a knob

with which we can control the bias of the algorithm. This algorithm was developed in

our prior work (Korattikara et al., 2014), and a similar method based on concentration

bounds was concurrently proposed in Bardenet et al. (2014).

We emphasize the unified nature of the methods we employ for optimization and

sampling: in both cases we exploit information in the distribution over certain quantities

necessary for learning. In the case of optimization this quantity is the gradient, while

for posterior sampling this quantity is the accept-reject probability of a proposal. In

both cases, we exploit this information to reason about the correct size of the mini-

batch necessary to perform a reliable update. In the case of optimization, we require

just enough data to make sure that the update direction is within 90 degrees of the true

update direction, while for posterior sampling, we require just enough data to make

sure that the confidence in an accept-reject decision is high enough. To make these

decisions, in both cases we rely on (frequentist) sequential hypothesis tests: we make

an update only if we can reject the null hypothesis that there is not enough information

in the mini-batch. If not, we add more data to the mini-batch until we can reject the null

hypothesis with high confidence. In essence, we gauge whether there is enough signal
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in the learning update relative to the subsampling noise. While the philosophy behind

both methods is clearly the same, the details of the convergence analysis cannot be: for

optimization we test for convergence to a point estimate while for posterior sampling

we need to establish convergence to a probability measure.

The rest of the paper is organized as follows. We introduce our sequential test for

speeding up optimization algorithms in 2. Then, we use similar ideas to develop a fast

MCMC sampler in 3. We evaluate our methods on a variety of models and datasets in

section 4 and conclude in section 5.

2 Sequential Tests for Optimization

Many learning problems can be cast as an optimization problem that involves minimiz-

ing a loss function with respect to a set of parameters θ ∈ RD. The loss function is

often defined as an expectation over a dataset DN consisting of N data points, and an

iterative optimization algorithm is used to find the optimal parameters. In each itera-

tion t of the optimization algorithm, a new estimate θt+1 of the optimal parameters is

computed using our current estimate θt and the dataset DN .

Optimization algorithms which process the entire dataset to compute each update

are known as ‘batch’ algorithms. When faced with very large datasets, batch algorithms

are clearly wasteful in terms of computational resources. In early iterations, when we

are far from the solution, we only need a rough direction to move in parameter space

and this can be estimated without looking at every data point in the dataset. We need

more precise updates only when we get closer to the solution.
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In contrast, algorithms such as Stochastic Gradient Ascent/Descent (both of which

will be denoted as SGD henceforth) use only a single data point or a mini-batch of data

points to compute each update. In the initial iterations, SGD is very efficient because

we can compute noisy updates very cheaply. However, the noise level remains high

even when we get close to the solution. Therefore, it is common to use a step size that

is annealed to zero at a certain rate to reduce the effect of noise on the optimization

process. Under certain conditions, it can be shown that this converges to the correct

solution (Robbins and Monro, 1951). A drawback is that the annealing schedule has to

be tuned separately for every optimization problem and dataset.

Instead of reducing the effect of noise by using a decreasing step size, we propose

computing updates using a mini-batch that grows in size over time to reduce the level

of noise itself. Thus, in the early iterations we use a small mini-batch to compute rough

updates, but use larger mini-batches to compute more precise updates as we move closer

to the solution. The advantage of this approach is that we can increase the size of the

mini-batch automatically using a sequential statistical test that measures the precision

of updates computed from the mini-batch.

The sequential test works as follows. First, we quantify the uncertainty in our noisy

update by estimating its distribution under resampling the mini-batch from the complete

dataset. We can then use this to estimate the probability that an update computed from

a mini-batch of the current size is more than 90◦ away from the true update direction.

If this probability is higher than a threshold, we can conclude that the mini-batch size

does not provide the necessary precision required at the current stage of optimization.

In this case, we reject the update and increase the size of the mini-batch until we have
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enough confidence to pass the test.

Similar statistical tests have previously been used to speed-up optimization algo-

rithms such as Non-Negative Matrix Factorization (Korattikara et al., 2011), L1 regu-

larized problems (Boyles et al., 2011), logistic regression and Least Absolute Deviation

regression (Korattikara, 2011). These tests model the distribution of the update un-

der resampling the mini-batch with replacement. In contrast, we use sampling without

replacement which allows us to obtain updates of the same precision using less data.

Our ideas can be used to speed up any iterative optimization algorithm if we can esti-

mate the distribution of the updates. Fortunately, in many machine learning algorithms,

the update involves an average over a large number of data points. Therefore, according

to the central limit theorem, the distribution of an update computed from a large enough

mini-batch is approximately normal and can be easily estimated. In this paper, we will

illustrate our ideas on updates of the form θt+1 ← uN = (AT
NAN)−1(AT

NbN) where

AN = [a1, ..aN ]T , bN = [b1, ..bN ]T and {ai, bi} are functions of the the ith observation

{xi, yi} and our current parameter estimate θt. Algorithms with updates of this form

are known as Iterative Reweighted Least Squares (IRLS) and are used for solving a

variety of problems such as parameter estimation in Generalized Linear Models (Mc-

Cullagh and Nelder, 1999), Lp-norm regression (Gentle, 2007), Principal Component

Analysis (Roweis, 1998) and Non-Negative Matrix Factorization (Kim and Park, 2008).

2.1 Tests for IRLS type algorithms

The update vector uN = (AT
NAN)−1(AT

NbN) can be interpreted as the least squares

estimator, computed from N observations, of the parameters u in a (fictional) linear
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regression model bi = aTi u + ζi, where ζ is an error term. Since computing uN requires

O(N) time and is impractical for very large datasets, let us consider approximating uN

with an estimate un computed from a mini-batch of n data points:

un = (AT
nAn)−1(AT

nbn) =

(
1

n

n∑
i=1

aiaTi

)−1(
1

n

n∑
i=1

aibi

)
(1)

If we consider {ai, bi} as independent samples from a data generating process (or an

infinite dataset) and the following assumptions hold:

1. No multicollinearity: Qaa = E[aaT ] is positive definite

2. Exogeneity: E[ζ|a] = 0

3. Homoscedasticity: Var[ζ|a] = ω2

then un can be shown to be asymptotically (as n → ∞) normal (Verbeek, 2000) under

resampling the mini-batch from its generating process. We have:

un ∼ N
(

u,
Q−1

aa ω
2

n

)
(2)

However, we are interested in the distribution of un under re-sampling the mini-batch

without replacement from a dataset of fixed size N . This can be obtained by applying a

finite population correction factor (Isserlis, 1918) to Eqn. (2):

un ∼ N (uN ,Σ) where Σ =
Q−1

aa ω
2

n

(
1− n− 1

N − 1

)
(3)

Now, consider the probability that an update computed from the mini-batch (un − θt)

is more than 90 degrees away from the true update (uN − θt). This is, by definition:

δ =

∫
1 [〈un − θt,uN − θt〉 ≥ 0] p(un)dun (4)
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Figure 1: a) Contours show the distribution of the update vector. The arrow is the

true update direction. The shaded region represents updates which are more than 90◦

away from the true update direction b) The marginal distribution of the update along

the true update direction is shown. This distribution is N (µ, σ2) where µ = ‖uN − θt‖

and σ2 = uΣu. The probability of falling in the shaded region can be calculated as

Φ
(

0−µ
σ

)
.

where 1 is the indicator function and p(un) is the distribution of un defined in (3).

If this probability is high, the mini-batch update un is not very reliable. To compute

this probability (see Figure 1), we first shift the origin to θt and compute the marginal

distribution of p(un) along the direction of the true update uN − θt. This distribution is

N (µ, σ2) where:

µ = ‖uN − θt‖ (5a)

σ =
√

uTΣu where u =
uN − θt
‖uN − θt‖

(5b)

From this we can easily compute:

δ = Φ

(
0− µ
σ

)
(6)
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where Φ is the cdf of the standard normal distribution. If δ is below a threshold ε, we

accept the update and set θt+1 ← un. If not, we decrease δ by adding more data points

and test again. This procedure will terminate because when the mini-batch grows to

include all data points, σ = 0 and therefore δ = 0 ≤ ε. Since evaluating Φ(.) for

every hypothesis test is expensive, we compute ε∗ = Φ−1(ε) once and thereafter test

µ > −σε∗ to accept the update.

We use the following estimators for the parameters of the distribution p(un):

ûN = un =

(
n∑
i=1

aiaTi

)−1( n∑
i=1

aibi

)
(7a)

Q̂aa =
An
n− 1

where An =
n∑
i=1

aiaTi (7b)

ω̂2 =
en

n− 1
where en =

n∑
i=1

(bi − uTnai)2 (7c)

Σ̂ =
Q̂−1
aa ω̂

2

n

(
1− n− 1

N − 1

)
=
A−1
n en
n

(
1− n− 1

N − 1

)
(7d)

When the size of the mini-batch is increased, we need an efficient way to update these

estimators without recomputing them from scratch. The Recursive Least Squares es-

timator, based on the Shermann-Morrison formula, can be used to do this if the mini-

batch grows one data point at a time. The updates are:

un ← un−1 + (bn − aTnun−1)
A−1
n−1an

1 + anA−1
n−1an

(8a)

A−1
n ← A−1

n−1 −
A−1
n−1anaTnA−1

n−1

1 + anA−1
n−1an

(8b)

en ← en−1 + (bn − aTnun)(bn − aTnun−1) (8c)

The complete test is given in Algorithm 1. In our implemetation, we conduct the first

test after seeing N0 data points and subsequent tests every time the mini-batch grows

by Ninc data points. We could also consider testing at increasingly larger intervals.
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Algorithm 1 Sequential Test for Optimization
Require: θt, DN , ε, N0, Ninc

Ensure: θt+1

1: ε∗ ← Φ−1(ε)

2: Initialize A0 ← 0, B0 ← 0

3: for n = 1→ N do

4: Compute an, bn from θt, xn, yn {problem specific}

5: if n ≤ N0 then

6: An ← An−1 + anaTn , Bn ← Bn−1 + anbn

7: end if

8: if n = N0 then

9: Compute A−1
n and set un ← A−1

n Bn

10: en =
∑n

i=1(uTnai − bi)2

11: end if

12: if n > N0 then

13: Update un, A−1
n and en as in Eqn. 8

14: end if

15: if n ≥ N0 and (n−N0) mod Ninc = 0 then

16: µ̂← ‖un − θt‖, û← un−θt
‖un−θt‖ , Σ̂← A−1

n en
n

(
1− n−1

N−1

)
, σ̂ ←

√
û
T
Σ̂û

17: if µ̂ > −σ̂ε∗ then

18: break

19: end if

20: end if

21: end for

22: θt+1 ← un 12



Our algorithm can significantly outperform batch algorithms (see section 4.1), be-

cause we use only just enough data required to confidently move in the correct direction.

While our algorithm and SGD are comparable in terms of performance (section 4.1),

an important advantage over SGD is that the main parameter of our algorithm, ε, is in-

terpretable: ε is an upper-bound on the probability of obtaining a significantly different

update direction if the update were to be computed from a different random mini-batch

of the current size. Thus, ε can be set independent of the particular optimization prob-

lem or dataset at hand. In contrast, the parameters for tuning the annealing schedule in

SGD have no intuitive interpretation and have to be tuned separately for each optimiza-

tion problem and/or dataset, using many expensive trial runs.

3 Sequential Tests for Bayesian Posterior Sampling

Similar tests can be used to perform approximate Bayesian posterior inference with very

large datasets. Given a datasetDN consisting ofN independent observations {x1, ...xN}

which we model using a distribution p(xi;θ) parameterized by θ ∈ RD, and a prior

distribution ρ(θ), we are interested in the posterior distribution S0(θ) = p(θ|DN) ∝

ρ(θ)
∏N

i=1 p(xi;θ), or more specifically, in expectations computed with respect to this

posterior distribution e.g. average prediction on test data. Usually, these expectations

cannot be computed analytically and one has to resort to sampling or variational meth-

ods to estimate them. Sampling methods estimate the expectation I = 〈f〉S0 using an

empirical average Î = 1
T

∑T
t=1 f(θt) where [θ1...θT ] are T samples generated from S0.

Markov Chain Monte Carlo (MCMC) is a popular sampling method that can be used
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to generate samples from any distribution S0 by forward simulating a Markov chain

designed to have stationary distribution S0. A Markov chain with a given stationary

distribution can be constructed using the Metropolis-Hastings algorithm (Metropolis

et al., 1953), which uses the following rule for transitioning from the current state θt to

the next state θt+1:

1. Draw a candidate state θ′ from a proposal distribution q(θ′|θt)

2. Compute the acceptance probability:

Pa = min

[
1,
S0(θ′)q(θt|θ′)
S0(θt)q(θ

′|θt)

]
(9)

3. Draw u ∼ Uniform[0, 1].

4. If u < Pa set θt+1 ← θ′, otherwise set θt+1 ← θt.

Following this rule ensures that the stationary distribution of the Markov chain is S0.

The bias of the MCMC estimator is E[Î − I] = 0 and its variance is E[Î − E[Î]]2 ≈

σ2
f,S0τ/T , where σ2

f,S0 is the variance of f with respect to S0 and τ is the integrated auto-

correlation time. Here the expectations are taken with respect to multiple runs of the

Markov chain. Unfortunately, for Bayesian posterior sampling, S0 involves a product

over N likelihood terms. Therefore, for very large datasets, computing the acceptance

probability required by the Metropolis-Hastings test is very expensive and limits the

number of samples that can be drawn in a reasonable amount of computational time.

This results in Î having too high a variance to be useful.

However, if we can allow a small bias in the stationary distribution, we do not have

to compute the posterior distribution exactly in each step and can therefore speed-up
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MCMC. Thus, we will use samples from a distribution Sε instead of S0 to compute

expectations with respect to S0. Here ε is a knob that controls the amount of bias in

Sε. If we increase ε, Î will be more biased, but its variance will be low because we

can draw a large number of samples in a given amount of time. As we decrease ε, the

bias reduces. But since we have to compute the posterior distribution more accurately

in each iteration, the computational time, and therefore the variance, increases.

To study this trade-off between bias and variance in approximate MCMC algo-

rithms, we can look at the risk of Î . The risk is R = E[(Î − I)2], i.e. the expected

squared error, where the expectation is taken over multiple runs of the Markov chain. It

is easy to show that the risk can be decomposed asR = B2 +V , whereB is the bias and

V is the variance. If we ignore burn-in, we can further show thatB = 〈f〉Sε−〈f〉S0 and

V = σ2
f,Sετ/T . The optimal setting of ε that minimizes the risk depends on the amount

of computational time available. If we have an infinite amount of computational time,

we should set ε to 0. Then there is no bias, and the variance can be brought down to

0 because we can collect an infinite number of samples. This is the traditional MCMC

setting. However, given a finite amount of computational time, this setting is not op-

timal. It is better to tolerate a small amount of bias in the stationary distribution if it

allows us to reduce variance quickly by drawing a large number of samples.

There are at least two ways to design approximate MCMC samplers. One way is to

use a cheap proposal distribution q that has an acceptance rate close to 1, and then accept

every proposed state without conducting the expensive MH test. This method was used

recently to develop efficient sampling algorithms such as Stochastic Gradient Langevin

Dynamics (Welling and Teh, 2011) and its successors (Ahn et al., 2012; Patterson and
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Teh, 2013; Chen et al., 2014; Ding et al., 2014). Another idea is to approximate the

MH test directly using less data. In section 3.1, we describe a way of doing this using

a sequential hypothesis test we developed in Korattikara et al. (2014). Moreover, these

two approaches can be easily combined so that we have an efficient proposal distribution

as well as an efficient accept/reject test (see Section 4.2.4).

3.1 Approximate sampling using sequential Metropolis-Hastings

To approximate the Metropolis-Hastings test, we first frame it as a statistical decision

problem. First, note that steps 2 and 3 of the MH test can be interchanged. Since u

is less than 1, instead of comparing u to Pa, we can compare it directly to the ratio

S0(θ′)q(θt|θ′)
S0(θt)q(θ

′|θt) . In the case of Bayesian posterior sampling, we compare:

u ≷
ρ(θ′)

∏N
i=1 p(xi;θ′)q(θt|θ′)

ρ(θt)
∏N

i=1 p(xi;θt)q(θ′|θt)
(10)

Taking a log on both sides and rearranging, we see that the above comparison is

equivalent to comparing µ ≷ µ0 where:

µ =
1

N

N∑
i=1

li where li = log p(xi;θ
′)− log p(xi;θt) and

µ0 =
1

N
log

[
u
ρ(θt)q(θ

′|θt)
ρ(θ′)q(θt|θ′)

]
(11)

If µ > µ0, we accept the proposal and set θt+1 ← θ′. If µ ≤ µ0, we reject the

proposal and set θt+1 ← θt. This reformulation of the MH test makes it very easy to

frame it as a statistical hypothesis test: Given µ0 and a random sample {l1...ln} drawn

without replacement from the population {l1...lN}, can we confidently decide whether

the population mean µ is greater than or less than the threshold µ0? The answer to this
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depends on the precision in the random sample. If the difference between the sample

mean l̄ and µ0 is significantly greater than the standard deviation s of l̄, we can accept

or reject the proposal confidently. If not, we should draw more data to increase the

precision of l̄ (reduce s) till we have enough evidence to make a decision.

More formally, we test the null hypothesisH0 : µ = µ0 vs the alternateH1 : µ 6= µ0.

To do this, we proceed as follows: We compute the sample mean l̄ and the sample

standard deviation sl. Then the standard deviation of l̄ can be calculated as

s =
sl√
n

√
1− n− 1

N − 1
(12)

where
√

1− n−1
N−1

, the finite population correction term, is applied because we are draw-

ing the subsample without replacement from a finite-sized population. Then, we com-

pute the test statistic:

t =
l̄ − µ0

s
(13)

If n is large enough for the central limit theorem (CLT) to hold, the test statistic

t follows a standard Student-t distribution with n − 1 degrees of freedom if the null

hypothesis is true. Then, we compute the p-value δ = 1 − φn−1(|t|) where φn−1(.) is

the cdf of the standard Student-t distribution with n − 1 degrees of freedom. If δ < ε

we can reject the null hypothesis, i.e. we have enough precision in the sample to make

a decision. In this case, if l̄ > µ0, we accept the proposal, otherwise we reject it. If

we fail to reject the null hypothesis, we draw more data to reduce the uncertainty, s,

in the sample mean l̄. We keep drawing more data until we have enough precision

to make a decision. Note, that this procedure will terminate because when we have

used all the available data, i.e. n = N the standard deviation s is 0, the sample mean

l̄ = µ and δ = 0 < ε. So, in this case we will make the same decision as the original
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MH test would make. Pseudocode for our test is shown in Algorithm 2 (here we have

assumed that the total number of data points is divisible by the size of the mini-batch

for simplicity).

The advantage of our method is that we can often make confident decisions with

n � N data points and save on computation. Although we introduce a small bias

in the stationary distribution, we can use the computational time we save to draw more

samples and reduce variance. The bias-variance trade-off can be controlled by adjusting

the knob ε. When ε is high, we make decisions without sufficient evidence and introduce

a high bias. As ε→ 0, we make more accurate decisions but are forced to examine more

data which results in high variance.

Theoretical analysis of our method can be found in Korattikara et al. (2014), Chen

et al. (2015), Alquier et al. (2014) and Pillai and Smith (2014). In particular, Korat-

tikara et al. (2014) and Chen et al. (2015) showed that the error of the approximate

Markov chain transition kernel is controlled by ε and always diminishes as ε → 0 with

or without the condition respectively that the central limit theorem holds. Pillai and

Smith (2014) further proved that the approximate Markov chain is uniformly ergodic

for any sufficiently small ε under regular conditions for the exact Markov chain, and the

stationary distribution of the approximate chain Sε → S0 as ε→ 0.

Bardenet et al. (2014) concurrently developed a similar approach which uses con-

centration bounds to decide if the mini-batch has the required precision, in contrast to

the CLT based confidence intervals that we use. This makes their approach more robust

in cases where the CLT assumptions are violated. But when the CLT assumptions do

hold, they show that their approach uses more data to reach an accept/reject decision
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Algorithm 2 Approximate MH test
Require: θt, θ′, ε, m, XN

Ensure: accept

1: Initialize estimated means l̄← 0 and l̄2 ← 0

2: Initialize n← 0

3: Draw u ∼ Uniform[0,1]

4: Compute µ0 ← 1
N

log
[
uρ(θt)q(θ′|θt)
ρ(θ′)q(θt|θ′)

]
,

5: done← false

6: while not done do

7: Draw mini-batch Xm of size m without replacement from XN

8: Set XN ← XN \ Xm

9: Update l̄ and l̄2 using Xm.

10: n← n+m

11: Update estimated standard deviation s←
√

l̄2−(l̄)2

n−1

(
1− n−1

N−1

)
12: Update student-t statistic t← l̄−µ0

s

13: Update p-value δ ← 1− φn−1(|t|)

14: if δ < ε then

15: accept← true if l̄ > µ0 and false otherwise

16: done← true

17: end if

18: end while
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than our test. A related method was also proposed in Singh et al. (2012), where the

factors of a graphical model are sub-sampled to compute fixed width confidence inter-

vals for the log-likelihood. These ideas can also be used to speed up slice sampling

algorithm as shown in DuBois et al. (2014).

4 Experiments

4.1 Optimization

The threshold for passing the hypothesis test, ε was set to 0.01 for all algorithms and

datasets. The first hypothesis test is conducted after N0 data points are in the mini-

batch and subsequent tests are performed every time the mini-batch grows by Ninc data

points. Both N0 and Ninc were set to 1/1000th the size of the dataset. We compare

our hypothesis testing method to both the batch algorithm where the whole dataset is

used in every iteration and Stochastic Gradient Ascent/Descent (both of which we will

denote by SGD) where only one data point is used per iteration. For SGD, the step size

was annealed as C1(C2 + t)−C3 . We tried different sets of values for C1, C2, C3 and

only plot results from the set that gave the best performance on test data.

4.1.1 Least Absolute Deviation Regression

We first apply our hypothesis testing method to optimizing the parameters in a Least

Absolute Deviation regression model. Given predictors xi and targets yi, the goal is to

minimize the absolute error in our predictions:

min
θ

N∑
i=1

|yi − θTxi| (14)

20



This can be solved by an Iterative Reweighted Least Squares (IRLS) type algorithm

where the weight of the ith data point is wi = 1√
|yi−θTt xi|

. Thus we have the following

update rule: θt+1 ← (ATA)−1(ATb) where ai = wixi and bi = wiyi. In Figure 2 we

compare our hypothesis testing algorithm to the batch algorithm and SGD on the Mil-

lion Song Dataset (Bertin-Mahieux et al., 2011). The goal is to predict the release year

of a song from 90 audio features and we use the version of the dataset available from

the UCI machine learning repository (Bache and Lichman, 2013). There are 463,715

examples in the training set and 51,630 in the test set. For SGD, we obtained the best

results with C1 = 0.01, C2 = 1 and C3 = 0.5.
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Figure 2: Test error as a function of time for LAD regression on the Million Song

Dataset.

4.1.2 Logistic Regression

Next, we apply our method to learning the parameters in a logistic regression model

using an IRLS algorithm. Using the definitions wi =
√
ri(1− ri), and ri = (1 +
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exp(−θTt xi))−1, the update rule is θt+1 ← (ATA)−1(ATb) with ai = wixi and bi =

wixTi θt + yi−ri
wi

. In Figure 3, we compare our hypothesis testing algorithm to the batch

algorithm and SGD on the MNIST dataset. We train a classifier for detecting the digit

3 vs all others. For training we used a version of the Infinite dataset with 8.1 Million

images available from Loosli et al. (2007). For testing, we used the standard MNIST test

set with 10,000 data points. Each image has 784 pixels. We removed pixels that were

constant across all images in the training set and we standardize the data by subtracting

the mean and dividing by the standard deviation. Finally, we used PCA to reduce the

dimensionality to 50. For SGD, we obtained the best results with C1 = 1, C2 = 10 and

C3 = 0.7.
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Figure 3: Test log-likelihood as a function of time for logistic regression on the MNIST

dataset.
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4.1.3 Analysis

We see that on both problems, our algorithm significantly outperforms the batch al-

gorithm by using only the amount of data required at each stage of the optimization.

Although SGD slightly outperforms our method, our algorithm has an automatic an-

nealing schedule which enables us to use the same parameters across various algorithms

and datasets, whereas we need to carefully tune the parameters of the learning schedule

in SGD. Similar results were reported in Boyles et al. (2011).

4.2 Sampling

4.2.1 Random Walk - Logistic Regression

We first test our method using a random walk proposal q(θ′|θt) = N (θt, σ
2
RW ). Al-

though the random walk proposal is not efficient, it is very useful for illustrating our

algorithm because the proposal does not contain any information about the target distri-

bution, unlike Langevin or Hamiltonian methods. So, the responsibility of converging

to the correct distribution lies solely with the MH test. Also since q is symmetric, it

does not appear in the MH test and we can use µ0 = 1
N

log [uρ(θt)/ρ(θ′)].

The target distribution in this experiment was the posterior for a logistic regression

model trained on the MNIST dataset for classifying digits 7 vs 9. The dataset consisted

of 12214 data points and we reduced the dimensionality from 784 to 50 using PCA. We

chose a zero mean spherical Gaussian prior with precision = 10, and set σRW = 0.01 to

give an acceptance rate ≈ 0.5.

In Figure 4(a), we show the percentage of data used (solid blue line) and the per-
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 ε =0.00, T = 75484

ε =0.01, T = 133069

ε =0.05, T = 200672

ε =0.10, T = 257897

ε =0.20, T = 422978

(b)

Figure 4: a) Percentage of data (solid blue line) used and percentage of wrong accept-

reject decisions (dashed red line) as a function of ε. b) Average Risk in mean prediction

of 2037 test points vs wall clock time for different values of ε. T denotes the total

number of samples collected in 400 secs. Results are for a random walk proposal on a

logistic regression model trained on the MNIST dataset.

centage of wrong decisions (dashed red line) as a function of ε. The amount of data

required drops off very fast as ε is increased even though the error does not increase

much. Note that the setting ε = 0 corresponds to the exact MH algorithm.

In Fig. 4(b), we show how the logarithm of the risk in estimating the mean prediction

on test data decreases as a function of wall clock time. To calculate the risk, we first

estimate the true mean prediction using a long run of Hybrid Monte Carlo. Then, we

compute multiple estimates of the mean prediction using our approximate algorithm

and obtain the risk as the mean squared error in these estimates. We plot the average

risk of 2037 data points in the test set. Since the risk R = B2 + V = B2 + σ2f
T

, we

expect it to decrease as a function of time until the bias dominates the variance. The

figure shows that even after collecting a lot of samples, the risk is still dominated by the
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variance and the minimum risk is obtained with ε > 0.
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Figure 5: Marginals θ1 vs θt for ε = 0 and ε = 0.01 at different values of wall clock

time. The blue curve shows the true marginal obtained using a long run of Hybrid Monte

Carlo. The red curve shows marginals obtained by running the random walk algorithm

3 times. Results are for a random walk proposal on a logistic regression model trained

on the MNIST dataset.

In Figure 5, we show marginals of θ1 vs θ2 for ε = 0 and ε = 0.01 at different

values of wall clock time. The red curves are marginals for 3 different runs of the

random walk algorithm whereas the blue curve shows the true marginal obtained from

a long run of Hybrid Monte Carlo. At T = 50 sec, the exact MH algorithm ε = 0 has

still not completed burn-in. Our algorithm with ε = 0.01 is able to accelerate burn-

in because it can collect more samples in a given amount of time. Theoretically, as

more computational time becomes available the exact MH algorithm will catch up with

(and eventually outperform) our algorithm, because the exact MH algorithm is unbiased

unlike ours. But the bias is hardly noticeable in this example and the error is dominated
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by the variance even after collecting around 100K samples.

4.2.2 Random Walk on Stiefel Manifold - Independent Component Analysis

Next, we use our algorithm to sample from the posterior distribution of the unmixing

matrix in Independent Component Analysis (ICA) (Hyvärinen and Oja, 2000). When

using prewhitened data, the unmixing matrix W ∈ RD×D is constrained to lie on the

Stiefel manifold of orthonormal matrices. We choose a prior that is uniform over the

manifold. We model the data as p(x|W ) = |det(W )|
∏D

j=1

[
4 cosh2(1

2
wTj x)

]−1 where

wj are the rows of W . Since the prior is zero outside the manifold, the same is true for

the posterior. Therefore we use a random walk on the Stiefel manifold as a proposal

distribution (Ouyang, 2008) and tuned the step size to give an acceptance rate ≈ 0.5.

Since this is a symmetric proposal distribution, it does not appear in the MH test and

we can use µ0 = 1
N

log [u].

To perform a large scale experiment, we created a synthetic dataset by mixing 1.95

million samples of 4 sources: (a) a Classical music recording (b) street / traffic noise

(c) & (d) 2 independent Gaussian sources. To measure the correctness of the sampler,

we measure the risk in estimating I = Ep(W |X) [dA(W,W0)] where the test function

dA is the Amari distance (Amari et al., 1996) and W0 is the true unmixing matrix.

We computed the ground truth using a long run (T = 100K samples) of the exact MH

algorithm. Then we ran each algorithm 10 times, each time for ≈ 6400 secs. We

calculated the risk by averaging the squared error in the estimate from each Markov

chain, over the 10 chains. This is shown in Fig. 6. Note that even after 6400 secs the

variance dominates the bias, as evidenced by the still decreasing risk, except for the
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most biased algorithm with ε = 0.2. Also, the lowest risk at 6400 secs is obtained with

ε = 0.1 and not the exact MH algorithm (ε = 0). But we expect the exact algorithm to

outperform all the approximate algorithms if we were to run for an infinite time.
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Figure 6: Risk in mean of Amari distance for the ICA model.

4.2.3 Reversible Jump - Variable selection in Logistic Regression

Now, we apply our MH test to variable selection in a logistic regression model using the

reversible jump MCMC algorithm of Green (1995). We use a model that is very similar

to the Bayesian LASSO model for linear regression described in Chen et al. (2011).

Specifically, given D input features (covariates), our parameter θ = {β, γ} where β is a

D dimensional vector of regression coefficients and γ is a D dimensional binary vector

that indicates whether a particular feature is included in the model or not. The prior we

choose for β is p(βj|γ, ψ) = 1
2ψ

exp
{
− |βj |

ψ

}
if γj = 1. If γj = 0, βj does not appear in

the model. Here ψ is a shrinkage parameter that pushes βj towards 0, and we choose a

prior p(ψ) ∝ 1/ψ. We also place a right truncated Poisson prior on γ as in Chen et al.
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(2011) to control the size of the model, k =
∑D

j=1 γj:

p(γ|λ) ∝ λk(
D
k

)
k!

(15)

The extra
(
D
k

)
factor appears because there are

(
D
k

)
different models of size k. The

likelihood of the data is:

p(yN |XN , β, γ) =
N∏
i=1

[
sigm(βTxi)

yi(1− sigm(βTxi)
(1−yi)

]
(16)

In the above, sigm(z) = (1 + exp(−z))−1 is the sigmoid function. We will denote this

likelihood by lN(β, γ). Then, the posterior distribution after analytically integrating out

ψ is:

p(β, γ|XN , yN , λ) ∝ lN(β, γ)‖β‖−k1 λkB(k,D − k + 1) (17)

where B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt is the beta function. We do not analytically in-

tegrate out λ, but instead use it as a knob to control the size of the model. We use

the same proposal distribution as in Chen et al. (2011) which is a mixture of 3 type of

moves that are picked randomly in each iteration: an update move, a birth move and a

death move. The update move is the usual MCMC move which involves changing the

parameter vector β without changing the model γ. Specifically, we randomly pick an

active component j : γj = 1 and set βj = βj + η where η ∼ N (0, σupdate). The birth

move involves (for k < D) randomly picking an inactive component j : γj = 0 and

setting γj = 1. We also propose a new value for βj ∼ N (0, σbirth). The birth move is

paired with a corresponding death move (for k > 1) which involves randomly picking

an active component j : γj = 1 and setting γj = 0. The corresponding βj is discarded.

The probabilities of picking these moves p(γ → γ′) is the same as in Chen et al. (2011).

The value of µ0 used in the MH test for different moves is given below.
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1. Update move:

µ0 =
1

N
log

[
u
‖β‖−k1

‖β′‖−k1

]
(18)

2. Birth move:

µ0 =
1

N
log

[
u
‖β‖−k1 p(γ → γ′)N (βj|0, σbirth)(D − k)

‖β′‖−(k+1)
1 p(γ′ → γ)λk

]
(19)

2. Death move:

µ0 =
1

N
log

[
u

‖β‖−k1 p(γ → γ′)λ(k − 1)

‖β′‖−(k−1)
1 p(γ′ → γ)N (βj|0, σbirth)(D − k + 1)

]
(20)

For more details see Chen et al. (2011).
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Figure 7: Variable selection using Reversible jump MCMC: Risk in mean prediction on

test data for different values of ε.

We applied this to the MiniBooNE dataset from the UCI machine learning reposi-

tory. Here the task is to classify electron neutrinos (signal) from muon neutrinos (back-

ground). There are 130,065 data points with 50 features to which we add a constant

feature of 1’s. Around 28% of the examples are in the positive class. We randomly

split the data into a training (80%) and testing (20%) set. First, to compute ground

truth, we collected T=400K samples using the exact reversible jump algorithm. Then,
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we ran different algorithms with ε = 0, ε = 0.01, ε = 0.05 and ε = 0.1 for around

3500 seconds. We plot the risk in mean prediction on test data (estimated from 10

Markov chains) in Figure 7 . Again we see that the lowest risk is obtained with ε > 0.

We also plot the marginal posterior probability of including a feature in the model, i.e.

p(γj = 1|XN , yN , λ) in Figure 8.

The acceptance rates for the birth/death moves starts off at ≈ 20% but dies down

to ≈ 2% once a good model is found. The acceptance rate for update moves is kept

at ≈ 50%. The model also suffers from local minima. For the plot in Figure 7, we

started with only one variable and we ended up learning models with around 12 features,
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giving a classification error ≈ 15%. But, if we initialize the sampler with all features

included and set β to the MAP value, we learn models with around 45 features, but

with a lower classification error ≈ 10%. Both the exact reversible jump algorithm

and our approximate version suffer from this problem. We should bear this in mind

when interpreting “ground truth”. We can, however, see that when initialized with the

same values, we obtain similar results with the approximate algorithm and the exact

algorithm.

4.2.4 Stochastic Gradient Langevin Dynamics

Finally, we apply our method to Stochastic Gradient Langevin Dynamics (Welling and

Teh, 2011). In each iteration, we randomly draw a mini-batch Xn of size n, and propose

θ′ ∼ q(.|θ,Xn) where:

q(.|θ,Xn) = N

(
θ +

α

2
∇θ

{
N

n

∑
x∈Xn

log p(x|θ) + log ρ(θ)

}
, α

)
(21)

Every proposed state θ′ is accepted without conducting any MH test. Since the accep-

tance rate approaches 1 as α goes to 0, we can keep the bias under control by keeping α

small. However, we have to use a reasonably large α to keep the mixing rate high. This

can be problematic for some distributions, because SGLD relies solely on gradients of

the log density and it can be easily thrown off track by large gradients in low density

regions, unless α ≈ 0.

As an example, consider an L1-regularized linear regression model. Given a dataset

{xi, yi}Ni=1 where xi are predictors and yi are targets, we use a Gaussian error model

p(yi|xi, θ) ∝ exp
{
−λ

2
(yi − θTxi)2

}
and choose a Laplacian prior for the parameters

p(θ) ∝ exp(−λ0‖θ‖1). For pedagogical reasons, we will restrict ourselves to a toy

31



version of the problem where θ and x are one dimensional. We use a synthetic dataset

with N = 10000 data points generated as yi = 0.5xi + ξ where ξ ∼ N (0, 1/3). We

choose λ = 3 and λ0 = 4950, so that the prior is not washed out by the likelihood. The

posterior density and the gradient of the log posterior are shown in Figures 9(a) and

9(b) respectively.

The empirical histogram of 100000 samples obtained by running SGLD with α =

5 × 10−6 is plotted using red bars in Figure 9(c). The effect of omitting the MH test

is quite severe in this case. When the sampler reaches the mode of the distribution, the

Langevin noise occasionally throws it into the valley to the left, where the gradient is

very high. The high gradient propels the sampler far off to the right, after which it takes

a long time to find its way back to the mode. However, if we had used an MH accept-

reject test, most of these troublesome jumps into the valley would be rejected because

the density in the valley is much lower than that at the mode.

To apply an MH test, note that the SGLD proposal q(θ′|θ) can be considered a

mixture of component kernels q(θ′|θ,Xn) corresponding to different mini-batches. The

mixture kernel will satisfy detailed balance with respect to the posterior distribution if

each of the component kernels q(θ′|θ,Xn) satisfy detailed balance. Thus, we can use an

MH test with:

µ0 =
1

N
log

[
u
ρ(θt)q(θ

′|θt,Xn)

ρ(θ′)q(θt|θ′,Xn)

]
, (22)

The result of running SGLD (keeping α = 5 × 10−6 as before) with the exact MH

correction is shown in Figure 9(d). As expected, we are now able to sample correctly

as the MH test rejects most proposals from the mode to the valley. Results of running

SGLD with our approximate MH test are shown in Figure 9(e) (ε = 0.1) and Figure
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(e) SGLD corrected using our ap-

proximate MH test, with ε = 0.1.
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Figure 9: Pitfalls of using uncorrected SGLD with certain distributions.

9(f) (ε = 0.5) respectively. The stationary distribution obtained with ε = 0.1 is almost

indistinguishable from that obtained by the exact MH test, although on average, the

approximate test uses only 14.2% of the data per test. The bias with ε = 0.5 is also

negligible, even though it uses only 5% of the data per test, which is no more than the

size of the mini-batch we used in the SGLD proposal distribution. Note that when ε =

0.5, a decision is always made in the first step, without querying more data sequentially.

5 Conclusion

In the context of big data, learning and inference algorithms should acknowledge the

fact that there is only a finite amount of time to perform its computations. Many

traditional algorithms which use the entire dataset in each iteration are becoming in-
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creasingly obsolete because they produce useful results only after an often unaffordable

length of computational time. We argued that learning and inference algorithms should

rather strive to gain maximal predictive power per unit of computation.

In this paper, we developed such algorithms for both learning and inference using

sequential hypothesis tests that use only just enough data required at each stage of com-

putation. In the context of learning by optimization, we test for the probability that the

update direction is no more than 90 degrees in the wrong direction. In the context of

posterior inference using MCMC, we test for the probability that our decision to accept

or reject a sample is wrong. Our hypothesis tests crucially depend on the central limit

theorem to hold, which can usually be ensured by using a large enough mini-batch.

In a few cases, for instance with very sparse datasets or datasets with very extreme

outliers, the central limit assumptions are violated and our algorithm can behave errati-

cally. However, these assumptions can be easily checked before running our algorithm

to avoid such pathological situations. Despite this, there are many interesting problems

to which we can apply these algorithms.
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