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Abstract

Extreme Components Analysis (XCA) is a statisti-
cal method based on a single eigenvalue decompo-
sition to recover the optimal combination of prin-
cipal and minor components in the data. Unfor-
tunately, minor components are notoriously sensi-
tive to overfitting when the number of data items ] ]
is small relative to the number of attributes. We (2) Mosquito Wing Landmarks (dots). Landmarks are placed
present a Bayesian extension of XCA by introduc- where the veins intersect with the wing’s outer boundary.

ing a conjugate prior for the parameters of the XCA T

model. This Bayesian-XCA is shown to outper-
form plain vanilla XCA as well as Bayesian-PCA
and XCA based on a frequentist correction to the
sample spectrum. Moreover, we show that minor
components are only picked when they represent
genuine constraints in the data, even for very small
sample sizes. An extension to mixtures of Bayesian
XCA models is also explored.

1 Introduction (b) Deformation of the geometry of the landmark configuragio
incipal Vsi . h h along the first PC (left) and first MC (right). The middle two-fig
Principal components analysis (PCA) is perhaps the MOSt a5 show the mean positions of the landmarks. The widtheof th

widely used algorithm in the fields of statistics, machine jines represent the weight associated with the features dis-
learning and data mining. It enjoys a number of desirable tances) for the respective PC/MC. Plots in the left colunmmmsh
properties such as optimal reconstruction of the origiigal S the wing as we deform it by varying the coefficient associated
nal in the Ly, norm and retaining the maximal variance di- with first PC from positive (top) to negative (bottom) and sim
rections in the data. Despite this, there are many exampledarly for the MC on the right.

where it is not the principal components (PCs) that convey

the important information, but rather the directions of Bma Figure 1: Mosquito Wing Landmarks

variance, ominor componentgMCs). One can think of mi-

nor components as properties that are conserved in the data, o ]
i.e. constraints. efficient for the principal component or the minor component

As a motivating example we consider the landmark mea®f the data. One can observe that the first PC correspondsto a
surements on the edge of a mosquito wWirgee Figure 1(a). Shift of the landmarks over the edge of the wing, but keeping
In our experiments we have sub-sampled a number of thedB® Wing shape mostly invariant, indicating that the lamati
landmarks located on the edge of the wing and computehere the veins of the wing intersect with the boundary is
the relative distances between these landmarks and some lyghly variable across mosquitos. Looking at the minor com-
their nearest neighbors. We have used distances as featufg@nent of the data we see that it (when varied) would dras-
because they remove translational and rotational degfees Bcally change the shape of the wing, in particular the part
freedom (for more details see section 5.1.) where the wing is attached to the mosquito’s body. Since mi-

In Figure 1(b) we have plotted the deformation of the ge-NOr components express variability which is absent n tha da

ometry of the landmark configuration as we change the colf implies that this type of shape change is highly unlikely i
the mosquito population. We argue that these “conservation

'Obtained fromhttp://life.bio.sunysb.edu/morph/index.html laws of biological evolution” are of more scientific intetes



than the directions of high variability. is normal with inverse covariance matrix given by
More generally, for an arbitrary dataset we would like to re-
liably determine which linear subspace constitutes amugti
description of the data. A statistical technique calledeiXie
Components Analysis (XCA) was introduced[Welling et
al., 2003 to determine the optimal combination of princi-
pal and minor components automatically from data. In a wT = UL~ Y?R (3)
statistical sense, it is very difficult to reliably estimate-
nor components from data if the number of data instances iwhereU € Rpya,R € Raxa satisfyingU”U = I, and
relatively small compared to the number of attributes. ThisR” R = I,. L is diagonal matrix with elementg;}. One
effect is illustrated in Figure 2 where we plot the samplecan show that the variance of data in the directipfith col-
spectrum computed from a multivariate normal distributionumn ofU) is given byl; and in the remaining directions by
with unit variance in all directions. Even though this dataData is elongated in directions wheke> v and contracted
should clearly have no preference for either principal oxani  in directions wheré; < v. When all thel;’s are larger than
components, sample fluctuations always create artificial lo v, XCA is equivalent to probabilistic PCA (PPCARoweis,
variance directions which correspond to under-samplettdir 1998; Tipping and Bishop, 1998bOn the other hand, when
tions in space. Since an eigenvalue decomposition searcheli the /;'s are smaller tham, XCA is equivalent to proba-
for these directions it is highly prone to over-fitting toshi bilistic MCA (PMCA)[Williams and Agakov, 200R
type of sampling noise.

T
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We can decomposé& ” using an SVD as follows,

3 Bayesian XCA

Since XCA is more flexible than PCA and MCA, it will
always have equal or higher likelihood on the training set.
However, XCA can be sensitive to overfitting. The selection
of PCs and MCs depends on the estimation of the sample
spectrum, but both the variance as well as the bias of or-
o w % %@ H wm % w dered eigenvalues of the sample covariance matrix increase
as the ratio of the number of data instances to the num-
Figure 2: The sample log-spectrum (solid) computed from 200 ber of attributes decreases. In the extreme case where the
samples drawn from a 10D-normal distribution with unit variance number of data instances is smaller than the number of at-
in all directions. The true log-spectrum is a straight lidaghed). tributes, the smallest eigenvalues arand XCA will always
pick these minor components. This results in a positive infi-
The contribution of this paper is to largely resolve this is- Nite log-likelihood of training data but a negative infiniog-
sue by introducing a conjugate prior to the parameters of thikelihood of test data. Thus, regularization is necess$ary
XCA model which in turn regularizes the eigenvalue decomXCA when the size of the training dataset is small compared
position. The effect of this is that minor components willon 0 the number of attributes.
be incorporated in the model if they represent genuine con; . .
straints in the data and not merely under-sampled direstion3-1 A Prior for XCA:
of space. In this paper, we use a prior for the parameters of XCA to reg-
In our empirical evaluation we show that Bayesian XCA ularize the estimation of the eigenvalues. When the number
performs at least as good, and often better than 1) XCA base@f data cases increases, the effect of the prior will autemat
on frequentist shrinkage estimates of the sample covajanccally diminish. We are aware of two approaches to Bayesian
2) Bayesian PCA and 3) plain vanilla XCA. These results stillformulations of PPCABishop, 1999; Minka, 2000 Unlike
hold true for an extension to mixtures of Bayesian XCA mod-[Bishop, 1999, the method ofMinka, 2004 can be extended
els that we discuss as well. to XCA as we will describe below in more defail
The probability of the datas@ given the covariance ma-
trix C and meann is under the XCA model is,
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2 Extreme Components Analysis

1
XCA models a data cloud probabilistically by starting with Pxca(D|C,m) = (2m) " NP2|CH N2 eXP(_gtT(C '9))
an isotropic Gaussian pdf and either stretching in certain d (4)
rections (the PCs) or contracting it in certain directidme(t whereS =Y (z, —m)(z, —m)T,C~t = 1(1-UUT)+
MCs). Denote these directions with (organized as rows of 77,-1yT, N is the number of data points ade the dimen-
w). sionality of data.

We use a conjugate prior f¢t/, L, R, v, m) controlled by
zn=Wz 21 ~N[0,1], 22=Vz 2~ N[OvUI(D—(dl))] two hyper-parameters, 3, similar to those used ifMinka,

where z; and z; represent independent subspaces and the 2we thank T. Minka for his prompt responses to our questions
rows of V form an orthonormal basis in the orthogonal com-about his method. The prior in this paper is similar to thaain

plement of the space spanned by W. The distribution of XCAupdated version diMinka, 2004.



200d. we can see that these two equations are equivalent if we re-

e a3 B placeN in [Welling et al,, 2003 by n, andS by (S+aSI)/n.
p(U,L,R,v,m) o |[C*/2 eXP(—TtT(C ) (5)  Thus, the MAP estimator fd¥, L andv is obtained following
B the same derivation as [iVelling et al, 2003:
—a/2. —(D—d)a/2 af, 4 aB(D —d)
o ||~/ exp(— o tr(L ) exp(— =25 —=) S Naes .
The prior for m is constant in an area large enough for L N+a '’ e ©)
the problem.This distribution factors into separate tefons . N Yieghi af
(U, L, R,v): " = NiaD-d Nta (10)
ﬁ where),; is the eigenvalue of the sample covariance matrix
p(UaLavavm) = p(’U)p(U)p(R) p(ll) (6) ~ R R
i=1 S/N = Z(zn —m)(xy — m)T/N (11)

n

-2 B o . _
p(v) ~ X" (D —d) = 2,a(D — d)) belonging to the set af. Theith column ofU is the eigen-

eXP(*%[d)) aB(D —d)\*P- ! vector of S/N corresponding to\;, andC and G are sets
I'(a(D—d)/2—-1)v 2 of respectively retained and discarded directions. As show
p(U)p(R)p(m) = constant in [Welling et al, 2009, all the discarded eigenvalues are
contiguous in the ordered eigenspectrum of the sample co-
p(li) ~ variance matrix, and- is determined by comparing all the
1 af a/2-1 af D — d + 1 candidate sets and choosing the set with the max-
X 2(a—2,af) = —— (—) p(—=) imal posterior probability or equivalently with the miniina
Pla/2 =1l \ 2 2; value of the following term:
The priors forl; andv arey~2 distributed with mode3 . R
while for other irrelevant parameters they are uninforweati K= logli+ (D —d)log(} 1) (12)
The mean of; andv are approximately equal for large The ieC i€g

width of the peak is controlled by — 2 anda(D —d) —2  The complete algorithm is summarized below:
respectively, andar(v) ~ 5—var(l;). The fact that they

have the same mode is consistent with our prior knowledge

about the variance of both retained and discarded dirextion Bayesian XCA MAP Solution
Sincel; can be either larger or smaller thajwe don't place
prior preference on this choice. The variance relationbbip - )
tweenv andl; is also consistent with the fact that at the max- S/N using eqn 8, 11.

imum likelihood Solution,’U is the mean oD — d discarded 2. Compute the eigenva|ues Sf/N and get their esti-

1. Compute the sample meah and covariance matrix

eigenvalues. mates/;, using eqn 9
3.2 The MAP Estimator: 3. Find the optimal se§ amongD — d + 1 candidates,
The full Bayesian approach is computationally expensiue. | {<i<j+d- 1};-3:_1d+1 with the minimal value of

this paper, we use MAP estimation for the parameters, which K inegn 12
is very fast and will be shown to perform well with a proper 4 Compute the estimateusing eqn 10
choice of hyper-parameters.

Multiplying the likelihood with the prior probability give
the posterior probability In the experiments of this paper, we remove the mean and

_ 1 _ normalize the variance of each attribute as a preprocessing
1n/2 4 1
p(U, L, v,m|D, a) o [C77[™/= exp( 2”(0 (S+abl))) step. The non-biased estimate of the mean eigenvalues of
. (7)  the covariance matrix is then always Since the hyper-

wheren = N + a. It's easy to show that the maximum of the parameteis acts as the best prior guess for the eigenvalues,

posterior distribution is given by, we set it tol in this paper. The parameteris chosen through
1 cross validation. We can also apply this prior to PCA (MCA)
= ~ Z T (8) to derive a Bayesian PCA (MCA) model by simply impos-

ing a constraint; > v (I; < v) on Bayesian XCA. The only
difference is that no comparisons between eigenvalue sts a

: ; -1\ _ TY,,—(D—d) - . -
Plugging indet(C~") = det(WW v~ and com necessary because under the constraint Bayesian PCA (MCA)

paring the logarithm of the posterior distribution, equ Thwi can only choose PCs (MCs).

equ 9 in[Welling et al, 2003, The estimators; and ¢ satisfy some interesting proper-
e —NDlog(Qw) n Elog det(WWT) + ties_. They are both a linear cpmbinati_on of the un_—reglmtiz
2 2 estimator and a constant with a weight proportional to the
N(D — d)l 1 r(C=L g number of data pointd/. When the dataset is large enough
5 Og(g_g) Y r(Cxcad) (N > a), the effect of sampling noise can be neglected and



the estimatol; ~ \;, ¥ ~ ﬁ > icg \i» equivalent to the S Experiments

ML solution of XCA. When the dataset becomes smallexor ¢ 4 Log-likelihood:

is larger, the constant term gets more weight. The eigeavalu ] ; i o

estimator then trades bias for variance. Moreover, in termd? this section we will compare the test log-likelihood om-va
of the ordered eigenvalues, as mentioned at the beginning #pus datasets for five different models: XCA, PCA, Bayesian
this section, the un-regularized estimator has a strong biaXCA, Bayesian PCA, and Shrinkage XCA.

which is possibly larger than the bias induced by the priorMosquito Wing Landmarks:

especially Whem{ <A D. Therefore, with properly chosen In section 1, we have shown that the first PC and MC of the
hyper-parameters;, v can reduce both the variance and biasy,qsquito wing landmark data represent respectively thgelar

of the ordered eigenvalue estimators. variability of the locations of veins and a constraint on the
. . shape of wings. In this experiment, we want to compare the
3.3 Other Eigenvalue Estimators log-likelihood for different models on this dataset. A nuenb

Besides the MAP estimators, there are also other kinds of e&f Iandma_lrks on the boundary of the Wing are sub-sar_npled,
timators for the eigenvalues of the covariance matrix. onéd the distances of each landmark to its 4 nearest neighbors
is introduced by LawleyLawley, 1956 and cited in[Jack- along the edge are used as features. For the 8 landmarles, ther
son, 2003 It is able to correct the bias of ordered sample'® a total of 13 distances as shown in the middle of two sub-
eigenvalues for Gaussian distributions up@¢1/N). We figures in Figure 1(b). This is the same number of degrees of
have implemented this method but did not include it in ourireedom aﬁe_r removing translation and rotation informi
experimental results because it was quite unstable and evé'ﬁ)m the original coordinates. - :
produced negative variance estimates. Another estimator i . [ 19ure 3(a) shows the average log-likelihood of data points
shrinkage method with an automatic selection of the shrinkin the training (solid) and test (dashed) sets for Bayesian
age parametdiSchafer and Strimmer, 2055 It's designed XCA, XCA and PCA with different numbers of retained di-
for the case where the number of data instances is close f§ctions. We use 50 data points in the training set and 77

or even smaller than the number of attributes. This estimatgh the test set. The inset shows the number of MCs picked
was included in our experiments described below. by Bayesian XCA and XCA. The log-likelihood of Bayesian

XCA and XCA are everywhere above PCA. Bayesian XCA
) ] and XCA always pick MCs whed < 11, suggesting that

4 Mixtures of Bayesian XCA it's better to model the data with constraints. Overfittisg i
not very serious in this experiment and the plots of Bayesian
XCA and XCA are close to each other. Figure 3(b) shows the
comparison of Bayesian XCA, Bayesian PCA and Shrinkage
CA w.rt. the average log-likelihood of test data. Clearly
ayesian XCA performs much better than the other two.

Mixtures of factor analyzerfGhahramani and Beal, 20D0
and mixtures of PPCAFKTipping and Bishop, 1999a; Bishop
and Tipping, 199Bare potentially powerful density estima-
tors that combine a number of local dimensionally reduce
models into a single joint model. It is not unreasonable to
assume that these local models represent constraintfy4.e. “Frey Faces” Image Data
cal patches of data shaped like high dimensional pancakegve have repeated the experimenf\ielling et al., 2003 on
Unfortunately, the issue of overfitting is exacerbateddoal  the “Frey Faces” imagésThis dataset contains 1965 images
mixtures because the effective number of data items availab of size 20 x 28. On each pixel, the values are normalized
to estimate each model component is much smaller. We praxcross images to zero mean and unit variance. Figure 4(a),(b
pose that a mixture of Bayesian XCA models might resolveshow plots of the average log-likelihood per data point for
this. the various methods. 1000 samples are used in the training
We therefore introduce priors for each mixture componenset and the remaining 965 in the test set. The corresponding
with shared hyper-parameters. The objective function wenumbers of minor components picked by Bayesian XCA and
want to maximize is the log-likelihood including the regu- XCA are plotted in the inset.
larizing prior given by XCA and PCA are compared on the same dataset in
[Welling et al, 2003 and it turns out that XCA overfits
uickly because of the small size of the training set (see Fi
L(D,,0) = log [H (Z PXCA(fEn|92n)7Tzn> Hp(ak)] gre 4()::1)). With the prior, Bayesian XCA doesngt suff(er fromg
LA k this problem. In fact, it remains to perform robustly even
. . (13) when we retain a large humber of dimensions. In effect, it
wheref = {W,v,m}, z, is the clusterindex of,, andrx = i not pick minor components unless sufficiently suppdrte
P(zn = k). _ _ o by the data. As a result it outperforms both XCA and PCA.
The EM algo_nthm is used to train this model. It has a régu-rrom Figure 4(b) we find that the performance of Bayesian
lar E-step and in the M-step, we execute the BXCA algorithmy ca s close to that of Bayesian PCA and Shrinkage XCA
for each mixture component. Iterating E- and M-steps untilyngerscoring the fact that overfitting is the real issue here
convergenceis guarantegd to convergeto a local maximum of Figure 5 show the log-likelihood and corresponding num-
the MAP regularized log-likelihood. bers of MCs on different sizes of training set. Unlike XCA,

3The code is available &ttp://strimmerlab.org/software.html| 4Obtained frorhttp://www.cs.toronto.edu/ roweis/data.html
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Figure 3:(a),(b) show the average log-likelihood per data point of Figure 4:(a),(b) show the average log-likelihood per data point of
the Mosquito Wing Landmark data on the training set of 50 datathe “Frey Faces” data on 1000 training data (solid) and 9¢6data
points (solid) and test set of 77 data points (dashed) asaifin  (dashed) as a function of the number of retained componé€ajs.

of the number of retained directions. (a) compares Bayes@A compares Bayesian XCA with XCA and PCA, and (b) compares
with XCA and PCA, and (b) compares Bayesian XCA with BayesianBayesian XCA with Bayesian PCA and Shrinkage XCA. Hyper-
PCA and Shrinkage XCA. Hyper-parameter= 0.02 is determined  parametera = 20 is determined through cross validation with
through cross validation witli = 5. The inset shows the number of d = 300. The inset shows the number of minor components for
minor components for different numbers of retained dimifor  Bayesian XCA (0) and XCA (x).

Bayesian XCA (0) and XCA (x).

. o .19 attributes. These results are not included in this paper d
Bayesian XCA always chooses principal components on thig, e space limitations. However, Bayesian XCA also shows

dataset, and thus exhibits similar performance as Bayesiaf, 5qvanta ; ;
. : ge to other methods on this dataset. Unlike e pr
PCA. While XCA and PCA over-fit severely as the number, i, s 1o experiments where either PCs or MCs were chosen

of data points decreases the two Bayesian models show go Bayesian XCA, on this dataset it finds a more balanced
performance across the board on the test set. mix of the two
In all experiments we determined the value terusing We have .compared the performance of a mixture

cross_validation usin_g a sin_gle value @fnr. of retained di- _of Bayesian XCA models with mixtures of respectively
mensions) andV (tralnlng size) and subsequently used th'SBayesian PCA, XCA and PCA. We have tested these mod-
hyper-parameter setting for all the other valued ahdN. o\ the UCSD dataset. We ran the proposed EM algorithm
Th_e experiments suggest that the_ performance_of Bayesi 1000 samples with another 1000 samples for validation
XCA is not very sensitive to the choice af To confirm that and a further 38000 samples as the test set. For each model,

%eviﬁzgsmfggntg?hﬁtwg :lggjt?\fgrors?aﬁg%igﬁlhzﬁhe there are 20 mixture components and the number of retained
: y directions is 10. The EM algorithm was terminated in two

test log-likelihaod only marginally improved. Results ae ways: it either ran until convergence on training set, or was

presented due to space limitation. stopped early by monitoring performance on the validation
5.2 Mixture Models set. Results averaged over 100 runs are shown in Table 1.

We have also tested the performance of Bayesian XCA on a The best log-likelihood is obtained by Bayesian XCA with

dataset from the UCSD data-mining competifiovhich has €27 Stopping, and the worst by XCA running until EM con-
verges. Generally, Bayesian models perform better than non

®Obtained from http:/mill.ucsd.edu/index.php?page=Datasets Bayesian models, and early stopping is better than running
&subpage=Downloadn the standard classification task. until convergence. However, the difference between these



a=20, #components=300
T

1000 T w w —— Bayesian Non-Bayesian
— & Bayesian XCA Covergence Early Stop| Convergencg Early Stop
500 < PCA 4 MCA -18.65 -18.44 -22.57 -18.6
T XCA -18.51 -18.31 -22.91 -18.56
ok b ———y PCA -19.44 -19.25 -22.4 -19.92
_o—e——6—6—9—
Q/@/WG’ /e>e,o—€"9*&07679@76/97&@70
z ol 5" P Table 1: Average log-likelihood of test set on UCSD dataset for
b’ T T B mixtures of MCA, XCA and PCA with and without the prior. The
1000l e i il EM algorithm stops when it is converged or when it is termgédat
il ¥ by monitoring performance on a validation set. The maxinmal a
1500l Q/' i minimal values are bold-faced.
/ ¥
2000 vides a better density estimator than a number of alterativ
#raining data methods such PCA, Bayesian PCA, and XCA based on fre-
(a) guentist corrections to the spectrum. The proposed method

is also highly scalable since it is based on a simple singular
a=20, #components=300 . .y .
— — eigenvalue decomposition of the data matrix.
s —r— ‘ { Code for Bayesian XCA will be released to the public soon.
We hope that this will facilitate its widespread use in thie sc
entific community.
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