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Abstract

Predicting the “Value at Risk” of a portfolio of
stocks is of great significance in quantitative fi-
nance. We introduce a new class models, “dy-
namical products of experts” that treats the latent
process over volatilities as an inverse Gamma
process. We show that our multivariate volatility
models significantly outperform all related Garch
and stochastic volatility models which are in pop-
ular use in the quantitative finance community.

1. Introduction

Many natural signals such as speech and images exhibit the
characteristic heavy tailed distributions over their inputs.
For instance, after filtering out the first and second order
statistics, the distribution of brightness values of randomly
sampled pixels in an image is well described by a Student-t
density. The current best explanation for this phenomenon
is that the variance (of a normal distribution) is itself sub-
ject to random fluctuations. The two-stage process of first
sampling the variance from e.g. a gamma distribution and
then conditional on that sampling a normal variate results
in the heavy tails of a Student-t distribution.

For temporal or spatial processes such as speech and im-
ages there are also important interactions between the (cen-
tered and sphered) input dimensions. One can distinguish
between two dominant effects (Lyu & Simoncelli, 2009):
I) The input can often be described as a linear combination
of independent basis functions. Finding this basis is known
as “independent components analysis” (Bell & Sejnowski,
1995) and has led to interesting applications such as un-
mixing sound recordings and fMRI images. II) The vari-
ances of a group of inputs are correlated. This effect
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can for instance be observed in filtered images where at
the location of edges one can observe a high magnitude
of the coefficients but with unpredictable sign. Hence,
the phenomenon is best understood as a clustering of the
variance of the signal. Many models have been suc-
cessful in modeling this phenomenon such as Gaussian
scale mixtures (GSM) (Wainwright & Simoncelli, 2000)
and energy based models such as PoT (Welling et al., 2002;
Gehler & Welling, 2006) and FoE (Roth & Black, 2005).

A very similar phenomenon has been observed in the fi-
nancial domain. Here the returns of stock prices also show
a clear clustering or persistence of volatility. This phe-
nomenon is nicely captured by Garch models (Bollerslev,
1986) where the variance at timet is a deterministic func-
tion of both the variance and the squared returns at previous
time steps. Note that this induces smoothness in the vari-
ance but due to the deterministic nature of the regression
there are no independent fluctuations in the volatility result-
ing in too small tails. Another approach to model the per-
sistence of volatility is the stochastic volatility (SV) models
(Taylor, 1982) where the variance conditioned on previous
time steps is a stochastic variable. This class of models is
usually considered to be better fitted to financial data.

The purpose of this paper is to show that we can improve
on all these models by extending the PoT model to a tem-
poral variant. PoT has the advantage that it models the
variance as a stochastic process like a SV while its vari-
ance propagation combines the properties of both Garch
and SV models. Also, the conditional distribution of vari-
ance is different from the usual log-normal random walk in
SV. Moreover PoT also naturally models the independent
components in the data covering both types of interactions
described above. PoT models have been extended to hi-
erarchical (topographic) models in (Osindero et al., 2006)
which makes for a promising direction of future research.

In the following we will describe our temporal extension
of PoT (DPoT) (see Figure1) and show empirically that
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it significantly outperforms all relevant multivariate Garch
models and SV models on metrics that are of interest to the
quantitative finance community (such as Value at Risk).

2. The Product of Student-t model (PoT)

The Product of Student-t model (PoT) was introduced in
(Welling et al., 2002) to model the statistics of natural im-
ages. Its density function is given as,

p(x) =
1

Z

m
∏

j=1

1
(

1 + 1
2 (WT

j x)2
)αj

(1)

whereZ is the normalization term, a.k.a. partition function,
and thejth row of matrixW , wT

j , is called a filter. It can be
understood as a kind of energy based model by introducing
auxiliary variables{hj},
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with transformed inputsyj ,
∑n

i=1 Wjixi. The con-
ditional distributions are given byh ∼ ∏

j Γ(αj , 1 +
1
2y2

j ) andx ∼ N (0, WH−1WT ) with the second argu-
ment the covariance of the normal distribution andH =
diag[h1, .., hm]. From the conditionalp(x|h) one can see
thath acts as a precision variable.

In the special case of a complete model,n = m, we
can also view the PoT model as a causal (directed) model
closely related to the probabilistic formulation of inde-
pendent components analysis (ICA) (Pearlmutter & Parra,
1996),
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whereyj is an independent component andhj its precision.
x is given as a linear combinationx = Ay, andA = W−1

is called the mixing matrix.

3. Dynamical PoT

To turn the PoT into a dynamical Markov process, we need
to define the transition from states at timet − 1 to time t.
Because we are interested in the application of this model
to financial time series we will be inspired by the interac-
tion structure of a Garch model (see Figure1). In Garch,
the variance at timet is deterministically regressed on the
variancesσ2

t−1 and the squared returnsy2
t−1 at the previous

time step,σ2
t = c̃ + ãy2

t−1 + b̃σ2
t−1. In particular large

values for squared returns and variances at timet − 1 will
result in large values for the variances at timet capturing
the desired persistency of volatility. To capture the same
intuition in a model with stochastic volatilities we write,

ht ∼ Γ−1(α− 1

2
, c+ay2

t−1+bht−1); yt ∼ N(0, ht) (5)

where we have replacedh → h−1 to let h represent vari-
ance instead of precision which is therefore described by an
inverse Gamma distribution. Note the somewhat counter
intuitive implication that we had to introduce interaction
terms of the formh−1

t bht−1 which is notably different
from the interaction typehtbht−1 used in (Sutskever et al.,
2009).

Figure 1.Causal Bayes net structure for the dynamical PoT model

One can show that by taking the following limit:
α, a, b, c→∞ such thata/(α− 3/2) = ã, b/(α− 3/2) =
b̃, c/(α − 3/2) = c̃, the DPoT and the Garch models be-
come equivalent. However, for finiteα, a, b, c, DPoT has
fatter tails than Garch. This can be seen by integrating out
ht and comparingp(xt|ht−1, xt−1), which is given by a
student-t distribution for DPoT:

p(xt|ht−1, xt−1) =

t1(
xt

√

(c + ax2
t−1 + bht−1)/(α− 1.5)

, 2α− 1) (6)

while it is a normal distribution for Garch.

DPoT essentially belongs to the class of stochastic volatil-
ity models, see (Shephard et al., 2008) for a review. The
difference between DPoT and the regular SV models is that
the latter usually model the logarithm of the variance as a
normal random walk to ensure the positiveness of variance
while our model uses an inverse Gamma distribution to nat-
urally satisfy the restriction. That also gives a slower decay
rate in the tail of the conditional distribution of the volatil-
ity than the log-normal distribution. Furthermore, in DPoT
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the mean of the variance at the next time step is affected
by the current return through both direct inference (param-
etera) like Garch and the posterior distribution of the cur-
rent variance like SV. This provides a hybrid mechanism
of Garch and SV models, and should be more flexible than
either model.

The above univariate model is easily extended to the mul-
tivariate case by introducingm independent Markov pro-
cesses on the variables{hj , yj} (Eqn.5) which we now lin-
early mix to produce the inputsxt = Ayt. Written as an
energy-based model this becomes,p(x, h) =

∏

t
1

Zt
e−Et

with,

Et =
m
∑

j=1

(

h−1
jt

[

cj + ajy
2
jt−1 + bjhjt−1 +

1

2
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jt

]
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jt

)

(7)

Zt =
1

| det(W )|
∏

j

Zjt (8)

Zjt =

√
2πΓ(αj − 1

2 )

(cj + ajy2
jt−1 + bjhjt−1)αj−1/2

(9)

andyjt = WT
j xt.

There is redundancy in the parametrization since multiply-
ing bothWj and cj by a scalar gives the same probabil-
ity p(x). We will remove the extra degree of freedom by
adding the normalization constraint||yj||2 = ||WT

j x||2 =
1.

4. Extensions and related work

Many variants of the Garch model have been studied in
the literature. For instance, longer range interactions are
covered by higher order Garch(p,q) where the variance at
time t is now a function of variance and squared returns
at longer time lags,σt−i, y

2
t−i. This extension is easily

incorporated into DPoT by introducing termsh−1
t aiy

2
t−i

andh−1
t biht−i for i >= 2. Also, we can add asymmetric

terms to model the leverage effect by replacingay2
t−1 with

a+y+
t−1 + a−y−

t−1 (Threshold-Garch), or we can raise both
h andy variables to a powerθ (Power-Garch), or we can
use different conditional distributions forp(y|h) such as
generalized exponential or student-t. Generally the DPoT
variant has the form,

hθ
jt|{yj,t−p}, {hj,t−q}
∼ Γ−1 (αj , (αj − 1)f({yj,t−p}, {hj,t−q}))
p = 1, · · · , P, q = 1, · · · , Q (10)

yjt|hjt ∼ g(hjt); xit =
∑

j

Aijyjt (11)

wheref is any deterministic function, andg is a distribu-
tion with variancehjt. For example, if we let

f(yj,t−p, hj,t−q) = c + ay2
j,t−1 + bhj,t−1 (12)

yjt|hjt ∼ t(
√

hjt, ν) ∝
(

1 +
y2

jt

hjt(ν − 2)

)− ν+1

2

(13)

the model reduces to a Garch(1,1) model with Student-t er-
rors if we increaseα in Equation10. This model is also
included in the experiments. The estimation and prediction
methods described in the next sections can also be applied
to this more general family of models with minor modifi-
cations.

Multivariate extensions of Garch and SV models also ex-
ist such as “Orthogonal Garch” (O-Garch or PCA-Garch)
(Alexander, 2001), “GO-GARCH” (van der Weide, 2002),
“ICA-Garch” (Wu & Yu, 2005), and factor Multivariate SV
models (Chib et al., 2006). Compared to all these models,
the multivariate DPoT model is a type of complete fac-
tor model with Garch style dynamics and inverse Gamma
stochastic volatility.

Our work is also related to the inverse Gamma Markov
chain model proposed in (Cemgil & Dikmen, 2007) which
has been applied to audio signal processing for denoising
and source separation.

In this paper, we only compare the basic form of DPoT
to other models and do not take into account the leverage
effect and jumps in the volatilities, but as described above,
we can import the corresponding methods developed for
Garch models into our DPoT without much effort.

5. Model estimation

The parameters of the DPoT model are estimated by max-
imizing the log-likelihood of the training data through the
stochastic EM algorithm. Denote the whole set of param-
eters to beθ = {Wji, αj , aj , bj, cj}. In the E-step, the
posterior distribution ofh is computed by

p(h|x) ∝ p(h,x)

=
∏

t

1

Zt(ht−1,xt−1)
e−Et(ht−1,xt−1,ht,xt) (14)

In the M-step,θ is updated in the direction of the gradient
of the expected log-likelihood:

θ ⇐ θ + η 〈∇θL(x,h)〉p(h|x)p̃(x) (15)

where L(x,h) = −
∑

t

(Et + log Zt)

andη is the step size. Also,〈·〉p(h|x)p̃(x) means expectation
w.r.t. to the distributionp(h|x)p̃(x) with p̃ the empirical
distribution.
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Since there isn’t a closed form expression forp(h|x), we
run Gibbs sampling to draw samples from it and approx-
imate the integration by summation.Conditional ony (or
equivalentlyx), the Markov processes forhj,t, t = 1..T
are independent overj and thus sampled separately. Also
since the Markov processes are first order we can alter-
natingly block-sample thehjt on even and odd time in-
dices, where in each block the variables are independent
with each other.

Sampling even a singlehjt variable given its neighbors is
nontrivial because its posterior distribution is proportional
to a product of an inverse Gamma and a truncated Gamma
distribution:

p(hjt|−) ∝

Γ−1(hjt; αj , cj + ajy
2
j,t−1 + bjhj,t−1 +

1

2
y2

jt)

× Γ(hjt + (cj + ajy
2
jt)/bj ; αj −

1

2
, bjh

−1
j,t+1) (16)

We use rejection sampling to sample from this product
where the upper bound is given by the first term times the
maximum of the second term. Occasionally, the modes of
these two distributions are so far apart (e.g. when the asset
suddenly rises or drops), that the rejection rate becomes too
high. For those cases we discretize the domain ofhjt. The
average acceptance rate for this procedure is about0.3 in
our experiments.

We initialize W by running FastICA (Hyvarinen et al.,
1999) over all data collapsed over time and using a small
value forαj . We then train a Garch(1,1)-normal model for
each time seriesyj,1:T = WT

j x1:T independently and ini-

tialize aj ← (αj − 3/2)ãGarch
j , bj ← (αj − 3/2)b̃Garch

j ,
cj ← (αj−3/2)c̃Garch

j . After this we apply stochastic EM
as described above updating the parameters every few iter-
ations of Gibbs sampling. Therefore, Gibbs sampling may
not have converged in the E-step. But as long as the learn-
ing step size is small enough we expect that the sampler
will not be very far from equilibrium.

6. Prediction

In the financial domain, what we really care about is the
value of assets in the future. For prediction, we need to
samplehj,t from its posterior and then simulatehj,τ (τ >
t). Although Gibbs sampling runs fast during training, it is
not as suitable for prediction, because we have to run Gibbs
sampling until convergence every time a new price is ob-
served. In contrast, particle filtering naturally incorporates
information during the forward propagation by adjusting
the weights of particles.

Auxiliary particle filtering (ASIR) (Pitt & Shephard, 1999)
is adopted in this paper for filtering and prediction. We

approximate the posterior distribution ofhjt−1 by a mix-
ture of delta functions concentrated on sample positions
{h(k)

jt−1} with associated weights{wk}. The proposal joint
distribution of(k, hjt) is exactly the posterior distribution:

g(k, hjt|yj,1:t) = p(k, hjt|yj,1:t)

∝ p(k|yj,1:t−1)p(yjt|k, yj,1:t−1)p(hjt|k, yj1:t) (17)

Sincep(k|yj,1:t−1) = wk, andp(yjt|k, yj,1:t−1) is easy to
compute (Equation6), we can draw the mixture indexk
by p(k) ∝ p(k|yj,1:t−1)p(yjt|k, yj,1:t−1), and then draw
hjt from p(hjt|k, yj1:t) which is an inverse Gamma dis-
tribution. It’s trivial to see that this algorithm is fully
adapted in the sense that the second-stage weights are equal
(wk = 1, ∀k) and therefore we do not need resampling. For
DPoT with student-t errors, ASIR is not fully adapted, but
we can still draw samples efficiently from the posterior dis-
tribution.

After obtaining samplesh(k)
jt given x1:t, predictions on

statistics of interst can be obtained by first simulating fu-
ture volatilities from the particles byp(ht|h(k)

t−1) and then
approximating the expectation by summation. Take for in-
stance the estimation ofcdf of one day ahead returns (ad-
dressed in next section):

cdf(xit) = Eht|x1:t−1
[P (x ≤ xit|ht)]

≈
∑

k

w
(k)
t−1Φ

(

xit/

√

Σii(h̃
(k)
t )

)

(18)

where givenht, xt follows a joint Gaussian distribution
with covariance matrixΣ = AHtA

T , Hjj,t = hj,t.

7. Value at Risk

Value at Risk (VaR) is a widely accepted measure of the
risk of loss on a portfolio of financial assets (Kuester et al.,
2006; So & Yu, 2006). Given a loss levell and a time hori-
zon τ , we can compute the probability that our real loss
will exceed that levell at timet + τ . Say, that we do not
want that probability to be more thanλ. The smallest level
l that still satisfies that constraint is called the Value at Risk
V aRt+τ,λ. Mathematically, the VaR is expressed as:

V aRt+τ,λ , inf
l
{P (Lt+τ > l) ≤ λ}

= − sup
x
{cdfxt+τ

(x) ≤ λ} , −Qt+τ (λ) (19)

whereLt+τ is the loss,xt+τ (= −Lt+τ) the return of a
portfolio, andQt+τ (λ) the λ-quantile of the returnxt+τ .
For example, as shown in Figure2 given a probability level
λ = 5%, τ = 2 days, a stock’sV aR = 1.64 means there’s
a chance of 5% that the price of this stock will drop by at
least 1.64 in 2 days. A time horizon of one day is used
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Figure 2.An example of VaR at levelλ=5%, the return follows a
stardard Gaussian distribution.

in our experiments. For a longer horizon, we can use our
Monte Carlo method to simulate VaRsτ days ahead.

Backtesting VaR is a statistical technique to verify if the
failure rate, that is the proportion of days an actual loss
exceeds the predicted VaR, is in agreement with the risk
level λ. Ideally, the failure rate should be an unbiased
and consistent estimator ofλ. In practice, small deviation
of this quantity from its corresponding risk level suggests
good predicting performance. Equivalently, we compute
this value as the proportion of days that thecdf of an ac-
tual return in the predicted distribution falls belowλ. De-
note withF (λ) the failure rate at levelλ. Figures7 and
8 illustrate the deviationF (λ) − λ against the VaR level
λ. A good model should give a line that stays close to
the x-axis (dashed line). Usually, the deviation at a spe-
cific level (e.g. 1%) is quite noisy. In the experiments we
have used more stable criteria such as mean absolute error
(MAE) and root mean squared error (RMSE) from 0 toλ,
see (Kuester et al., 2006).

8. Experiments

We will apply the DPoT model with normal conditional
distribution (DPoT(N)) and one of the generalized DPoT
models with a Student-t conditional distribution (DPoT(T))
to stock prices and test their performance on VaR pre-
diction. For comparison, we browse the literature and
select a few representative models including PCA-Garch,
ICA-Garch and a multivariate SV model discribed in
(Chib et al., 2006) with 2 factors and without jumps1. We
consider both normal and student-t errors for each model.
The dataset for the experiment of the univariate model is
the closing daily prices of the S&P 500 index from Jan 5,
1960 to Dec 30, 2005, totalling 11579 trading days. The

1We estimate Garch models with the UCSD Garch matlab
toolbox and the MSV model with code from the authors of
(Chib et al., 2006)

price (pt) and percentage log-returns defined by

xt = 100 log (pt/pt−1) (20)

are plotted in Figure3. The dataset used for the multivariate
models is from a set of 10 stocks: AAPL, HPQ, MSFT,
ADI, INTC, TXN, C, JPM, WFC, GE, from the period July
10, 1986 to Dec 30, 2005, totalling 4917 trading days.

We use a rolling window of 2000 days to account for the
change of parameters over time. We estimate a separate
model on the returns in each window, compute thecdfs of
one day ahead returns for the next 50 days and then we
move the window forward by 50 days and repeat the pro-
cess. In each window, the mean is subtracted from the re-
turns before it is fed to the training algorithm. This proce-
dure is standard practice for training the other two classes
of volatility models as well.

8.1. Univariate model

Univarite DPoT(N/T) models are trained on the S&P 500
index. The estimated parameterα is shown in Figure4.
Larger values of̂α imply less kurtosis in the marginal dis-
tribution of the returns which means that DPoT and Garch
are expected to behave similarly. We can find thatα̂ for
DPoT(N) is large from the late 70’s to the early 80’s cor-
responding to a stable period of volatilities. However, it
decreases fast in the late 80’s where we find a large spike
in the percentage log-returns (see Figure3). The value
of α̂ for DPoT(T) is larger than 100 everywhere which
means that we expect similar performance of DPoT(T) and
Garch(T) on univariate data.

The deviation of VaR prediction is shown in Figure7. The
plot for our DPoT(N) model is much more stable and con-
sistently closer to0 than that of Garch(N) (except for a
small region where Garch(N) crosses the horizontal line).
Results for DPoT(T) and Garch(T) are similar as expected,
and both better than the models with Normal errors for
small VaR levels (which are usually of more practical inter-
est than the larger levels) but increase fast afterward. Plots
of DPoT and SV models are close to each other, and the
former usually performs better than the latter with the same
type of error atλ > 4%. The MAE and RMSE of devia-
tions for four levels 1%, 2.5%, 5%, 10% are plotted in Fig-
ure5 and6. DPoT(T) is among the best models in either
figure.

8.2. Multivariate model

The multivariate DPoT(N/T) models for 10 stocks are
compared to the PCA-Garch, ICA-Garch, MSV models
with normal and student-t errors. Following the recom-
mended training procedure for the PCA/ICA-Garch mod-
els (Alexander, 2001; Wu & Yu, 2005), we first estimate
the demixing matrix using PCA/ICA on all the data col-
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Figure 3.Prices and Percentage log-returns of S&P 500 index
from Jan 5, 1960 to Dec 30, 2005.
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Figure 4.Estimatedα for S&P 500 index from 1960∼2005. The
time axis corresponds to the end of each sliding window.
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Figure 5.MAE of VaR deviation on the S&P 500 index from
1960∼2005 for Garch(N) (circle), Garch(T) (diamond), SV(N)
(x), SV(T) (plus), DPoT(N) (square) and DPoT(T) (triangle)
model. The x axis is the VaR level in percentage.
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Figure 6.RMSE of VaR deviation on the S&P 500 index from
1960∼2005 for Garch(N) (circle), Garch(T) (diamond), SV(N)
(x), SV(T) (plus), DPoT(N) (square) and DPoT(T) (triangle)
model. The x axis is the VaR level in percentage.

lapsed over time. After that, the percentage log-returns are
linearly transformed into their latent factor spaces and the
corresponding univariate Garch(N/T) models are indepen-
dently fit across time.

Due to space limitations, we only show the results of de-
viations against VaR levels in Figure8 on the whole set of
10 stocks. The advantage of our models is clear for the
multivariate case. Both PCA- and ICA-Garch(N) models
decrease fast due to their thin tails in the conditional distri-
bution. PCA-Garch(T) also behaves badly, presumably be-
cause PCA cannot find independent factors that control the
volatility over time. ICA-Garch(T) performs well for very
small values ofλ < 0.5% but at larger values it quickly
becomes inferior to both types of DPoT models. Both
MSV(N) and MSV(T) perform worse than DPoT(N/T), in-
dicating the advantage of the DPoT type of dynamics over
the regular SV models. If we look atb/(α−1) (direct prop-
agation of volatility from previous returns which doesn’t
exist in MSV) in the fitted DPoT models, it has a signifi-
cant positive value in over half of the sliding windows.

Due to space limitations we are not able to show
MAE/RMSE values for all the 10 stocks on 4 levels for
all 6 models. Alternatively, we use a measurement called
mean rank (So & Yu, 2006) to compare the average perfor-
mance across stocks (see Table1). For eachλ level, it first
ranks models in each stock. Smaller ranks are assigned to
smaller deviations. Then the mean of ranks across stocks is
computed. The DPoT(T) model has the highest mean rank
for almost all theλ levels followed by DPoT(N) and then
MSV(N/T). MSV(T) works the best at levelλ = 1%, but
degenerates fast at larger levels. Among the Garch models,
only ICA-Garch(T) works comparably to DPoT and MSV,
and the other 3 models rank quite low, consistent with the
plots in Figure8
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Table 1.Mean ranks of models over 10 stocks and their final ranking (inparentheses) across models at each VaR level according to MAE
and RMSE. A smaller rank is better. “G” means Garch model.

MAE
VaR Level DPoT(N) DPoT(T) ICA-G(N) PCA-G(N) ICA-G(T) PCA-G(T) MSV(N) MSV(T)

1% 4.0(2) 4.1(3) 5.9(8) 5.8(7) 4.3(5) 4.2(4) 4.4(6) 3.3(1)
2.5% 3.6(4) 3.0(1) 6.9(7) 7.1(8) 3.7(5) 4.9(6) 3.4(2) 3.4(3)
5% 3.1(2) 2.8(1) 6.7(7) 7.8(8) 3.2(3) 5.2(6) 3.4(4) 3.8(5)
10% 2.7(1) 2.7(1) 7.0(7) 8.0(8) 3.0(4) 5.5(6) 2.9(3) 4.2(5)

RMSE
VaR Level DPoT(N) DPoT(T) ICA-G(N) PCA-G(N) ICA-G(T) PCA-G(T) MSV(N) MSV(T)

1% 4.0(3) 3.8(2) 5.9(7) 6.1(8) 4.4(5) 4.4(5) 4.0(3) 3.4(1)
2.5% 3.4(2) 3.0(1) 6.8(7) 7.3(8) 3.7(5) 4.9(6) 3.4(2) 3.5(4)
5% 3.0(2) 2.8(1) 6.8(7) 8.0(8) 3.2(3) 5.1(6) 3.2(3) 3.9(5)
10% 2.7(2) 2.6(1) 7.0(7) 8.0(8) 3.0(4) 5.6(6) 2.8(3) 4.3(5)
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Figure 7.Deviation plots on the S&P 500 index from 1960∼2005
for Garch(N) (circle), Garch(T) (diamond), SV(N) (x), SV(T)
(plus), DPoT(N) (square) and DPoT(T) (triangle) model. Thex
axis is the VaR level in percentage and the y axis is the deviation
of the failure rate from the given level in percentage. The closer
to the horizontal line, the better prediction a model makes.

9. Discussion

Predicting value at risk is of great importance to the finan-
cial community because it allows traders to assess the risk
for their portfolio of stocks. Inspired by the similaritiesbe-
tween natural signals such as images and sound, we have
introduced an extension to the popular Garch models that
treats the latent process over volatilities as a stochasticpro-
cess rather than a deterministic regression. Experimentally
we have shown that this results in a significant improve-
ment to both regular Garch and SV models for multivariate
models over multiple stocks in terms of Value at Risk.

Besides the extensions mentioned in section4 an excit-
ing direction for improving the DPoT model is by exploit-
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Figure 8.Deviation plots on the entire dataset of 10 stocks
for ICA-Garch(N) (triangle), PCA-Garch(N) (pentagram), ICA-
Garch(T) (diamond) and PCA-Garch(T) (hexagram), MSV(N)
(x), MSV(T) (plus), DPoT(N) (square), DPoT(T) (circle) model.
F (λ) is the proportion ofcdfs belowλ in all the 10 stocks. The
closer to the horizontal line, the better prediction a modelmakes.

ing its close relationship to the HPoT models studied in
(Osindero et al., 2006). In that paper over-complete mod-
els (m > n) and their hierarchical extensions were stud-
ied and the close relation to simple and complex cells in
V1 was established. Moreover, there is mounting evidence
that these type of architectures can be stacked into deep hi-
erarchies (MarcAurelio Ranzato et al.; Hinton et al., 2006).
Multi-layer DPoT models can potentially be very powerful
in modeling the long range interactions in variance in finan-
cial time series. Learning these models from data will be
more challenging than what was needed for the DPoT, but
new algorithms have become available recently in machine
learning that could make this possible (Hinton, 2002). We
believe that the close connections between the statistics of
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sound and images on the one hand and financial time series
on the other make the latter an exciting playing field to test
new ideas in “deep learning”.
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