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Herding defines a deterministic dynamical system at the edge of chaos. It
generates a sequence of model states and parameters by alternating parame-
ter perturbations with state maximizations, where the sequence of states can
be interpreted as “samples” from an associated MRF model. Herding di↵ers
from maximum likelihood estimation in that the sequence of parameters does
not converge to a fixed point and di↵ers from an MCMC posterior sampling
approach in that the sequence of states is generated deterministically. Herd-
ing may be interpreted as a“perturb and map” method where the parameter
perturbations are generated using a deterministic nonlinear dynamical sys-
tem rather than randomly from a Gumbel distribution. This chapter studies
the distinct statistical characteristics of the herding algorithm and shows that
the fast convergence rate of the controlled moments may be attributed to edge
of chaos dynamics. The herding algorithm can also be generalized to models
with latent variables and to a discriminative learning setting. The perceptron
cycling theorem ensures that the fast moment matching property is preserved
in the more general framework.
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4.1 Introduction

The traditional view of a learning system is one where an initial parameter
vector w0 is updated until some convergence criterion is met: w0,w1, ..,wT

with (in theory) T !1 and w1 = w⇤ a fixed point of the updates. These
updates usually maximize some objective such as the log-likelihood of the
data. We can view this process as a dynamical system with a contractive
map w

t+1 = F
t

(w
t

) which is designed to iterate to a fixed point. The map
F
t

can be either deterministic or stochastic. For instance, batch gradient
descent is an example of a deterministic map while stochastic gradient
descent is an example of a stochastic map. A natural question is whether the
existence of a fixed point w⇤ is important, and whether meaningful learning
systems can exist that do not converge to any fixed point but traverse
an attractor set. To answer this question we can draw inspiration from
Markov chain Monte Carlo (MCMC) procedures which generate samples
from a posterior distribution P (w|D) (with D indicating the data). MCMC
also generates a sequence of parameter values w0, ..,wT

but one that does
not converge to a fixed point. Rather the samples form an attractor set
with a measure (density) equal to the posterior distribution. One can make
meaningful predictions with MCMC chains by making predictions for every
sampled model w

t

separately and subsequently averaging the predictions.
There is also evidence that learning in the brain is a dynamical process. For
instance, Aihara and Matsumoto (1982) have described chaotic dynamics in
the Hodgkin-Huxley equations for membrane dynamics and studied them
experimentally in squid giant axons. Also, much evidence has now been
accumulated that synapses are subject to fast dynamical processes such as
postsynaptic depression and facilitation (Tsodyks et al., 1098).

Herding (Welling, 2009a) is perhaps the first learning dynamical system
based on a deterministic map and with a nontrivial attractor (i.e. not a single
fixed point). It emerged from taking the limit of infinite stepsize in the usual
(maximum likelihood) updates for a Markov random field (MRF) model. It
can be observed that in this limit the parameters will not converge to a fixed
point but rather traverse a usually non-periodic trajectory in weight space.
The information contained in the data is now stored in the trajectories (or
the attractor) of this dynamical system, rather than in a point estimate of a
collection of parameters. In fact it can be shown that this dynamical system
is neither periodic (under some conditions) nor chaotic, a state which is
associated with “edge of chaos” dynamics. As illustrated in this chapter,
by slowly increasing the stepsize (or equivalently lowering the temperature)
we will move from a standard MRF maximum likelihood learning system
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with a single fixed point, through a series of period doublings to a system
on the edge of chaos. One can show that the attractor is sometimes fractal,
and that the Lyapunov exponents of this system are equal to 0 implying
that two nearby trajectories will eventually separate but only polynomially
fast (and not exponentially fast as with chaotic systems). Many of the
dynamical properties of this system are described by the theory of “piecewise
isometries” (Goetz, 2000).

Herding can thus be viewed as a dynamical system that generates state-
space samples s1, .., sT that are highly similar to the samples that would
be generated by a learned MRF model with the same features. The state-
space samples satisfy the usual moment matching constraints that defines
an MRF and can be used for making meaningful predictions. In a way,
herding combines learning and inference in one dynamical system. However,
the distribution from which herding generates samples is not identical to
the associated MRF because while the same moment matching constraints
are satisfied, the entropy of the herding samples is usually somewhat lower
than the (maximal) entropy of the MRF. The sequence of samples in state
space s1, .., sT has very interesting properties. First, it forms an infinite
memory sequence as every sample depends on all the previous samples and
not just the most recent sample as in Markov sequences. It can be shown
that the number of distinct subsequences of length T grows as O(log(T ))
implying that their (topological) entropy vanishes. For simple systems these
sequences can be identified with “low discrepancy sequences” and Sturmian
sequences (Marston Morse, 1940). Probably related to this is the fact that
Monte Carlo averages based on these sequences converge as O(1/T ). This
should be contrasted with random independent samples from the associated
MRF distribution for which the convergence follows the usual O(1/

p
T ) rate.

Herding sequences thus exhibit strong negative auto-correlations leading to
the faster convergence of Monte Carlo averages. It is conjectured that this
property is related to the edge of chaos characterization of herding, and that
both stochastic systems (such as samplers) as well as fully chaotic systems
will always generate samples that can at most result in O(1/

p
T ) convergence

of Monte Carlo averages.
Similar to “perturb and map” (Papandreou and Yuille, 2011), the execu-

tion of the herding map requires one to compute the maximum a posteriori
(MAP) state defined by the current parameter setting. While maximization
is sometimes easier than computing the expectations required to update the
parameters of an MRF, for complex models maximization can also be NP
hard. A natural question is therefore if one can relax the requirement of
finding the MAP state and get away with partial maximization to, say, a
local maximum instead of the global maximum. The answer to this ques-
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tion comes from a theorem that was proven a long time ago in the context
of Rosenblatt’s perceptron (Rosenblatt, 1958) and is known as the “per-
ceptron cycling theorem” (PCT) (Minsky and Papert, 1969). This theorem
states precisely which conditions need to be fulfilled by herding at every
iteration in order for the algorithm to satisfy the moment constraints. The
PCT therefore allows us to relax the condition of finding the MAP state at
every iteration, and as a side e↵ect also allows us to run herding in an online
setting or with stochastic minibatches instead of the entire dataset. A fur-
ther relaxation of the herding conditions was described in Chen et al. (2014)
where it was shown that herding with inconsistent moments as input (mo-
ments that can not be generated by a single joint probability distribution)
still makes sense and generates the Euclidean projections of these moments
on the marginal polytope.

Like MRF models can be extended to models with hidden variables and to
discriminative models such as the conditional Markov random field (CRF)
models, herding can also be generalized along these same dimensions. Herd-
ing with hidden variables was described in Welling (2009b) and shown to
increase the ability of this dynamical system to represent complex dependen-
cies. Conditional herding was described in Gelfand et al. (2010) and shown
to be equivalent to the voted perceptron algorithm Freund and Schapire
(1999) and to Collins’ “voted HMM” Collins (2002) in certain special cases.
The herding view allowed the extension of these discriminative models to
include hidden variables.

Herding is related to (or has been connected to) a number of optimiza-
tion, learning and inference methods. Herding has obvious similarities to the
concept of “fast weights” introduced by Tieleman and Hinton (2009). Fast
weights follow a dynamics that is designed to make the Markov chain embed-
ded in a MRF learning process mix fast. A similar idea was used in Breuleux
et al. (2011) to speed up the mixing rate of an (approximate) sampling pro-
cedure. By applying herding dynamics conditionally w.r.t. its parent-states
for every variable in a graphical model yet another fast mixing sampling al-
gorithm was developed, called “herded Gibbs” Bornn et al. (2013). Herding
was extended in Chen et al. (2010) to a deterministic sampling algorithm
in continuous state spaces (known as “kernel herding”). The view espoused
in that paper led to an analysis of herding as a conditional gradient opti-
mization algorithm (or Franke-Wolfe algorithm) in Bach et al. (2012) from
which an improved convergence analysis emerged as well generalizations to
versions of herding with non-uniform weights. In related work of Huszar and
Duvenaud (2012) it was shown that an optimally weighted version of (ker-
nel) herding is equivalent to Bayesian quadrature, again resulting in faster
convergence. Harvey and Samadi (2014) focused on the convergence rate of
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herding with respect to the dimensionality of the feature vector and pro-
posed a new algorithm that scaled near-optimally with the dimensionality.

Perhaps the method closest related to herding is “perturb and map” esti-
mation, where the parameters of a MRF model are perturbed by sampling
from a Gumbel distribution followed by maximization over the states. Like
in herded Gibbs, the procedure is only “exact” if exponentially many pa-
rameters are perturbed. Herding is however di↵erent from perturb and map
in that the perturbations are generated sequentially and deterministically.

This chapter is built on the results reported earlier in a series of conference
papers Welling (2009a,b); Welling and Chen (2010); Chen et al. (2010);
Gelfand et al. (2010). Our current understanding of herding is far from
comprehensive but rather represents a first attempt to connect learning
systems with the theory of nonlinear dynamical systems and chaos. We
believe that it opens the door to many new directions of research with
potentially surprising and exciting discoveries.

The chapter is organized as follows. In Section 4.2 we introduce the herd-
ing algorithm and study its statistical property as both a learning algorithm
and a dynamical system. In Section 4.3 we provide a general condition for
herding to satisfy the fast moment matching properties, under which the
algorithm is extended for partially observed models and discriminative mod-
els. We evaluate the performance of the introduced algorithms empirically
in Section 6.4. The chapter is concluded with a summary in Section 4.5 and
a conclusion in Section 4.6.

4.2 Herding Model Parameters

4.2.1 The Maximum Entropy Problem and Markov Random Fields

Define x 2 X to be a random variable in the domain X, and � = {�
↵

(x)} to
be a set of feature functions of x, indexed by ↵. In the maximum entropy
problem (MaxEnt), given a data set of D observations D = {x

i

}D
i=1, we

want to learn a probability distribution over x, P (x), such that the expected
features, a.k.a. moments, match the average value observed in the data set,
denoted by �̄

↵

. For the remaining degrees of freedom in the distribution
we assume maximum ignorance which is expressed as maximum entropy.
Mathematically, the problem is to find a distribution P such that:

P = arg max
P

H(P) s.t. E
x⇠P[�

↵

(x)] = �̄
↵

, 8↵ (4.1)

The dual form of the MaxEnt problem is known to be equivalent to finding
the maximum likelihood estimate (MLE) of the parameters w = {w

↵

} of a
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Markov Random Field (MRF) defined on x, each parameter associated with
one feature �

↵

:

wMLE = arg max
w

P (D;w) = arg max
w

D

Y

i=1

P (x
i

;w), (4.2)

P (x;w) =
1

Z(w)
exp

 

X

↵

w
↵

�
↵

(x)

!

, (4.3)

where the normalization term Z(w) =
P

x

exp(
P

↵

w
↵

�
↵

(x)) is also called
the partition function. The parameters {w

↵

} act as Lagrange multipliers to
enforce the constraints in the primal form 4.1. Since they assign di↵erent
weights to the features in the dual form, we will also called them “weights”
below.

It is generally intractable to obtain the MLE of parameters because the
partition function involves computing the sum of potentially exponentially
many states. Take the gradient descent optimization algorithm for example.
Denote the average log-likelihood per data item by

`(w)
def
=

1

D

D

X

i=1

log P (x
i

;w) = wT

�̄� log Z(w) (4.4)

The gradient descent algorithm searches for the maximum of ` with the
following update step:

w
t+1 = w

t

+ ⌘(�̄� E
x⇠P (x;w

t

)[�(x)]) (4.5)

Notice however that the second term in the gradient that averages over
the model distribution, E

P (x;w)[�(x)], is derived from the partition function
and cannot be computed e�ciently in general. A common solution is to
approximate that quantity by drawing samples using Markov chain Monte
Carlo (MCMC) at each gradient descent step. However, MCMC is known to
su↵er from slow mixing when the state distribution has multiple modes or
variables are strongly correlated (Neal, 1993). Furthermore, we can usually
a↵ord to run MCMC for only a few iterations in the nested loop for the sake
of e�ciency (Neal, 1992; Tieleman, 2008), which makes it even harder to
obtain an accurate estimate of the gradient.

Even when the MRF is well trained, it is usually di�cult to apply the
model to regular tasks such as inference, density estimation, and model
selection, because all of those tasks require the computation of the par-
tition function. One has to once more resort to running MCMC or other
approximate inference methods during the prediction phase to obtain an
approximation.
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Is there a method to speed up the inference step that exists in both the
training and test phases? The herding algorithm was proposed to address
the slow mixing problem of MCMC and combine the execution of MCMC
in both training and prediction phases into a single process.

4.2.2 Learning MRFs with Herding

When there exist multiple local modes in a model distribution, an MCMC
sampler is prone to getting stuck in local modes and it becomes di�cult to
explore the state space e�ciently. However, that is not a serious issue at
the beginning of the MRF learning procedure as observed by, for example,
Tieleman and Hinton (2009). This is because the parameters keep being
updated with a large learning rate ⌘ at the beginning. Specifically, when the
expected feature vector is approximated by a set of samples E

P (x;w)[�(x)] ⇡
1
M

P

M

m=1�(x
m

) in the MCMC approach, after each update in Equation 4.5,
the parameter w is translated along the direction that tends to reduce the
inner product of wT

�(x
m

), and thereby reduces the state probability around
the region of the current samples. This change in the state distribution helps
the MCMC sampler escape local optima and mix faster.

This observation suggests that we can speed up the MCMC algorithm by
updating the target distribution itself with a large learning rate. However,
in order to converge to a point estimate of a model, ⌘ needs to be decreased
using some suitable annealing schedule. But one may ask if we are necessarily
interested in a fixed value for the model parameters? As discussed in the
previous subsection, for many applications one needs to compute averages
over the (converged) model which are intractable anyway. In that case, a
sequence of samples to approximate the averages is all we need. It then
becomes a waste of resources and time to nail down a single point estimate
of the parameters by decreasing ⌘ when a sequence of samples is already
available. We will actually kill two birds with one stone by obtaining samples
during the training phase and reuse them for making predictions. The idea
of the herding algorithm originates from this observation.

The herding algorithm proposed in Welling (2009a) can be considered as
an algorithm that runs a gradient descent algorithm with a constant learning
rate on an MRF in the zero-temperature limit. Define the distribution of an
MRF with a temperature by replacing w with w/T , where T is an artificial
temperature variable. The log-likelihood of a model (multiplied by T ) then
becomes:

`
T

(w) = wT

�̄� T log

 

X

x

exp

 

X

↵

w
↵

T
�
↵

(x)

!!

(4.6)
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When T approaches 0, all the probability is absorbed into the most
probable state, denoted as s, and the expectation of the feature vector, �̄,
equals that of state s. The herding algorithm then consists of the iterative
gradient descent updates in the limit, T ! 0, with a constant learning rate,
⌘:

s
t

= arg max
x

X

↵

w
↵,t�1�↵

(x) (4.7)

w
t

= w
t�1 + ⌘(�̄� �(s

t

)) (4.8)

We usually set ⌘ = 1 except when mentioned explicitly because the herding
dynamics is invariant to the learning rate as explained in Section 4.2.3.
We treat the sequence of most probable states, {s

t

}, as a set of “samples”
for herding and use it for inference tasks. At each iteration, we find the
most probable state in the current model distribution deterministically, and
update the parameter towards the average feature vector from the training
data subtracted by the feature vector of the current sample. Compared
to maintaining a set of random samples in the MCMC approach (see e.g.
Tieleman, 2008), updating w with a single sample state facilitates updating
the distribution at an even rate.

If we divide both sides of Equation 4.8 by T and redefine w

T

! w0 in both
Equations 4.7-4.8,

w
t+1

T
=

w
t

T
+

⌘

T
(�̄� E

x⇠P (x;wt

T

)[�(x)]) (4.9)

we see that, after taking the limit T ! 1, we can interpret herding
as maximum likelihood learning with infinitely large stepsize and rescaled
weights. The surprising observation is that the state sequence {s

t

} generated
by this process is still meaningful and can be interpreted as approximate
samples from an MRF model with the correct moment constraints on the
features �(x).

One can obtain an intuitive impression of the dynamics of herding by
looking at the change in the asymptotic behavior of the gradient descent
algorithm as we decrease T in Equation 4.9 from a large value towards
0. Assume that we can compute the expected feature vector w.r.t. the
model exactly. Given an initial value of w, the gradient descent update
equation 4.9 with a constant learning rate is a deterministic mapping in
the parameter space. When T is large enough (⌘/T is small enough), the
optimization process will converge and w/T will approach a single point
which is the MLE. As T decreases below some threshold (⌘/T is above some
threshold), the convergence condition is violated and the trajectory of w

t

will move asymptotically into an oscillation between two points, that is,
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Figure 4.1: Attractor bifurcation for a model with 4 states and 2-dimensional
feature vectors. Left: Asymptotic period of the weight sequence (i.e. size of the
attractor set) repeatedly doubles as the temperature decreases towards a threshold
value (right to left). T

thresh

⇡ 0.116 in this example. The dynamics transits from
periodic to aperiodic at that threshold. Right: The evolution of the attractor set of
the weight sequence. As the temperature decreases (from dark to light colors), the
attractor set split from a single point to two points, then to four, to eight, etc. The
black dot cloud in the background is the attractor set at T = 0.

the attractor set splits from a single point into two points. As T decreases
further, the asymptotic oscillation period doubles from two to four, four
to eight, etc, and eventually the process approaches an infinite period at
another temperature threshold. Figure 4.1 shows an example of the attractor
bifurcation phenomenon. The example model has 4 discrete states and each
state is associated with 2 real valued features which are randomly sampled
from N(0, 1). Starting from that second threshold, the trajectory of w is still
bounded in a finite region as shown shortly in Section 4.3.1 but will not be
periodic any more. Instead, we observe that the dynamics often converges to
a fractal attractor set as shown in the right plot of Figure 4.1. The bifurcation
process is observed very often in simulated models although it is not clear
to us if it always happens for any discrete MRF. We discuss the dynamics
related to this phenomenon in more detail in Section 4.2.6.

4.2.3 Tipi Function and Basic Properties of Herding

We will discuss a few distinguishing properties of the herding algorithm in
this subsection. When we take the zero temperature limit in Equation 4.6,
the log-likelihood function becomes

`0(w) = wT

�̄�max
x

⇥

wT

�(x)
⇤

(4.10)
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Figure 4.2: “Tipi function”(Welling, 2009a): the log-likelihood function at the zero
temperature limit. The black dots show the attractor set of the sequence of w

t

.

This function has a number of interesting properties that justify the name
“Tipi function”1 (see Figure 4.2) (Welling, 2009a):

1. `0 is continuous piecewise linear (C0 but not C1). It is clearly linear in
w as long as the maximizing state s does not change. However, changing w
may in fact change the maximizing state in which case the gradient changes
discontinuously.

2. `0 is a concave, non-positive function of w with a maximum at `0(0) = 0.
This is true because the first term represents the average E

P

[wT

�(x)] over
some distribution P, while the second term is its maximum. Therefore, ` 5 0.
If we furthermore assume that � is not constant on the support of P then
`0 < 0 and the maximum at w = 0 is unique. Concavity follows because the
first term is linear and the second maximization term is convex.

3. `0 is scale free. This follows because `0(�w) = �`0(w), 8� � 0 as can be
easily checked. This means that the function has exactly the same structure
at any scale of w.

Herding runs gradient descent optimization on this Tipi function. There is
no need to search for the maximum as w = 0 is the trivial solution. However,
the fixed learning rate will always result in a perpetual overshooting of the
maximum and thus the sequence of weights will never converge to a fixed
point. Every flat face of the Tipi function is associated with a state. An
important property of herding is that the state sequence visited by the

1. A Tipi is a traditional native Indian dwelling.
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gradient descent procedure satisfies the moment matching constraints in
Equation 4.1, which will be discussed in details in Section 4.2.5. There are
a few more properties of this procedure that are worth noticing.

Deterministic Nonlinear Dynamics

Herding is a deterministic nonlinear dynamical system. In contrast to the
stochastic MLE learning algorithm based on MCMC, the two update steps
in Equation 4.7 and 4.8 consist of a nonlinear deterministic mapping of
the weights as illustrated in Figure 4.3. In particular it is not an MCMC
procedure and it does not require random number generation.

The dynamics thus produces pseudo-samples that look random, but should
not be interpreted as random samples. Although reminiscent of the Bayesian
approach, the weights generated during this dynamics should not be in-
terpreted as samples from some Bayesian posterior distribution. We will
discuss the weakly chaotic behavior of the herding dynamics in detail in
Section 4.2.6.

Figure 4.3: Herding as a nonlinear dynamical system.

Invariance to the Learning Rate

Varying the learning rate ⌘ does not change the behavior of the herding
dynamics. The only e↵ect is to change the scale of the invariant attractor
set of the sequence w

t

. This actually follows naturally from the scale-free
property of the Tipi function. More precisely, denote with v

t

the standard
herding sequence with ⌘ = 1 and w

t

the sequence with an arbitrary learning
rate. It is easy to see that if we initialize v

t=0 = 1
⌘

w
t=0 and apply the

respective herding updates for w
t

and v
t

afterwards, the relation v
t

= 1
⌘

w
t

will remain true for all t > 0. In particular, the states s
t

will be the same
for both sequences. Therefore we simply set ⌘ = 1 in the herding algorithm.
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Of course, if one initializes both sequences with arbitrary di↵erent values,
then the state sequences will not be identical. However, if one accepts
the conjecture that there is a unique invariant attractor set, then this
di↵erence can be interpreted as a di↵erence in initialization which only
a↵ects the transient behavior (or “burn-in” behavior) but not the (marginal)
distribution P (s) from which the states s

t

will be sampled.
Notice however that if we assign di↵erent learning rates {⌘

↵

} across the
dimensions of the weight vector {w

↵

}, it will change the distribution P (s).
While the moment matching constraints are still satisfied, we notice that
the entropy of the sample distribution varies as a function of {⌘

↵

}. In fact,
changing the relative ratio of learning rates among feature dimensions is
equivalent to scaling features with di↵erent factors in the greedy moment
matching algorithm interpretation of Section 4.2.4. How to choose an optimal
set of learning rates is still an open problem.

Negative Auto-correlation

A key advantage of the herding algorithm we observed in practice over sam-
pling using a Markov chain is that the dynamical system mixes very rapidly
over the attractor set. This is attributed to the fact that maximizations are
performed on an ever changing model distribution as briefly mentioned at
the beginning of this subsection. Let ⇡(x) be the distribution of training
data D, and s

t

be the maximizing state at time t. The distribution of an
MRF at time t with a regular temperature T = 1 is

P (x;w
t�1) / exp(wT

t�1�(x)) (4.11)

After the weights are updated with Equation 4.8, the probability of the new
model becomes

P (x;w
t

) / exp(wT

t

�(x)) = exp((w
t�1 + �̄� �(s

t

))T�(x))

= exp

0

@wT

t�1�(x) +
X

y 6=s

t

⇡(y)�(y)T�(x)� (1� ⇡(s
t

))�(s
t

)T�(x)

1

A

(4.12)

Comparing Equation 4.12 with 4.11 we see that probable states (with large
⇡(x)) are rewarded with an extra positive term ⇡(x)�(x)T�(x), except the
most recently sampled state s

t

. This will have the e↵ect (after normalization)
that state s

t

will have a smaller probability of being selected again. Imagine
for instance that the sampler is stuck at a local mode. After drawing samples
at that mode for a while, weights are updated to gradually reduce that mode
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and help the sampler escape it. The resulting negative auto-correlation would
help mitigate the notorious problem of positive auto-correlation in most
MCMC methods.

We illustrate the negative auto-correlation using a synthetic MRF with
10 discrete states, each associated with a 7-dimensional feature vector. The
parameters of the MRF model are randomly generated from which the
expected feature values are then computed analytically and fed into the
herding algorithm to draw T = 105 samples. We define the auto-correlation
of the sample sequence of discrete variables as follows:

R(t) =
1

T�t

P

T�t

⌧=1 I[s
⌧

= s
⌧+t

]�P
s

1
2 tP (s)2

1�P
s

1
2 tP (s)2

(4.13)

where I is the indication function and 1
2 tP is the empirical distribution

of the 105 samples. It is easy to observe that R(t = 0) = 1 and if the
samples are independently distributed R(t) = 0, 8t > 0 up to a small
error due to the finite sample size. We run herding 100 times with di↵erent
model parameters and show the mean and standard deviation of the auto-
correlation in Figure 4.4. We can see that the auto-correlation is negative
for neighboring samples, and converges to 0 as the time lag increases. This
e↵ect exists even if we use a local optimization algorithm when a global
optimum is hard or expensive to be obtained. This type of “self-avoidance”
is also shared with other sampling methods such as over-relaxation (Young,
1954), fast-weights PCD (Tieleman and Hinton, 2009) and adaptive MCMC
(Salakhutdinov, 2010).
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Figure 4.4: Negative auto-correlation of herding samples from a synthetic MRF.
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4.2.4 Herding as a Greedy Moment Matching Algorithm

As herding does not obtain the MLE, the distribution of the generated sam-
ples does not provide a solution to the maximum entropy problem either.
However, we observe that the moment matching constraints in Equation 4.1
are still respected, that is, when we compute the sampling average of the
feature vector it will converge to the input moments. Furthermore, the neg-
ative auto-correlation in the sample sequence helps to achieve a convergence
rate that is faster than what one would get from independently drawing
samples or running MCMC at the MLE. Before providing any quantitative
results, it would be easier for us to understand herding intuitively by taking
a “dual view” of its dynamics where we remove weights w in favor of the
states x (Chen et al., 2010).

Notice that the expression of w
T

can be expanded recursively using the
update Equation 4.8:

w
T

= w0 + T �̄�
T

X

t=1

�(s
t

) (4.14)

Plugging 4.14 into Equation 4.7 results in

s
T+1 = arg max

x

hw0,�(x)i+ T h�̄,�(x)i �
T

X

t=1

h�(s
t

),�(x)i (4.15)

For ease of intuitive understanding of herding, we temporarily make the
assumptions (which are not necessary for the propositions to hold in the
next subsection):

1. w0 = �̄

2. k�(x)k2 = R, 8x 2 X

The second assumption is easily achieved, e.g. by renormalizing �(x)  
�(x)

k�(x)k or by choosing a suitable feature map � in the first place. Given the
first assumption, Equation 4.15 becomes

s
T+1 = arg max

x

h�̄,�(x)i � 1

T + 1

T

X

t=1

h�(s
t

),�(x)i (4.16)

Combining the second assumption one can show that the herding update
equation 4.16 is equivalent to greedily minimizing the squared error E2

T
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Figure 4.5: Herding as an infinite memory process on samples.

defined as

E2
T

def
=

�

�

�

�

�

�̄� 1

T

T

X

t=1

�(s
t

)

�

�

�

�

�

2

(4.17)

We therefore see that herding will generate pseudo-samples that greedily
minimize the distance between the input moments and the sampling average
of the feature vector at every iteration (conditioned on past samples). Note
that the error function is unfortunately not submodular and the greedy
procedure does not imply that the total collection of samples at iteration T is
jointly optimal (see Huszar and Duvenaud (2012) for a detailed discussion).
We also note that herding is an “infinite memory process” on s

t

(as opposed
to a Markov process) illustrated in Figure 4.5 because new samples depend
on the entire history of samples generated thus far.

4.2.5 Moment Matching Property

With the dual view in the previous subsection, the distance between the
moments and their sampling average in Equation 4.17 can be considered as
the objective function for the herding algorithm to minimize. We discuss
in this subsection under what condition and at what speed the moment
constraints will be eventually satisfied.

Proposition 4.1 (Proposition 1 in Welling (2009a)). 8↵,
if lim

⌧!1
1

⌧
w
↵⌧

= 0, then lim
⌧!1

1

⌧

P

⌧

t=1 �
↵

(s
t

) = �̄
↵

.

Proof. Following Equation 4.14, we have

1

⌧
w
↵⌧

� 1

⌧
w
↵0 = �̄

↵

� 1

⌧

⌧

X

t=1

�
↵

(s
t

) (4.18)

Using the premise that the weights grow slower than linearly and observing
that w

↵0 is constant we see that the left hand term vanishes in the limit
⌧ !1 which proves the result.
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What this says is that under the very general assumption that the weights
do not grow linearly to infinity (note that due to the finite learning rate
they can not grow faster than linear either), the moment constraints will
be satisfied by the samples collected from the combined learning/sampling
procedure. In fact, we will show later that the weights are restricted in a
bounded region, which leads to a convergence rate of O(1/⌧) as stated below.

Proposition 4.2. 8↵, if there exists a constant R such that |w
↵,t

|  R, 8t,
then

�

�

�

�

�

1

⌧

⌧

X

t=1

�
↵

(s
t

)� �̄
↵

�

�

�

�

�

 2R

⌧
.

The proof follows immediately Equation 4.18.
Note that if we want to estimate the expected feature of a trained

MRF by a Monte Carlo method, the optimal standard deviation of the
approximation error with independent and identically distributed (i.i.d.)
random samples decays as O( 1p

⌧

), where ⌧ is the number of samples.
(For positively autocorrelated MCMC methods this rate could be even
slower.) Samples from herding therefore achieve a faster convergence rate
in estimating moments than i.i.d. samples.

Recurrence of the Weight Sequence

It is important to ensure that the herding dynamics does not diverge to
infinity. Welling (2009a) discovered an important property of herding, known
as recurrence, that the sequence of the weights is confined in a ball in the
parameter space. This property satisfies the premise of both Proposition 2.1
and 2.2. It was stated in a corollary of Proposition 4.3:

Proposition 4.3 (Proposition 2 in Welling (2009a)). 9R such that a herding
update performed outside this radius will always decrease the norm kwk2.
Corollary 4.4 (Corollary in Welling (2009a)). 9R0 such that a herding
algorithm initialized inside a ball with that radius will never generate weights
w with norm kwk2 > R0.

However, there was a gap in the proof of Proposition 2 in Welling (2009a).
We give the corrected proof below:
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Proof of Proposition 4.3. Write the herding update equation 4.8 as w
t

=
w

t�1 +r
w

`0(wt�1) (set ⌘ = 1). Expanding the squared norm of w
t

leads to

kw
t

k22 = kw
t�1k22 + 2wT

t�1rw

`0(wt�1) + kr
w

`0(wt�1)k22
=) �kwk22 < 2`0(wt�1) + B2 (4.19)

where we define �kwk22 = kw
t

k22 � kwt�1k22. B is an upper bound of
{kr

w

`0(w)k2 : w 2 R|w|} introduced in Lemma 1 of Welling (2009a). That
exists as long as the norm of the feature vector �(x) is bounded in X. We
also use the fact that `0(w) = wTr

w

`0(w).
Denote the unit hypersphere as U = {w|kwk22 = 1}. Since `0 is continuous

on U and U is a bounded closed set, `0 can achieve its supremum on U , that
is, we can find a maximum point w⇤ on U where `0(w⇤) � `0(w), 8w 2 U .

Combining this with the fact that `0 < 0 outside the origin, we know
the maximum of `0 on U is negative. Now taking into account the fact
that B is constant (i.e. does not scale with w), there exists some constant
R for which R`0(w⇤) < �B2/2. Together with the scaling property of `0,
`0(�w) = �`0(w), we can prove that for any w with a norm larger than R,
`0 is smaller then �B2/2:

`0(w) = kwk2`0(w/kwk2)  R`0(w
⇤) < �B2/2, 8kwk2 > R (4.20)

The proof is concluded by plugging the inequality above in Equation 4.19.

Corollary 4.4 proves the existence of a bound for kwk2 and thereby the
constant R in Proposition 4.2. Harvey and Samadi (2014) further studied
the value of R and proposed a variant of herding that obtained a near-
optimal value for R = O(

p
d log2.5 kXk) w.r.t. the dimensionality of the

feature vector d and the size of a finite state space X. The proposed algorithm
has a polynomial time complexity in d and kXk.

The Remaining Degrees of Freedom

Both the herding and the MaxEnt methods match the moments of the
training data. But how does herding control the remaining degrees of
freedom that are otherwise controlled by maximizing the entropy in the
MaxEnt method? This is unfortunately still an open problem. Apart from
some heuristics there is currently no principled way to enforce high entropy.
In practice however, in discrete state spaces we usually observe that the
sampling distribution from herding renders high entropy. We illustrate the
behavior of herding in the example of simulating an Ising model in the next
paragraph.
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An Ising model is an MRF defined on a lattice of binary nodes, G = (E, V ),
with biases and pairwise features. The probability distribution is expressed
as

P (x) =
1

Z
exp

0

@�

0

@

X

(i,j)2E

J
i,j

x
i

x
j

+
X

i2V
h
i

x
i

1

A

1

A , x
i

2 {�1, 1}, 8i 2 V

(4.21)

where h
i

is the bias parameter, J
i,j

is the pairwise parameter and � � 0 is
the inverse temperature variable. When h

i

= 0, J
i,j

= 1 for all nodes and
edges, and � is set at the inverse critical temperature, the Ising model is
said to be at a critical phase where regular sampling algorithms fail due to
long range correlations among variables. A special algorithm, the Swendsen-
Wang algorithm (Swendsen and Wang, 1987), was designed to draw samples
e�ciently in this case. In order to run herding on the Ising model, we need
to know the average features, x̄

i

(0 in this case) and x
i

x
j

instead of the
MRF parameters. So we first run the Swendsen-Wang algorithm to obtain
an estimate of the expected cross terms, x

i

x
j

, which are constant across all
edges, and then run herding with weights for every node w

i

and edge w
i,j

.
The update equations are:

s
t

= argmax
x

X

(i,j)2E

w(i,j),t�1xi

x
j

+
X

i2V
w
i,t�1xi

(4.22)

w(i,j),t = w(i,j),t�1 + x
i

x
j

� s
i,t

s
j,t

(4.23)

w
i,t

= w
i,t�1 � s

i,t

(4.24)

As finding the global optimum is an NP-hard problem we find a local
maximum for s

t

by coordinate descent2. Figure 4.6 shows a sample from
an Ising model on an 100 ⇥ 100 lattice at the critical temperature. We do
not observe qualitative di↵erence between the samples generated by the Ising
model (MaxEnt) and herding, which suggests that the sample distribution
of herding may be very close to the distribution of the MRF. Furthermore,
Figure 4.7 shows the distribution of the size of connected components in the
samples. It is known that this distribution should obey a power law at the
critical temperature. We find that samples from both methods exhibit the
power law distribution with an almost identical exponent.

2. In Section 4.3.2 we show that the moment matching property still holds with a local
search as long as the found state is better than the average.
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(a) Generated by Swendsen-Wang (b) Generated by Herding

Figure 4.6: Sample from an Ising model on an 100 ⇥ 100 lattice at the critical
temperature.
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Figure 4.7: Histogram of the size of connected components in the samples of the
Ising model at the critical temperature.

4.2.6 Learning Using Weak Chaos

There are two theoretical frameworks for statistical inference: the frequentist
and the Bayesian paradigm. A frequentist assumes a true objective value
for some parameter and tries to estimate its value from samples. Except
for the simplest models, estimation usually involves an iterative procedure
where the value of the parameter is estimated with increasing precision. In
information theoretic terms, this means that more and more information
from the data is accumulated in more decimal places of the estimate. With
a finite data-set, this process should stop at some scale because there is
not enough information in the data that can be transferred into the decimal
places of the parameter. If we continue anyway, we will overfit to the dataset
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at hand. In a Bayesian setting we entertain a posterior distribution over
parameters, the spread, or more technically speaking, entropy, of which
determines the amount of information it encodes. In Bayesian estimation,
the spread automatically adapts itself to the amount of available information
in the data. In both cases, the learning process itself can be viewed as
a dynamical system. For a frequentist this means a convergent series of
parameter estimates indexed by the learning iteration w1,w2, . . . . For a
Bayesian running a MCMC procedure this means a stochastic process
converging to some equilibrium distribution. Herding introduces a third
possibility by encoding all the information in a deterministic nonlinear
dynamical system. We focus on studying the weakly chaotic behavior of
the herding dynamics in this subsection. The sequence of weights never
converges but traces out a quasi-periodic trajectory on an attractor set which
is often found to be of fractal dimension. In the language of iterated maps,
w

t+1 = F (w
t

), a (frequentist) optimization of some objective results in an
attractor set that is a single point, Bayesian posterior inference results in a
(posterior) probability distribution while herding will result in a (possibly
fractal) attractor set which seems harder to meaningfully interpret as a
probability distribution.

Example: Herding a Single Neuron

We first study an example of the herding dynamics in its simplest form and
show its equivalence to some well-studied theories in mathematics. Consider
a single (artificial) neuron, which can take on two distinct states: either
it fires (x = 1) or it does not fire (x = 0). Assume that we want to
simulate the activity of a neuron with an irrational firing rate, ⇡ 2 [0, 1],
that is, the average firing frequency approaches lim

T!1
1
T

P

T

t=1 s
t

= ⇡. We
can achieve that by applying the herding algorithm with a one-dimensional
feature �(x) = x and feeding the input moment with the desired rate �̄ = ⇡.
Applying the update equations 4.7-4.8 we get the following dynamics:

s
t

= I(w
t�1 > 0) (4.25)

w
t

= w
t�1 + ⇡ � s

t

(4.26)

where I[·] is the indicator function. With the moment matching property
we can show immediately that the firing rate converges to the desired
value ⇡ for any initial value of w. The update equations are illustrated in
Figure 4.8. This dynamics is a simple type of interval translation mapping
(ITM) problem in mathematics (Boshernitzan and Kornfeld, 1995). In a
general ITM problem, the invariant set of the dynamics often has a fractal
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Figure 4.8: Herding dynamics for a single binary variable. At every iteration the
weight is first increased by ⇡. If w was originally positive, it is then depressed by 1.

dimension. But for this simple case, the invariant set is the entire interval
(⇡ � 1, ⇡] if ⇡ is an irrational number and a finite set if it is rational. As a
neuron model, one can think of w

t

as a “synaptic strength.” At each iteration
the synaptic strength increases by an amount ⇡. When the synaptic strength
rises above 0, the neuron fires. If it fires its synaptic strength is depressed
by a factor 1. The value of w0 only has some e↵ect on the transient behavior
of the resulting sequence s1, s2, . . . .

It is perhaps interesting to note that by setting ⇡ = ' with ' the golden
mean ' = 1

2(
p

5� 1) and initializing the weights at w0 = 2'� 1, we exactly
generate the “Rabbit Sequence”: a well studied Sturmian sequence which
is intimately related with Fibonacci numbers3). In Figure 4.9 we plot the
weights (a) and the states (b) resulting from herding with the “Fibonacci
neuron” model. For a proof, please see Welling and Chen (2010).

When initializing w0 = 0, one may think of the synaptic strength as an
error potential that keeps track of the total error so far. One can further
show that the sequence of states is a discrete low discrepancy sequence
(Angel et al., 2009) in the following sense:

Proposition 4.5. If w is the weight of the herding dynamics for a single
binary variable x with probability P (x = 1) = ⇡, and w

⌧

2 (⇡�1, ⇡] at some
step ⌧ � 0, then w

t

2 (⇡ � 1, ⇡], 8t � ⌧ . Moreover, for T 2 N, we have:
�

�

�

�

�

⌧+T

X

t=⌧+1

I[s
t

= 1]� T⇡

�

�

�

�

�

 1,
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�
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�

⌧+T

X

t=⌧+1

I[s
t

= 0]� T (1� ⇡)

�

�

�

�

�

 1 (4.27)

Proof. We first show that (⇡ � 1, ⇡] is the invariant interval for herding
dynamics. Denote the mapping of the weight in Equation 4.25 and 4.26 as

3. Imagine two types of rabbits: young rabbits (0) and adult rabbits (1). At each new
generation the young rabbits grow up (0 ! 1) and old rabbits produce o↵spring (1 ! 10).
Recursively applying these rules we produce the rabbit sequence: 0 ! 1 ! 10 ! 101 !
10110 ! 10110101 etc. The total number of terms of these sequences and incidentally
also the total number of 1’s (lagged by one iteration) constitutes the Fibonacci sequence:
1, 1, 2, 3, 5, 8, ....
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Figure 4.9: Sequence of weights and states generated by the “Fibonacci neuron”
based on herding dynamics. Left: Sequence of weight values. Note that the state
results by checking if the weight value is larger than 0 (in which case s

t

= 1) or
smaller than 0 (in which case s

t

= 0). By initializing the weights at w0 = 2' � 1
and using ⇡ = ', with ' the golden mean, we obtain the Rabbit sequence (see
main text). Right: Top stripes show the first 30 iterates of the sequence obtained
with herding. For comparison we also show the Rabbit sequence below it (white
indicates 1 and black indicates 0). Note that these two sequences are identical.

T. Then we can see that the interval (⇡ � 1, ⇡] is mapped to itself as

T(⇡�1, ⇡] = T(⇡�1, 0][T(0, ⇡] = (2⇡�1, ⇡][(⇡�1, 2⇡�1] = (⇡�1, ⇡] (4.28)

Consequently when w
⌧

falls inside the invariant interval, we have w
t

2
(⇡ � 1, ⇡], 8t � ⌧ . Now summing up both sides of Equation 4.26 over t
immediately gives us the first inequality in 4.27 as:

T⇡ �
⌧+T

X

t=⌧+1

I[s
t

= 1] = w
⌧+T

� w
⌧

2 [�1, 1]. (4.29)

The second inequality follows by observing that I[s
t

= 0] = 1�I[s
t

= 1].

As a corollary of Proposition 4.5, when we initialize w0 = ⇡� 1/2, we can
improve the bound of the discrepancy by a half.

Corollary 4.6. If w is the weight of the herding dynamics in Proposition
4.5 and it is initialized at w0 = ⇡ � 1/2, then for T 2 N, we have:
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(4.30)

The proof immediately follows Equation 4.29 by plugging ⌧ = 0 and
w0 = ⇡ � 1/2. In fact, setting w0 = ⇡ � 1/2 corresponds to the condition
in the greedy algorithm interpretation in Section 4.2.4. One can see this
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by constructing an equivalent herding dynamics with a feature of constant
norm as:

�0(x) =

(

1 if x = 1

�1 if x = 0
(4.31)

When initializing the weight at the moment w0
0 = �̄0 = 2⇡ � 1, one

can verify that this dynamics generates the same sample sequence as the
original one and their weights are the same up to a constant factor of 2,
i.e. w0

t

= 2w
t

, 8t � 0. The new dynamics satisfies the two assumptions in
Section 4.2.4 and therefore the sample sequences in both dynamical systems
greedily minimize the error of the empirical probability (up to a constant
factor):
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(4.32)

This greedy algorithm actually achieves the optimal bound one can get with
herding dynamics in the 1-neuron model, which is 1/2.

Example: Herding a Discrete State Variable

The application of herding to a binary variable can be extended naturally
to a discrete state variables. Let x be a variable that can take one of the
D states, {0, 1, . . . , D � 1}. Given any distribution over these D states in
the set ⇡ 2 RD,

P

D�1
d=0 ⇡

d

= 1, we can run herding to simulate the activity
of the discrete variable. The feature function, �(x), is defined as the 1-of-
D encoding of the discrete state, that is, a vector of D binary numbers, in
which all the numbers are 0 except for the element indexed by the value of x.
For example, for a variable with 4 states, the feature function of �(x = 3) is
[0, 0, 1, 0]. It is easy to observe that the expected value of the feature vector
under the distribution ⇡ is exactly equal to ⇡. Now, let us apply the herding
update equations with the feature map � and input moment ⇡:

s
t

= arg max
x

wT

t�1�(x) = arg max
x

w
x,t�1 (4.33)

w
t

= w
t�1 + ⇡ � �(s

t

) (4.34)

The weight variables act similarly to the synaptic strength analogy in
the neuron model example. At every iteration, the state with the highest
potential gets activated, and then the corresponding weight is depressed
after activation. Applying Proposition 4.2, we know that the empirical
distribution of the samples converges to the input distribution at a faster
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rate than one would get from random sampling:
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The dynamics of the weight vector is more complex than the case of a
binary variable in the previous subsection. However, there are still some
interesting observations one can make about the trajectory of the weights
which we explain in the appendix.

Weak Chaos in the Herding Dynamics

Now let us consider herding in a general setting with D states and each state
is associated with a K dimensional feature vector. The update equation for
the weights 4.8 can be viewed as a series of translations in the parameter
space, w ! w + ⇢(x), where each discrete state x 2 X corresponds to one
translation vector (i.e. ⇢(x) = �̄��(x)). See Figure 4.10 for an example with
D = 6 and K = 2. The parameter space is partitioned into cones emanating
from the origin, each corresponding to a state according to Equation 4.7.
If the current location of the weights is inside cone x, then one applies the
translation corresponding to that cone and moves along ⇢(x) to the next
point. This system is an example of what is known as a piecewise translation
(or piecewise isometry more generally) (Goetz, 2000).
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It is clear that this system has zero Lyapunov exponents4 everywhere (ex-
cept perhaps on the boundaries between cones but since this is a measure
zero set we will ignore these). As the evolution of the weights will remain
bounded inside some finite ball the evolution will converge to some attrac-
tor set. Moreover, the dynamics is non-periodic in the typical case (more
formally, the translation vectors must form an incommensurate (possibly
over-complete) basis set; for a proof see Appendix B of Welling and Chen
(2010)). It can often be observed that this attractor has fractal dimension
(see Figure 4.11 for an example). All these facts point to the idea that herd-
ing is on the edge between full chaos (with positive Lyapunov exponents)
and regular periodic behavior (with negative Lyapunov exponents). In fact,
herding is an example of what is called “weak chaos”, which is usually defined
through its (topological) entropy discussed below. Finally, as we have illus-
trated in Figure 4.1, one can construct a sequence of iterated maps of which
herding is the limit and which exhibits period doubling. This is yet another
characteristic of systems that are classified as “edge of chaos”. Whether the
attractor set is of fractal dimension in general remains an open question. For
the case of single neuron model, the attractor is the entire interval (⇡�1, ⇡]
if ⇡ is irrational but for systems with more states it remains unknown.

We will now estimate the entropy production rate of herding. This will
inform us further of the properties of this system and how it processes
information. From Figure 4.10 we see that the sequence s1, s2, ... can be
interpreted as the symbolic system of the continuous dynamical system
defined for the parameters w. A sequence of symbols (states) is sometimes
referred to as an “itinerary.” Every time w falls inside a cone we record
its label which equals the state x. The topological entropy for the symbolic
system can be defined by counting the total number of subsequences of
length T , which we will call M(T ). One may think of this as a dynamical
language where the subsequences are called “words” and the topological
entropy is thus related to the number of words of length T . More precisely,
the topological entropy is defined as,

h = lim
T!1

h(T ) = lim
T!1

log M(T )

T
(4.36)

4. The Lyapunov exponent of a dynamical system is a quantity that characterizes the rate
of separation of infinitesimally close trajectories. Quantitatively, two trajectories in phase
space with initial separation |�Z(0)| diverge (provided that the divergence can be treated
within the linearized approximation) at a rate given by |�Z(t)| ⇡ e�t|�Z(0)| where � is
the Lyapunov exponent.
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It was rigorously proven in Goetz (2000) that M(T ) grows polynomially in T
for general piecewise isometries, which implies that the topological entropy
vanishes for herding. It is however interesting to study the growth of M(T )
as a function of T to get a sense of how chaotic its dynamics is.

For the simplest model of a single neruon with ⇡ being an irrational
number, it turns out M(T ) = T +1, which is the absolute bare minimum for
sequences that are not eventually periodic. It implies that our neuron model
generates Sturmian sequences for irrational values of ⇡ which are precisely
defined to be the non-eventually periodic sequences of minimal complexity
(Lu and Wang, 2005). (For a proof, please see Welling and Chen (2010).)

To count the number of subsequences of length T for a general model,
we can study the T -step herding map that results from applying herding T
steps at a time. The original cones are now further subdivided into smaller
convex polygons, each one labeled with the sequence s1, s2, ..., sT that the
points inside the polygon will follow during the following T steps. Thus as we
increase T , the number of these polygons will increase and it is exactly the
number of those polygons which partition our parameter space that is equal
to the number of possible subsequences. We first claim that every polygon,
however small, will break up into smaller sub-pieces after a finite amount
of time. This is proven in Welling and Chen (2010). In fact, we expect
that in a typical herding system every pair of points will break up as well,
which, if true, would infer that the diameter of the polygons must shrink. A
partition with this property is called a generating partition. Based on some
preliminary analysis and numerical simulations, we expect that the growth of
M(T ) in the typical case (a.k.a. with an incommensurate translation basis,
see Appendix B of Welling and Chen (2010)) is a polynomial function of the
time, M(T ) ⇠ tK , where K is the number of dimensions (which is equal to
the number of herding parameters). Since it has been rigorously proven that
any piecewise isometry has a growth rate that must have an exponent less
or equal than K (Goetz, 2000), this would mean that herding achieves the
highest possible entropy within this class of systems with H(T ) = Th(T )
for a sequence of length T (for T large enough) as:

H(T ) = K log(T ) (4.37)

This result should be understood in comparison with regular and random
sequences. In a regular (constant or periodic) sequence, the number of
subsequences is constant with respect to the length, i.e. H(T ) = const. In
contrast, the dominant part of the Kolmogorov-Sinai entropy of a random
sequence (considering, e.g., a stochastic process) or a fully chaotic sequence
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grows linearly in time T , i.e. Hext(T ) = hT due to the injected random
noise.

4.3 Generalized Herding

The moment matching property in Proposition 4.1 and 4.2 requires only
a mild condition on the L2 norm of the dynamic weights. That grants us
with great flexibility in modifying the original algorithm for more practical
implementation as well as a larger spectrum of applications. Gelfand et al.
(2010) provided a general condition on the recurrence of the weight sequence,
from which we discuss how to generalize the herding algorithm in this section
with two specific examples. Chen et al. (2014) described another extension of
herding that violated the condition but it achieved the minimum matching
distance instead in a constrained problem.

4.3.1 A General Condition for Recurrence - The Perceptron Cycling
Theorem

The moment matching property of herding relies on the recurrence of the
weight sequence (Corollary 4.4) whose proof again relies on the premise that
the maximization is carried out exactly in the herding update equation 4.7.
However, the number of model states is usually exponentially large (e.g.
|X| = Jm when x is a vector of m discrete variables each with J values) and
it is intractable to find a global maximum in practice. A local maximizer has
to be employed instead. One wonders if the features averaged over samples
will still converge to the input moments when the samples are suboptimal
states? In this subsection we give a general and verifiable condition for the
recurrence of the weight sequence based on the perceptron cycling theorem
(Minsky and Papert, 1969), which consequently suggests that the moment
matching property may still hold at the rate of O(1/T ) even with a relaxed
herding algorithm.

The invention of the perceptron (Rosenblatt, 1958) goes back to the very
beginning of AI more than half a century ago. Rosenblatt’s very simple,
neurally plausible learning rule made it an attractive algorithm for learning
relations in data: for every input x

i

, make a linear prediction about its label:
y⇤
i

t

= sign(wT

t�1xi

t

) and update the weights as,

w
t

= w
t�1 + x

i

t

(y
i

t

� y⇤
i

t

). (4.38)

A critical evaluation by Minsky and Papert (1969) revealed the perceptron’s
limited representational power. This fact is reflected in the behavior of
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Rosenblatt’s learning rule: if the data is linearly separable, then the learning
rule converges to the correct solution in a number of iterations that can
be bounded by (R/�)2, where R represents the norm of the largest input
vector and � represents the margin between the decision boundary and the
closest data-case. However, “for data sets that are not linearly separable,
the perceptron learning algorithm will never converge” (quoted from Bishop
et al. (2006)).

While the above result is true, the theorem in question has something
much more powerful to say. The “perceptron cycling theorem” (PCT)
(Minsky and Papert, 1969) states that for the inseparable case the weights
remain bounded and do not diverge to infinity. The PCT was initially
introduced in Minsky and Papert (1969) but had a gap in the proof that
was fixed in Block and Levin (1970).

Theorem 4.7 (Boundedness Theorem). Consider a sequence of vectors
{w

t

}, w
t

2 RD, t = 0, 1, . . . generated by the iterative procedure of Al-
gorithm 4.1.

Algorithm 4.1 Algorithm to generate the sequence {w
t

}.

V is a finite set of vectors in RD.
w

0

is initialized arbitrarily in RD.
for t = 0 ! T (T could be 1) do

w
t+1

= w
t

+ v
t

, where v
t

2 V satisfies wT

t

v
t

 0
end for

Then, kw
t

k  kw0k + M, 8t � 0 where M is a constant depending on V
but not on w0.

The theorem still holds when V is a finite set in a Hilbert space. The
PCT leads to the boundedness of the perceptron weights where we identify
v
t

= x
i

t+1(yit+1 � y⇤
i

t+1
), a finite set V = {x

i

(y
i

� y⇤
i

)|y
i

= ±1, y⇤
i

= ±1, i =
1, . . . , N} and observe

wT

t

v
t

= wT

t

x
i

t+1(yit+1�y⇤
i

t+1
) = |wT

t

x
i

t+1 |(sign(wT

t

x
i

t+1)yit+1�1)  0 (4.39)

When the data is linearly separable, Rosenblatt’s learning rule will find a w
such that wTv

i

= 0, 8i and the sequence of w
t

converges. Otherwise, there
always exists some v

i

such that wTv
i

< 0 and PCT guarantees the weights
are bounded.

The same theorem also applies to the herding algorithm by identifying
v
t

= �̄ � �(s
t+1) with s

t+1 defined in Equation 4.7, a finite set V =
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{�̄� �(x)|x 2 X}, and observing that

wT

t

v
t

= wT

t

�̄�wT

t

�(s
t+1)  0 (4.40)

It is now easy to see that, in general, herding does not converge because
under very mild conditions we can always find an s

t+1 such that wT

t

v
t

< 0.
More importantly, the boundedness theorem (or PCT) provides a general
condition for the recurrence property and hence the moment matching
property of herding. Inequality 4.40 is easy to be verified at running time
and does not require s

t+1 to be the global optimum.

4.3.2 Generalizing the Herding Algorithm

PCT ensures that the average features from the samples will match the
moments at a fast convergence rate as long as the algorithm we are running
satisfies the following conditions:

1. The set V is finite,

2. wT

t

v
t

= wT

t

�̄�wT

t

�(s
t

)  0, 8t,
This set of mild conditions allows us to generalize the original herding
algorithm easily.

Firstly, the PCT provides a theoretical justification for using a local search
algorithm that performs partial maximization. For example, we may start
the local search from the state we ended up in during the previous itera-
tion (a so-called persistent chain (Younes, 1989; Neal, 1992; Yuille, 2004;
Tieleman, 2008)). Or, one may consider contrastive divergence-like algo-
rithms (Hinton, 2002), in which the sampling or mean field approxima-
tion is replaced by a maximization. In this case, maximizations are ini-
tialized on all data-cases and the weights are updated by the di↵erence
between the average over the data-cases minus the average over the {s

i

}
found after (partial) maximization. In this case, the set V is given by:
V = {�̄ � 1

D

P

D

i=1�(s
i

)|s
i

2 X, 8i}. For obvious reasons, it is now guar-
anteed that wT

t

v
t

 0.
Secondly, we often use mini-batches of size d < D in practice instead

of the full data set. In this case, the cardinality of the set V is enlarged
to, e.g., |V | = C(d, D)Jm, with C(d, D) representing the “d choose D”
ways to compute the sample mean �̄(d) based on a subset of d data-
cases. The negative term remains unaltered. Since the PCT still applies:
�

�

1
⌧

P

⌧

t=1 �̄(d),t � 1
⌧

P

⌧

t=1�(s
t

)
�

�

2
= O(1/⌧). Depending on how the mini-

batches are picked, convergence onto the overall mean �̄ can be either
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O(1/
p

⌧) (random sampling with replacement) or O(1/⌧) (sampling without
replacement which has picked all data-cases after dD/de rounds).

Besides changing the way we compute the positive and negative terms in
v
t

, generalizing the definition of features will allow us to learn a much wider
scope of models beyond the fully visible MRFs as discussed in the following
sections.

4.3.3 Herding Partially Observed Random Field Models

The original herding algorithm only works for fully visible MRFs because
in order to compute the average feature vector of the training data we have
to observe the state of all the variables in a model. In this subsection, we
generalize herding to partially observed MRFs (POMRFs) by dynamically
imputing the value of latent variables in the training data during the run
of herding. This extension allows herding to be applied to models with a
higher representative capacity.

Consider a MRF with discrete random variables (x, z) where x will be
observed and z will remain hidden. A set of feature functions is defined on x
and z, {�

↵

(x, z)}, each associated with a weight w
↵

. Given these quantities
we can write the following Gibbs distribution,

P (x, z;w) =
1

Z(w)
exp

 

X

↵

w
↵

�
↵

(x, z)

!

(4.41)

The log-likelihood function with a dataset D = {x
i

}D
i=1 is defined as

`(w) =
1

D

D

X

i=1

log

 

X

z

i

exp
�

wT

�(x
i

, z
i

)
�

!

� log Z(w) (4.42)

Analogous to the duality relationship between MLE and MaxEnt for fully
observed MRFs, we can write the log-likelihood of a POMRF as

` = max
{Q

i

}
min
R

1

D

D

X

i=1

H(Q
i

)�H(R) (4.43)

+
X

↵

w
↵

 

1

D

D

X

i=1

E
Q

i

(z
i

)[�↵

(x
i

, z
i

)]� E
R(x,z)[�↵

(x, z)]

!

(4.44)

where {Q
i

} are variational distributions on z, and R is a variational distri-
bution on (x, z). The dual form of MLE turns out as a minimax problem on
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1
D

P

D

i=1H(Q
i

)�H(R) with a set of constraints

1

D

D

X

i=1

E
Q

i

(z
i

)[�↵

(x
i

, z
i

)] = E
R(x,z)[�↵

(x, z)] (4.45)

We want to achieve high entropy for the distributions {Q
i

} and R, and mean-
while the average feature vector on the training set with hidden variables
marginalized out should match the expected feature w.r.t. to the joint distri-
bution of the model. The weights w

↵

act as Lagrange multipliers enforcing
those constraints.

Similar to the derivation of herding for fully observed MRFs, we now
introduce a temperature in Equation 4.42 by replacing w with w/T . Taking

the limit T ! 0 of `
T

def
= T `, we see that the entropy terms vanish. For a given

value of w and in the absence of entropy, the optimal distribution {Q
i

} and
R are delta-peaks and their averages should be replace with maximizations,
resulting in the objective,

`0(w) =
1

D

D

X

i=1

max
z

i

wT

�(x
i

, z
i

)�max
s

wT

�(s) (4.46)

where we denote s = (x, z).
Taking a gradient descent update on `0 with a fixed learning rate (⌘ = 1)

defines the herding algorithm on POMRFs (Welling, 2009b):

z⇤
it

= arg max
z

i

wT

t�1�(x
i

, z
i

), 8i (4.47)

s⇤
t

= arg max
s

wT

t�1�(s) (4.48)

w
t

= w
t�1 +

"

1

D

D

X

i=1

�(x
i

, z⇤
it

)

#

� �(s⇤
t

) (4.49)

We use a superscript “⇤” to denote states obtained by maximization. These
equations are similar to herding for the fully observed case, but di↵erent in
the sense that we need to impute the unobserved variables z

i

for every data-
case separately through maximization. The weight update also consist of a
positive “driving term,” which is now a changing average over data-cases,
and a negative term, which is identical to the corresponding term in the
fully observed case.

Moment Matching Property

We can prove the boundedness of the weights with PCT by identifying

v
t

=
h

1
D

P

D

i=1�(x
i

, z⇤
i,t+1)

i

� �(s⇤
t+1), a finite set V = {v

t

({z
i

}, s)|z
i

2
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X
z

, 8i, s 2 X}, and observing the inequality

wT

t

v
t

=

"

1

D

D

X

i=1

wT

t

�(x
i

, z⇤
i,t+1)

#

�wT
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�(s⇤
t+1) (4.50)

=
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i=1

max
z
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wT
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�(x
i

, z
i

)

#

�max
s

wT

t

�(s)  0 (4.51)

The last inequality holds because the second term maximizes over more
variables than the first term. Again, we do not have to be able to solve the
di�cult optimization problems of Equation 4.47 and 4.48. Partial progress
in the form of a few iterations of coordinate-wise descent is often enough to
satisfy the condition in Equation 4.50 which can be checked easily.

Following a similar proof as Proposition 4.2, we obtain the fast moment
matching property of herding on POMRFs:

Proposition 4.8. There exists a constant R such that herding on a partially
observed MRF satisfies
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 2R
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, 8↵ (4.52)

Notice that besides a sequence of samples of the full state {s⇤
t

} that
form the joint distribution in the herding algorithm, we also obtain a
sequence of samples of the hidden variables {z⇤

it

} for every data case x
i

that forms the conditional distribution of P (z
i

|x
i

). Those consistencies
in the limit of ⌧ ! 1 in Proposition 4.8 are in direct analogy to the
maximum likelihood problem of Equation 4.42 for which the following
moment matching conditions hold at the MLE for all ↵,

1

D

D

X

i=1

E
P (z

i

|x
i

;wMLE)[�↵

(x
i

, z
i

)] = E
P (x,z;wMLE)[�↵

(x, z)] (4.53)

These consistency conditions alone are not su�cient to guarantee a good
model. After all, the dynamics could simply ignore the hidden variables by
keeping them constant and still satisfy the matching conditions. In this case
the hidden and visible subspaces completely decouple, defeating the purpose
of using hidden variables in the first place. Note that the same holds for the
MLE consistency conditions alone. However, an MLE solution also strives
for high entropy in the hidden states. We observe in practice that the herding
dynamics usually also induces high entropy in the distributions for z avoiding
the decoupling phenomenon described above.
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The proof of the boundedness of weights depends on the assumption that
we can find the global maximum in Equation 4.48, which is an intractable
problem. Welling (2009b) also proposed a fully tractable herding variant
that was guaranteed to satisfy PCT.

Proposition 4.9. Call A any tractable optimization algorithm to locate a
local maximum in the product wT

�(x, z). This algorithm will be used to
compute both z⇤

i

and s⇤. Call EA(x
i

,w) = �wT

�(x
i

, z⇤
i

) the energy of data-
case i (note that this definition depends on the algorithm A). Assume that
given any initialization, A always return a state with an energy no larger
than its initial state. Then the following tractable herding algorithm will
remain in a compact region of weight space: Apply the usual herding updates
with the di↵erence that the optimization for s⇤ is initialized at the state
(x

i

⇤ , z⇤
i

⇤) which represents the data-case with lowest energy EA(x
i

,w).

Proof. The proof is trivial using the PCT condition as:
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4.3.4 Herding Discriminative Models

We have been talking about running herding dynamics in an unsupervised
learning setting. The idea of driving a nonlinear dynamical system to match
moments can also be applied to discriminative learning by incorporating
labels into the feature functions. Recalling the perceptron learning algorithm
in Section 4.3.1, the learning rule in Equation 4.38 can be reformulated in
herding style:

y⇤
i

t

= argmax
y2{�1,1}

wT

t�1(xi

t

y) (4.56)
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(4.57)

where we identify the feature functions as �
j

(x, y) = x
j

y, j = 1, . . . , m,
use mini-batches of size 1 at every iteration, and do a partial maximization
of the full state (x, y) with the covariate x clamped at the input x

i

t

. The
PCT guarantees that the moments (correlation between covariates and la-
bels) ED[xy] from the training data are matched with ED

x

P (y⇤|x)[xy⇤] where
p(y⇤|x) is the model distribution implied by how the learning process gen-
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erates y⇤ with the sequence of weights w
t

. The voted perceptron algorithm
(Freund and Schapire, 1999) is an algorithm that runs exactly the same up-
date procedure, applies the weights to make a prediction on the test data at
every iteration y⇤test,t, and obtains the final prediction by averaging over iter-
ations y⇤test = sign( 1

⌧

P

⌧

t=1 y⇤test,t). This amounts to learning and predicting
based on the conditional expectation E

P (y⇤|x)[y
⇤ = 1|xtest] in the language

of herding.
Let us now formulate the conditional herding algorithm in a more general

way (Gelfand et al., 2010). Denote the complete state of a data-case by
(x,y, z) where x is the visible input variable, y is the label, and z is
the hidden variable. Define a set of feature functions {�

↵

(x,y, z)} with
associated weights {w

↵

}. Given a set of training data-cases, D = {x
i

,y
i

},
and a test set Dtest = {xtest,j}, we run the conditional herding algorithm to
learn the correlations between the inputs and the labels and make predictions
at the same time using the following update equations:
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(y⇤
test,j,t, z

⇤
test,j,t) = arg max

(y
j

,z

j

)
wT

t

�(xtest,j ,yj

, z
j

), 8xtest,j 2 Dtest

(4.61)

In the positive term of Equation 4.60, we maximize over the hidden variables
only, and in the negative term we maximize over both hidden variables and
the labels. The last equation generates a sequence of labels, y⇤

test,j,t, that can
be considered as samples from the conditional distribution of the test input
from which we obtain an estimate of the underlying conditional distribution:

P (y|xtest,j) ⇡ 1

⌧

⌧

X

t=1

I(y⇤
test,j,t = y) (4.62)

In general, herding systems perform better when we use normalized fea-
tures: k�(x, z,y)k = R, 8(x, z,y). The reason is that herding selects states
by maximizing the inner product wT

� and features with large norms will
therefore become more likely to be selected. In fact, one can show that
states inside the convex hull of the �(x,y, z) are never selected. For bi-
nary (±1) variables all states live on the convex hull, but this need not be
true in general, especially when we use continuous attributes x. To rem-
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edy this, one can either normalize features or add one additional feature5

�0(x,y, z) =
p

R2
max � ||�(x,y, z)||2, where Rmax = max

x,y,z

k�(x,y, z)k
with x only allowed to vary over the data-cases.

We may want to use mini-batches D
t

instead of the whole training set for
a more practical implementation, and the argument on the validity of using
mini-batches in Section 4.3.2 applies here as well. It is easy to observe that
Rosenblatts’s perceptron learning algorithm is a special case of conditional
herding when there are no hidden variables, y is a single binary variable,
the feature function is � = xy, and we use a mini-batch of size 1 at every
iteration.

Compared to the herding algorithm on partially observed MRFs, the
main di↵erence is that we do partial maximization in Equation 4.59 with
a clamped visible input x on every training data-case instead of a joint
maximization on the full state. Notice that in this particular variant of
herding, the sequence of updates may converge when all the training data-
cases are correctly predicted, that is, y⇤

it

= y
i

, 8i = 1, . . . , D at some t.
For an example, the convergence is guaranteed to happen for the percepton
learning algorithm on a linearly separable data set. We adopt the strategy
in the voted perceptron algorithm (Freund and Schapire, 1999) which stops
herding when convergence occurs and uses the sequence of weights up to
that point for prediction in order to prevent the converged weights from
dominating the averaged prediction on the test data.

Clamping the input variables allows us to achieve the following moment
matching property:

Proposition 4.10. There exists a constant R such that conditional herding
with the update equations 4.58-4.60 satisfies
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The proof is straightforward by applying PCT where we identify
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the finite set V = {v({z0
i

}, {y⇤
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}, and
observe the inequality wT

t

v
t

 0 because of the same reason as herding
on POMRFs. Note that we require V to be of a finite cardinality, which in
return requires X

y

and X
z

to be finite sets, but there is not any restriction on

5. If in test data this extra feature becomes imaginary we simply set it to zero.
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the domain of the visible input variables x. Therefore we can run conditional
herding with input x as continuous variables.

Zero Temperature Limit of CRF

Consider a CRF with the probability distribution defined as

P (y, z|x;w) =
1

Z(w,x)
exp

 

X

↵

w
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�
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(x,y, z)

!

(4.65)

where Z(w,x) is the partition function of the conditional distribution. The
log-likelihood function for a dataset D = {x
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Let us introduce the temperature T by replacing w with w/T and take the

limit T ! 0 of `
T

def
= T `. We then obtain the familiar piecewise linear Tipi

function
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Running gradient descent updates on `0(w) immediately gives us the update
equations of conditional herding 4.58-4.60.

Similar to the duality relationship between MLE on MRFs and the Max-
Ent problem, MLE on CRFs is the dual problem of maximizing the entropy
of the conditional distributions while enforcing the following constraints:
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When we run conditional herding, those constraints are satisfied with the
moment matching property in Proposition 4.10, but how to encourage high
entropy during the herding dynamics is again an open problem. We suggest
some heuristics to achieve high entropy in the next experimental section.
Note that there is a di↵erence between MLE and conditional herding when
making predictions. While the prediction of a CRF with MLE is made with
the most probable label value at a point estimate of the parameters, con-
ditional herding resorts to a majority voting strategy as in the voted per-
ceptron algorithm. The regularization e↵ect via averaging over predictions
often provides more robust performance as shown later.



4.4 Experiments 109

4.4 Experiments

We study the empirical performance of the herding algorithm introduced in
Section 4.2 and the extension with hidden variables in Section 4.3.3 and for
discriminative models in Section 4.3.4.

4.4.1 Herding with Fully Visible Models

In the following experiments we will determine the ability of herding to
convert information about the average value of features in the training
data into estimates of some quantities of interest. In particular the input
to herding will be joint probabilities of pairs of variables (denoted H.XX)
and sometimes triples of variables (denoted H.XXX) where all variables will
be binary valued (which is easily relaxed).

In experiment I we will consider the quantity P (k) = E[I[
P

i

X
i

=
k � 1]] which is the distribution of the total number of 1’s across all
attributes. This quantity involves all variables in the problem and cannot
be directly estimated from the input which consists of pairwise information
only. This experiment measures the ability of herding to generalize from
local information to global quantities of interest. In total 100K samples were
generated and used to estimate P (k). The results were compared with the
following two alternatives: 1) sampling 100K pseudo-samples from the single
variable marginals and using them to estimate P (k) (denoted “MARG”), 2)
learning a fully connected, fully visible Boltzmann machine using the pseudo-
likelihood method6 (denoted PL), then sampling 200K samples from that
model and using the last 100K to estimate P (k).

In experiment II we will estimate a discriminant function for classifying
one attribute (the label) given the values of other attributes. Our approach
was simply to perform online learning of a logistic regression function after
each pseudo-sample collected from herding. Again, local pairwise informa-
tion is turned into a global discriminant function which is then compared
with some standard classifiers learned directly from the data. In particu-
lar, we compared against Naive Bayes, 5-nearest neighbors, logistic regres-
sion and a fully observed, fully connected Boltzmann machine learned with
pseudo likelihood on the joint space of attributes and labels. The learned
model’s conditional distribution of label given the remaining attributes was
subsequently used for prediction.

We have used the following datasets in our experiments.

6. This method is close to optimal for this type of problem (Parise and Welling, 2005).
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Dataset H.XXX H.XX PL MARG

Bowling 5E-3 4.1E-2 1.2E-1 4.3E-1

Abelone 8E-4 2.5E-3 2.2E-2 1.8E0

Digits - 6.2E-2 3.3E-2 4E-1

News - 2.5E-2 1.9E-2 5E-1

Table 4.1: Abelone/Digits/NewsGroups: KL divergence between true (data)
distribution and the estimates from 1) herding algorithm using all triplets, 2)
herding with all pairs, 3) samples from pseudo-likelihood model and 4) samples
from single marginals.

A) The “Bowling Data” set7. Each binary attribute represents whether a
pin has fallen during two subsequent bowls. There are 10 pins and 298 games
in total. This data was generated by P. Cotton to make a point about the
modelling of company default dependency. Random splits of 150 train and
148 test instances were used for the classification experiments.

B) Abalone dataset8. We converted the dataset into binary values by
subtracting the mean from all (8) attributes and labels and setting all
obtained values to 0 if smaller than 0 and 1 otherwise. For the classification
task we used random subsets of 2000 examples for training and the remaining
2177 for testing.

C) “Newsgroups-small”9 prepared by S. Roweis. It has 100 binary at-
tributes and 16, 242 instances and is highly sparse (4% of the values is 1).
Random splits of 10, 000 train and 6, 242 test instances were used for the
classification experiments.

D) Digits: 8⇥8 binarized handwritten digits. We used 1100 examples from
the digit classes 3 and 5 respectively (a total of 2200 instances). The dataset
contains 30% 1’s. This dataset was split randomly in 1600 train and 600 test
instances.

The results for experiment I are shown in Table 4.1 and Figure 4.12. Note
that the herding algorithms are deterministic and repetition would have
resulted in the same values.

We observe that herding is successful in turning local average statistics
into estimates of global quantities. Providing more information such as joint
probabilities over triplets does significantly improve the result (the triplet
results for Digits and News took too long to run due to the large number

7. Downloadable from: http://www.financialmathematics.com/wiki/Code:

tenpin/data
8. Downloadable from UCI repository
9. Downloaded from: http://www.cs.toronto.edu/~roweis/data.html
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Figure 4.12: Estimates of P (k) for the Bowling dataset. Each group of 5 bars
represent the estimates for 1) ground truth, 2) herding with triples, 3) herding with
pairs, 4) pseudo-likelihood, 5) marginals.

Dataset H.XXY PL 5NN NB LR

Abelone 0.24± 0.004 0.24± 0.004 0.33± 0.1 0.27± 0.006 0.24± 0.004

Bowling 0.23± 0.03 0.28± 0.06 0.32± 0.05 0.23± 0.03 0.23± 0.03

Digits 0.05± 0.01 0.06± 0.01 0.05± 0.01 0.09± 0.01 0.06± 0.02

News 0.11± 0.005 0.04± 0.001 0.13± 0.006 0.12± 0.003 0.11± 0.004

Table 4.2: Average classification results averaged over 5 runs.

of triplets involved). Also of interest is the fact that for the low dimensional
data H.XX outperformed PL but for the high-D datasets the opposite was
true while both methods seem to leverage the same second order statistics
(even though PL needs the actual data to learn its model).

The results for the classification experiment are shown in Table 4.2. On
all tasks the online learning of a linear logistic regression classifier did just
as well as running logistic regression on the original data directly. This
implies that the herding algorithm generates the information necessary
for classification and that the decision boundary can be learned online
during herding. Interestingly, the PL procedure significantly outperformed
all standard classifiers as well as herding on the Newsgroup data. This
implies that a more sophisticated decision boundary is warranted for this
data.
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Figure 4.13: Top half: Sequence of 300 pseudo-samples generated from a herding
algorithm for the “Newsgroup” dataset. White dots indicate the presence of certain
word-types in documents (represented as columns). Bottom half: Newsgroup data
(in random order). Data and pseudo-samples have the same first and second order
statistics.

To see if the herding sequence contained the information necessary to
estimate such a decision boundary we reran PL on the first 10,000 pseudo-
samples generated by herding resulting in an error of 0.04, answering the
question in the a�rmative. A plot of the herding pseudo-samples as com-
pared to the original data is shown in Figure 1.

4.4.2 Herding with Hidden Variables

We studied generalized herding on the architecture of a restricted Boltzmann
machine (Hinton, 2002) (RBM). We used features �(x, z) = {x

j

, z
k

, x
j

z
k

},
where j and k are indices of variables, and the {�1, +1} representation be-
cause we found it worked significantly better than the {0, 1} representation.
To increase the entropy of the hidden units we left out the growth update
for the features {z

k

} implying that p(z
k

= 1) ⇡ 0.5. The intuition is the
same as for bagging: we want to create a high diversity of (almost inde-
pendent) ways to reconstruct the data because it will reduce the variance
when making predictions. We observed that high entropy hidden represen-
tations automatically emerged when using a large number of hidden units.
In contrast, for a small number of hidden units (say K < 30) there is a
tendency for the system to converge on low entropy representations and the
trick delivers some improvement.
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We applied herding to the USPS Handwritten Digits dataset10 which
consists of 1100 examples of each digit 0 through 9 (totaling 11, 000 ex-
amples). Each image has 256 pixels and each pixel has a value between
[1..256] which we turned into a binary representation through the mapping
x0
j

= 2⇥( x

j

256 � 0.2)� 1 with ⇥(x > 0) = 1 and 0 otherwise. Each digit class
was randomly split into 700 train, 300 validation and 100 test examples.
As benchmarks we used 1NN using Manhattan distance and multinomial
logistic regression, both in pixel space.

We used two versions of herding, one where the maximization over s was
initialized at the value from the previous time step (H) and one where we
initialize at the data-case with the lowest energy (SH - the tractable al-
gorithm). In both cases we ran herding for 2000 iterations for each class
individually. During the second 1000 iterations we computed the energies
for the training data in that class, as well as for all validation and test data
across all classes. At each iteration we then used the training energies to
standardize the validation and test energies by computing their Z-scores:
E0
i

= (E
i

� µtrn)/�trn where µtrn and �trn represent the mean and standard
deviation of the energies of the training data at that iteration. The standard-
ized energies for test and validation data were subsequently averaged over
herding iterations (using online averaging). Once we have collected these
average standardized energies across all digit classes we fit a multinomial
logistic regression classifier to the validation data, using the 10 class-specific
energies as features.

We also compared these results against models learned with contrastive
divergence (Hinton, 2002) (CD) and persistent CD (Tieleman, 2008) (PCD).
For both CD and PCD we first applied (P)CD learning for 1000 iterations
in batch mode, using a stepsize of ⌘ = 10�3. A momentum parameter of 0.9
and 1-step reconstructions were used for CD. No momentum and a single
sample in the negative phase was used for PCD. In the second 1000 iterations
we continued learning but also collected standardized validation and test
energies as before which we subsequently used for classification. We have also
experimented with chains of length 10 and found that it did not improved
the results but became prohibitively ine�cient. To improve e�ciency we
experimented with learning in mini-batches but this degraded the results
significantly, presumably because the number of training examples used to
standardize the energy scores became less reliable.

The results reported in Figure 4.14 show the classification results averaged
across 4 runs with di↵erent splits and for di↵erent values of hidden units.

10. Downloaded from http://www.cs.toronto.edu/~roweis/data.html
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Figure 4.14: Classification results on USPS digits. 700 digits per class were used
for training, 300 for validation and 100 for testing. Shown are average results over
4 di↵erent splits and their standard errors. From left to right: MLR (multinomial
logistic regression), 1NN (1-nearest neighbor), H1-H5 (herding using local opti-
mization with 50,100,250,500 and 1000 hidden units respectively), SH1-SH5 (safe,
tractable herding from section 7 with 50,100,250,500 and 1000 hidden units respec-
tively), CD1-CD3 (contrastive divergence with 50,100,250 hidden units respectively)
and PCD (persistent CD with 500 hidden units).

Without trying to claim superior performance we merely want to make the
case that herding can be leveraged to achieve state-of-the-art performance
(note that USPS error rates are higher than MNIST error rates). We also see
that the tractable version of herding did not perform as well as the herding
using local optimization, which in turn performed equally well as learning a
model using CD. Persistent CD did not give very good results presumably
because we did not use optimal settings for step-size, weight-decay etc.. It
is finally interesting to observe that there does not seem to be any sign of
over-fitting for herding. For the model with 1000 hidden units, the total
number of real parameters involved is around 1.5 million which represents
more capacity than the 1.5 million binary pixel values in the data.

4.4.3 Discriminative Herding

We studied the behavior of conditional herding on two artificial and four real-
world data sets, comparing its performance to that of the voted perceptron
(Freund and Schapire, 1999) and that of discriminative RBMs (Larochelle
and Bengio, 2008). All the experiment results in this subsection are accred-
ited to the authors of Gelfand et al. (2010).

We studied conditional herding in the discriminative RBM (dRBM) ar-
chitecture illustrated in Figure 4.15, that is, we use the following parame-
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Figure 4.15: Discriminative Restricted Boltzmann Machine model of distribution
p(y, z|x).

terization

wT

�(x,y, z) = xTWz + yTBz + ✓

T z + ↵

Ty. (4.69)

where W, B, ✓ and ↵ are the weights, z is a binary vector and y is a binary
vector in a 1-of-K scheme.

Per the discussion in Section 4.3.4, we added an additional feature �0(x) =
p

R2
max � ||x||2 with Rmax = max

i

kx
i

k in all experiments.

Experiments on Artificial Data

To investigate the characteristics of the voted perceptron (VP), discrimina-
tive RBM (dRBM) and conditional herding (CH), we used the techniques
discussed in Section 4.3.4 to construct decision boundaries on two artificial
data sets: (1) the banana data set; and (2) the Lithuanian data set. We ran
VP and CH for 1, 000 epochs using mini-batches of size 100. The decision
boundary for VP and CH is located at the location where the sign of the
prediction y⇤

test changes. We used conditional herders with 20 hidden units.
The dRBMs also had 20 hidden units and were trained by running conjugate
gradients until convergence. The weights of the dRBMs were initialized by
sampling from a Gaussian distribution with a variance of 10�4. The decision
boundary for the dRBMs is located at the point where both class posteriors
are equal, i.e., where p(y⇤test = �1|x̃test) = p(y⇤test = +1|x̃test) = 0.5.

Plots of the decision boundary for the artificial data sets are shown in
Figure 4.16. The results on the banana data set illustrate the representa-
tional advantages of hidden units. Since VP selects data points at random to
update the weights, on the banana data set, the weight vector of VP tends
to oscillate back and forth yielding a nearly linear decision boundary11. This
happens because VP can regress on only 2+1 = 3 fixed features. In contrast,

11. On the Lithuanian data set, VP constructs a good boundary by exploiting the added
‘normalizing’ feature.
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Figure 4.16: Decision boundaries of VP, CH, and dRBMs on two artificial data
sets.

for CH the simple predictor in the top layer can regress onto M = 20 hidden
features. This prevents the same oscillatory behavior from occurring.

Experiments on Real-World Data

In addition to the experiments on synthetic data, we also performed experi-
ments on four real-world data sets - namely, (1) the USPS data set, (2) the
MNIST data set, (3) the UCI Pendigits data set, and (4) the 20-Newsgroups
data set. The USPS data set consists of 11,000, 16⇥ 16 grayscale images of
handwritten digits (1, 100 images of each digit 0 through 9) with no fixed
division. The MNIST data set contains 70, 000, 28⇥ 28 grayscale images of
digits, with a fixed division into 60, 000 training and 10, 000 test instances.
The UCI Pendigits consists of 16 (integer-valued) features extracted from
the movement of a stylus. It contains 10, 992 instances, with a fixed division
into 7, 494 training and 3, 498 test instances. The 20-Newsgroups data set
contains bag-of-words representations of 18, 774 documents gathered from
20 di↵erent newsgroups. Since the bag-of-words representation comprises of
over 60, 000 words, we identified the 5, 000 most frequently occurring words.
From this set, we created a data set of 4, 900 binary word-presence features
by binarizing the word counts and removing the 100 most frequently occur-
ring words. The 20-Newsgroups data has a fixed division into 11, 269 training
and 7, 505 test instances. On all data sets with real-valued input attributes
we used the ‘normalizing’ feature described above.

The data sets used in the experiments are multi-class. We adopted a 1-of-K
encoding, where if y

i

is the label for data point x
i

, then y
i

= {y
i,1, ..., yi,K}

is a binary vector such that y
i,k

= 1 if the label of the ith data point is k
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and y
i,k

= �1 otherwise. Performing the maximization in Equation 4.59 is
di�cult when K > 2. We investigated two di↵erent procedures for doing
so. In the first procedure, we reduce the multi-class problem to a series of
binary decision problems using a one-versus-all scheme. The prediction on
a test point is taken as the label with the largest online average. In the
second procedure, we make predictions on all K labels jointly. To perform
the maximization in Equation 4.59, we explore all states of y in a one-of-K
encoding - i.e. one unit is activated and all others are inactive. This partial
maximization is not a problem as long as the ensuing configuration satisfies
wT

t

v
t

 0 12. The main di↵erence between the two procedures is that in
the second procedure the weights W are shared amongst the K classifiers.
The primary advantage of the latter procedure is its less computationally
demanding than the one-versus-all scheme.

We trained the dRBMs by performing iterations of conjugate gradients
(using 3 line searches) on mini-batches of size 100 until the error on a
small held-out validation set started increasing (i.e., we employed early
stopping) or until the negative conditional log-likelihood on the training
data stopped coming down. Following Larochelle and Bengio (2008), we use
L2-regularization on the weights of the dRBMs; the regularization parameter
was determined based on the generalization error on the same held-out
validation set. The weights of the dRBMs were initialized from a Gaussian
distribution with variance of 10�4.

CH used mini-batches of size 100. For the USPS and Pendigits data sets
CH used a burn-in period of 1, 000 updates; on MNIST it was 5, 000 updates;
and on 20 Newsgroups it was 20, 000 updates. Herding was stopped when
the error on the training set became zero 13.

The parameters of the conditional herders were initialized by sampling
from a Gaussian distribution. Ideally, we would like each of the terms in
the energy function in Equation 4.69 to contribute equally during updating.
However, since the dimension of the data is typically much greater than the
number of classes, the dynamics of the conditional herding system will be
largely driven by W. To negate this e↵ect, we rescaled the standard deviation
of the Gaussian by a factor 1/M with M the total number of elements of
the parameter involved (e.g. �

W

= �/(dim(x) dim(z)) etc.). We also scale
the learning rates ⌘ by the same factor so the updates will retain this scale

12. Local maxima can also be found by iterating over y⇤,k
test

, z⇤,k
test,j

, but the proposed
procedure is more e�cient.
13. We use a fixed order of the mini-batches, so that if there are D data cases and the
batch size is d, if the training error is 0 for dD/de iterations, the error for the whole
training set is 0.
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during herding. The relative scale between ⌘ and � was chosen by cross-
validation. Recall that the absolute scale is unimportant (see Section 4.3.4
for details).

In addition, during the early stages of herding, we adapted the param-
eter update for the bias on the hidden units ✓ in such a way that the
marginal distribution over the hidden units was nearly uniform. This has
the advantage that it encourages high entropy in the hidden units, lead-
ing to more useful dynamics of the system. In practice, we update ✓ as
✓

t+1 = ✓

t

+ ⌘

D

t

P

i

t

(1��) hz
i

t

i� z⇤
i

t

, where i
t

indexes the data points in the
mini-batch at time t, D

t

is the size of the mini-batch, and hz
i

t

i is the batch
mean. � is initialized to 1 and we gradually half its value every 500 updates,
slowly moving from an entropy-encouraging update to the standard update
for the biases of the hidden units.

VP was also run on mini-batches of size 100 (with a learning rate of 1).
VP was run until the predictor started overfitting on a validation set. No
burn-in was considered for VP.

The results of our experiments are shown in Table 4.3. In the table,
the best performance on each data set using each procedure is typeset
in boldface. The results reveal that the addition of hidden units to the
voted perceptron leads to significant improvements in terms of generalization
error. Furthermore, the results of our experiments indicate that conditional
herding performs on par with discriminative RBMs on the MNIST and USPS
data sets and better on the 20 Newsgroups data set. The 20 Newsgroups data
is high dimensional and sparse and both VP and CH appear to perform quite
well in this regime. Techniques to promote sparsity in the hidden layer when
training dRBMs exist (see Larochelle and Bengio (2008)), but we did not
investigate them here. It is also worth noting that CH is rather resilient to
overfitting. This is particularly evident in the low-dimensional UCI Pendigits
data set, where the dRBMs start to badly overfit with 500 hidden units,
while the test error for CH remains level. This phenomenon is the benefit of
averaging over many di↵erent predictors.

4.5 Summary

We introduce the herding algorithm in this chapter as an alternative to
the maximum likelihood estimation for Markov random fields. It skips the
parameter estimation step and directly converts a set of moments from
the training data into a sequence of model parameters accompanied by a
sequence of pseudo-samples. By integrating the intractable training and
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One-Versus-All Procedure

Data Set
VP Discriminative RBM Conditional herding

100 200 100 200

MNIST 7.69% 3.57% 3.58% 3.97% 3.99%

USPS
5.03% 3.97% 4.02% 3.49% 3.35%
(0.4%) (0.38%) (0.68%) (0.45%) (0.48%)

UCI Pendigits 10.92% 5.32% 5.00% 3.37% 3.00%

20 Newsgroups 27.75% 34.78% 34.36% 29.78% 25.96%

Joint Procedure

Data Set
VP Discriminative RBM Conditional herding

50 100 500 50 100 500

MNIST 8.84% 3.88% 2.93% 1.98% 2.89% 2.09% 2.09%

USPS
4.86% 3.13% 2.84% 4.06% 3.36% 3.07% 2.81%

(0.52%) (0.73%) (0.59%) (1.09%) (0.48%) (0.52%) (0.50%)

UCI Pendigits 6.78% 3.80% 3.23% 8.89% 3.14% 2.57% 2.86%

20 Newsgroups 24.89% – 30.57% 30.07% – 25.76% 24.93%

Table 4.3: Generalization errors of VP, dRBMs, and CH on 4 real-world data
sets. dRBMs and CH results are shown for various numbers of hidden units. The
best performance on each data set is typeset in boldface; missing values are shown
as ‘-’. The std. dev. of the error on the 10-fold cross validation of the USPS data
set is reported in parentheses.

testing steps in the regular machine learning paradigm, herding provides
a more e�cient way of learning and predicting in MRFs.

We study the statistical properties of herding and show that herding
dynamics introduces negative auto-correlation in the sample sequence which
helps to speed up the mixing rate of the sampler in the state space.
Quantitatively, the negative auto-correlation leads to a fast convergence rate
of O(1/T ) between the sampling statistics and the input moments. That is
significantly faster than the rate of O(1/

p
T ) that an ideal random sampler

would obtain for an MRF at MLE. This distinctive property of herding
should also be attributed to its weak-chaotic behavior as a deterministic
dynamic system, whose characteristics deserve its own interest for future
research.

Experiments confirms that the information contained in the pseudo-
samples of herding can be used for inference and prediction. It achieves
comparable performance with traditional machine learning algorithms in-
cluding the MRFs, even though the sampling distribution of herding does
not guarantee the maximum entropy.
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We further provide a general condition, PCT, for the fast moment match-
ing property. That condition allows more practical implementations of herd-
ing. We also use it to derive extensions of the herding algorithm for a wider
range of applications. As more flexible feature functions defined on both vis-
ible and latent variables can now be handled in the generalized algorithm,
we apply herding to training partially observed MRFs. Experiments on the
USPS dataset show a classification accuracy on par with the state-of-art
training algorithms on the same model. Furthermore, we propose a discrim-
inative learning variant of herding for supervised problems by including la-
belling information in the feature definition. The resulting conditional herd-
ing provides an alternative to training CRFs. Empirical evaluation shows
competitive performance of herding compared with standard algorithms.

4.6 Conclusion

The view espoused in this chapter is that we can view learning as an iterated
map: w

t+1 = F (w
t

) and that we can study the properties of this map using
the tools of nonlinear dynamics systems. The usual learning approaches
based on point estimates form a contractive map where all of parameter
space is eventually mapped to a point. In Bayesian approaches we seek to find
a posterior distribution over parameters and the map should thus converge
to a distribution (or measure). For MCMC for instance the map consists
of convolving the current distribution with a kernel. Herding o↵ers a third
possibility where the attractor is neither a point, nor a measure in the usual
sense, but rather a highly complex, possibly fractal set. Interestingly, the
more recent approach “perturb and map” is related to herding in the sense
that it consists of a sequence of perturbations of the parameters followed by
an optimization over the state space. However, it is di↵erent from herding
in the sense the perturbations are generated randomly and IID, while in
herding the perturbations are deterministic and dynamic (i.e. depend on
the previous parameters).

The surprising and powerful insight is that we can use a new set of tools
from the mathematics literature to study these maps. For instance, it was
shown in this chapter that herding dynamics is a special instance of the class
of piecewise isometry maps, and should neither be classified as regular nor
chaotic, but rather as what is known as “edge of chaos”. We suspect that
this type of dynamics has useful properties in the context of learning from
data. For instance, it seems related to the fact that the certain empirical
moments averages exhibit very fast convergence. This is supported by the
observations that 1) piecewise isometries have vanishing topological entropy,
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2) exhibit the “period doubling route to chaos” and 3) have vanishing
Lyapunov exponents. We believe that these type of concepts from the field
of nonlinear dynamical systems may one day play an important role in the
field of machine learning.

Appendix:

Some Results on Herding in Discrete Spaces

The following proposition shows that the weight vectors move inside a D�1
dimensional subspace.

Proposition 4.11. For any herding dynamics with D states and K dimen-
sional feature vectors, the trajectory of the weight vector lies in a subspace of
a dimension K⇤  max{D � 1, K}. Also, there exists an equivalent herding
dynamics with D states and K⇤ dimensional feature vectors, which generates
the same sequence of samples.

Proof. Let {�(x
d

)}D�1
d=0 be the set of D state feature vectors. Denote by

� the subspace spanned of the set of D � 1 vectors, {�(x
d

) � �(x0)}D�1
d=1

in RK , and by �? its complement. The dimension of � is apparently at
most max{D � 1, K}. We want to construct a herding dynamics in � that
generates the same sequence of states as the original dynamics.

Decompose the initial weight vector w0 and all the feature vectors into �
and �?, denoting the component in � with a superscript k and in �? with ?.
Then �

?(x
d

) = (�(x
d

)��(x0)+�(x0))? = �

?(x0), 8d as �(x
d

)��(x0) 2 �,
and �

k(x
d

) = �(x
d

)��

?(x0), 8d. Consequently �̄

k = �̄��

?(x0) as �̄ is a
convex combination of the feature vectors.

Let us consider a new herding dynamics (denoted by a superscript ⇤)
with feature vectors {�k(x

d

)}D�1
d=0 and the moment �̄

k. We initialize with a

weight vector w⇤
0 = wk

0. As � is closed with respect to the herding update in
Equation 4.8 w⇤

t

2 �, 8t � 0. Now we want to show that the set of samples

S⇤
T

def
= {s⇤

t

}T
t=1 is the same as S

T

def
= {s

t

}T
t=1 for any T � 0.

Obviously this holds at T = 0 as w⇤
0 2 � and S⇤

T

= S
T

= ;. Assume that
S⇤
T

= S
T

holds for some T � 0. Following the recursive representation of
w

T

in Equation 4.14, we get

w⇤
T

= w⇤
0+T �̄

k�
T

X

t=1

�

k(s
t

) = w0�w?
0 +T �̄�

T

X

t=1

�(s
t

) = w
T

�w?
0 (4.70)
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Figure 4.17: Example of the torus projection on herding dynamics with 3 states
and 2-dimensional feature vectors. The red lines show the lattice and the torus
(solid only) formed by �(x1) � �(x0) and �(x2) � �(x0), and the purple dashed
arrows show that the herding dynamics corresponds to a constant rotation on the
torus T2.

The sample to be generated at iteration T + 1 is computed as

s⇤
T+1 = arg max

x

(w⇤
T

)T�k(x) = arg max
x

(w
T

)T�(x)�(w?
0 )T�?(x0) = s

T+1

(4.71)

Therefore, S⇤
T+1 = S

T+1, and consequently S⇤
T

= S
T

, 8T 2 [0,1) by
induction. As a by-product of Equation 4.70, we observe that the trajectory
of the original herding dynamics {w

t

} lies in the K⇤ dimensional a�ne
subspace, w?

0 + �.

The proposition above suggests that the number of e↵ective dimensions of
the feature vector is upper-bounded by the number of states in the herding
system. Also, the orthogonal component in the initial weight vector w?

0 does
not a↵ect the sequence of generated samples. In our example of sampling
a D-valued discrete distribution with the 1-of-D encoding, the D feature
vectors {�(x

d

)}D�1
d=1 are linearly independent with each other and hence we

achieve the maximum number of feature dimensions K⇤ = D�1. The a�ne
subspace can be easily computed as {w :

P

D

d=1 w
d

= 1}. In the rest of this
subsection, we will study the characteristics of a relatively more general type
of herding dynamics with D = K + 1 states, whose feature vectors consist
of a linearly independent set in the K dimensional feature space.

Let L be the lattice formed by the set of vectors {�(x
d

) � �(x0)}K
d=1,

and let TK be the K dimensional torus RK/L. A torus is a circular
space with every pair of opposite edges connected with each other. See
Figure 4.17 for an example of a 2D torus. Denote by G : RK ! TK the
canonical projection. For any point u 2 RK , we have the property that
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G(u + (�(x
d

) � �(x0))) = G(u), 8d = 0, . . . , K. Let T : RK ! RK be the
mapping of the herding dynamics in the feature space, which takes the form
of a translation T(w) = w + �̄� �(x(w)), where x(w) is the sample to be
generated by Equation 4.7. We can observe that the herding update on w
corresponds a rotation on the torus:

G � T(w) = G(w + �̄� �(x(w)))

= G(w + (�̄� �(x0))� (�(x(w))� �(x0)))

= G(w) + (�̄� �(x0)), 8w 2 RK (4.72)

where the translation operator in TK in the last equation refers to a rotation
in the torus. This is an interesting property of herding with a maximum
number of feature dimensions as it suggests that no matter what sample the
dynamics takes, the trajectory of w under the torus projection is driven by
a constant rotation. Furthermore, if the set of elements in the translation
vector �̄ � �(x0) is independent on rational numbers14, the trajectory on
TK fills the entire torus, which leads to a non-fractal attractor set with a
finite volume in the original feature space.
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