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A. Proofs
A.1. Proof of Prop. 1

Proof. For a discrete state space, the total variation is
equivalent to half of L

1

distance between two probability
vectors. Denote by p̂(X = i|") the distribution of the out-
put of the approximate algorithm conditioned on the vec-
tor of Gumbel variables ", and x(") the solution of Eq. 2
as a function of ". According to the premise of Prop. 1,
p̂(X = x(")|") � 1� �, 8". We can bound the L

1

error of
the conditional probability as
X
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where �
i,j

is the Kronecker delta function. Then we can
show
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A.2. Sketch of the proof of Prop. 2

Proof. As the proof of this proposition is almost identical
to the proof of Jamieson et al. (2014), we only outlines the
difference due to the adaptation. In the proof of Thm. 2
in Jamieson et al. (2014), the i.i.d. assumption for rewards
from each arm was used only in Lemma 3 to provide Cher-
noff’s bound and Hoeffding’s bound. As noted in Sec. 6
of Hoeffding (1963) those bounds would still hold when
rewards are sampled from a finite population without re-
placement. Therefore, when T (t) < N all the bounds hold
for adapted lil’UCB.

When T (t)

i

= N , the second modification sets the upper
bound of the mean estimate to µ̂(t). That is a valid upper
bound of µ

i

, in fact much tighter than the bound in the orig-
inal algorithm because µ̂(t)

i

= µ
i

exactly when the entire
population is observed.

Therefore, as long as T (t)

i

 N, 8i, Theorem 2 in Jamieson
et al. (2014) applies to adapted lil’UCB with modification
1 and 2 only.

With the third modification, T (t) could never be bigger
than N at the stopping time, which proves the second part
of Prop 2. The proof can then be concluded if we can
show modification 3 does not change the output of adapted
lil’UCB with the first two modifications only. This is true
because if we do not stop when the selected arm i satisfies
T (t)

i

= N , we do not need to update the upper bound of
i because the estimated mean is already exact. Since no
upper bound is changed, the arm i will always be chosen
for now on and eventually the original stopping criterion of
T (t)

i

� 1+�
P

j 6=i

T
j

(t) is met and the same arm i will be
returned.

A.3. Proof of Prop. 3

Proof. Denote by x(t) the arm with the highest estimated
mean at iteration t and x⇤ the optimal arm with the highest
true mean, µ

x

⇤ > µ
i

, 8i 6= x⇤. If Alg. 1 does not stop
in the first t⇤ � 1 iterations, the estimated means of all the
survived arms become exact at the last iteration t⇤, µ̂(t

⇤
)

i

=

µ
i

because we require T (t

⇤
)

= N . Then x(t

⇤
)

= x⇤. As
we require G(�, T = N, �̂, C) = 0, 8�, �̂, C, all the sub-
optimal arms will be eliminated by the last iteration and the
algorithm always returns the correct best arm. This proves
the upper bound of the sample size of ND.

Now to prove the confidence level, all we need to show is
that with at least a probability 1� � arm x⇤ survived all the
iterations t < t⇤.

Let us first consider the case when Alg. 1 uses the marginal
variance estimate �̂(t)

i

. Let the events

E
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Applying condition Eq. 5 and the union bound, we get
P ([

i2XE
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i2X E

i

= �. So with a probability at
least 1 � �, none of those events will happen. In that case
for any iteration t < t⇤,
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So arm x⇤ won’t be eliminated at iteration t.

Similarly, for the case when Alg. 1 uses the pairwise vari-
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ance estimate �̂(t)
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Applying condition Eq. 5 and the union bound, we get
P ([
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= �. So with a
probability at least 1� � for any iteration t < t⇤,
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Therefore arm x⇤ won’t be eliminated at iteration t.

A.4. Proof of Prop. 7

Proof. Denote by x(t) the arm with the highest estimated
mean at iteration t. First consider the case when Alg. 1 uses
the marginal variance estimate �̂(t)

i

. With the condition in
Eq. 5, it follows that P ([

i2XE
i

)  P
i2X P (E
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where E
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is defined in Eq. 15. So with a probability at least
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Alg. 1 will stop by iteration t if the RHS of the equation
above satisfies the stopping criterion for all i 6= x⇤, that is,

µ
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Plugging in the definition of G
Normal

in Eq. 9 and applying
the assumption �̂(t)

i

= �
i

, we will get

µ
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Solve the above inequality for T (t) and use the definition
of the gap � we get

T (t) >
N

(N � 1)

�
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=

˜T (22)

Since we use a doubling schedule T (t)

= 2T (t�1) with
T (1)

= m(1) and T (t

⇤
)

= N , Alg. 1 stops at an iteration no
later than

t = dlog
2

(

˜T/m(0)

)e+ 1 (23)

And the total number of samples drawn by t is upper
bounded by D(m(0)

2

t�1 ^N) = T ⇤
(�).

Now consider the case when Alg. 1 uses the pairwise
variance estimate �̂(t)

x,i

. With the condition in Eq. 5, it
follows with the union bound that P ([

i2X\{x⇤}Ei
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i2X\{x⇤} P (E
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)  � where E
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is defined in Eq. 17. So
with a probability at least 1� �,
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Now we can follow a similar argument as in the case with
marginal variance estimate and prove the proposition.

B. Table and Figure of B
Normal

(�, ⇡T (1)

)

Table 1 shows B
Normal

(�,⇡
T

(1)

) with � varying in
[10

�6, 0.49], and the proportion of the first mini-batch
⇡
T

(1)

= m(1)/N 2 {5⇥ 10

�5, 10�4, 5⇥ 10

�4, 10�3, 5⇥
10

�3, 10�2}. �(B) can be interpreted as the marginal con-
fidence level for one iteration. The function is also shown
in Fig. 4 for visualization. We will release the code to gen-
erate the table and to compute B

Normal

(�,⇡
T

(1)

) numeri-
cally.

C. Experiment Detailed Setting and Extra
Results

C.1. More Results of the Synthetic Data Experiment

The results with the marginal variance estimate �̂
i

for Rac-
ing are shown in Fig. 5. The Racing algorithms (both
EBS and Normal) performs more conservatively compared
to the plots when using pairwise variance estimate �̂

i,j

in
Fig. 1, but the relative performance of all the algorithms are
very similar to Fig. 1.

We also provide the results with D = 2 and D = 100

when Racing algorithms use pairwise variance estimate in
Fig. 6 and 7 respectively. Racing-Normal performs the best
in all situations and the empirical error never exceeds the
provided bound � with a statistical significance of 0.05.

Notice that the error of adaptive lil’UCB exceeds the er-
ror tolerance in the experiment with D = 100 and l

i,n

⇠
Uniform[0, 1]. This is because we use the recommended
heuristic setting of parameters in Jamieson et al. (2014)
that unfortunately does not satisfy the theoretical guaran-
tee of Thm. 2 in Jamieson et al. (2014). lil’UCB (heuristic)
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Table 1. B
Normal

(�,⇡T (1)

)

⇡
T

(1)

� 5⇥ 10

�5

10

�4

5⇥ 10

�4

10

�3

5⇥ 10

�3

10

�2

1.0e-06 5.27250 5.25978 5.21523 5.19704 5.15638 5.12982
3.0e-06 5.06504 5.05294 5.00570 4.98839 4.94490 4.91964
5.0e-06 4.96669 4.95260 4.90571 4.88735 4.84311 4.81818
7.0e-06 4.89969 4.88715 4.83793 4.82079 4.77535 4.75037
9.0e-06 4.85078 4.83613 4.78840 4.76941 4.72447 4.69877
1.0e-05 4.82952 4.81667 4.76734 4.74894 4.70377 4.67696
3.0e-05 4.60397 4.58943 4.53827 4.51911 4.47119 4.44485
5.0e-05 4.49660 4.48108 4.42961 4.40734 4.36137 4.33158
7.0e-05 4.42331 4.40694 4.35512 4.33353 4.28573 4.25692
9.0e-05 4.36853 4.35265 4.29963 4.27682 4.22961 4.19891
1.0e-04 4.34343 4.32914 4.27380 4.25455 4.20386 4.17608
3.0e-04 4.09380 4.07655 4.02027 3.99632 3.94601 3.91438
5.0e-04 3.97189 3.95539 3.89641 3.87263 3.82038 3.78605
7.0e-04 3.88945 3.87195 3.81223 3.78698 3.73467 3.70026
9.0e-04 3.82665 3.80955 3.74833 3.72365 3.66977 3.63422
1.0e-03 3.79932 3.78066 3.72003 3.69596 3.64066 3.60812
3.0e-03 3.51044 3.49128 3.42498 3.39721 3.34023 3.30253
5.0e-03 3.36685 3.34814 3.27812 3.25096 3.19048 3.15168
7.0e-03 3.26922 3.24913 3.17763 3.14844 3.08769 3.04691
9.0e-03 3.19383 3.17396 3.10034 3.07142 3.00871 2.96758
1.0e-02 3.16117 3.13913 3.06612 3.03755 2.97349 2.93484
3.0e-02 2.80261 2.77885 2.69625 2.66350 2.59450 2.55058
5.0e-02 2.61646 2.59217 2.50369 2.46819 2.39672 2.34862
7.0e-02 2.48285 2.45761 2.36449 2.33100 2.25369 2.20744
9.0e-02 2.37768 2.35127 2.25533 2.22026 2.14145 2.09317
1.0e-01 2.33161 2.30704 2.20851 2.17274 2.09292 2.04351
1.3e-01 2.21073 2.18499 2.08270 2.04536 1.96346 1.91214
1.6e-01 2.10639 2.08030 1.97430 1.93665 1.85177 1.80027
1.9e-01 2.01355 1.98592 1.87702 1.83878 1.75267 1.69949
2.2e-01 1.92898 1.90035 1.78969 1.74854 1.66259 1.60660
2.5e-01 1.84734 1.81893 1.70515 1.66472 1.57552 1.52056
2.8e-01 1.76920 1.73957 1.62421 1.58220 1.49310 1.43584
3.1e-01 1.69110 1.66145 1.54360 1.50171 1.41066 1.35354
3.4e-01 1.61302 1.58274 1.46319 1.42011 1.32819 1.27094
3.7e-01 1.52953 1.49919 1.37749 1.33482 1.24221 1.18303
4.0e-01 1.44411 1.41048 1.28960 1.24393 1.15002 1.09455
4.3e-01 1.33819 1.30896 1.18163 1.14025 1.04396 0.98381
4.6e-01 1.20662 1.17447 1.05191 1.00383 0.91939 0.85273
4.9e-01 0.97014 0.94399 0.81030 0.76485 0.69587 0.61783
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Figure 4. B
Normal

(�,⇡T (1)

)

performed significantly better than the setting with guar-
antees in Jamieson et al. (2014). So we expect that adap-
tive lil’UCB with parameters satisfying Thm. 2 of Jamieson
et al. (2014) will perform significantly worse than adaptive
lil’UCB (heuristic) and Racing-Normal in terms of the re-
ward sample complexity.

C.2. Details of the Bayesian ARCH Model Selection
Experiment

An ARCH model is commonly used to model the stochastic
volatility of financial times series. Let r

t

def
= log(p

t

/p
t�1

)

be the logarithm return of some asset price p
t

at time t. We
assume a constant mean process for the return and remove
the estimated mean in a pre-process step. An important
problem in applying ARCH for financial data is to choose
the complexity, the order q of the auto-regressive model.
We treat the model selection problem as a Bayesian infer-
ence problem for the random variable q. We use a uniform
prior distribution, ⇡(q) = 1/|Q|.
An MCMC algorithm was introduced in Carlin & Chib
(1995) to infer the posterior model distribution by aug-
menting the parameter space to a complete parameter set
for all models ((↵(j)

i

)

j

i=0

, ⌫(j)), j 2 Q, then assigning the
regular prior for the selected model j = q and pseudopriors
for those models that are not selected j 6= q. Then regular
MCMC algorithms can be applied to sample all the random
variables q, ((↵(j)

i

)

i

, ⌫(j))
j

without the problem of transdi-

mensional moves as in reversible jump MCMC.

The mixing rate of Carlin & Chib (1995) depends on a
proper choice of the pseudoprior for (↵(j)

i

, ⌫(j)). Ideally
it should be similar to the parameter posterior when the
model is chosen p(↵(j)

i

, ⌫(j))|q = j, r). We first reparam-
eterize (↵(j)

i

, ⌫(j)) with a softplus function x = log(1 +

exp(x0
)) to allow a full support along the real axis and then

take the Laplace approximation at the MAP of transformed
parameters as the pseudoprior for each model separately.

In order to avoid accessing the entire dataset each itera-
tion, we use subsampling-based algorithms to sample all
the conditionals except the pseudoprior as follows

q|(↵(j), ⌫(j))
j

⇠ ⇡(q)
Y

t

p(r
t

|↵(q), r
t�q:t�1

, ⌫(q)),

(↵(q), ⌫(q))|q ⇠ p(↵(q)

)p(⌫(q))
Y

t

p(r
t

|↵(q), r
t�q:t�1

, ⌫(q)),

(↵(j), ⌫(j))|q iid⇠ p
pseudoprior

(↵(j), ⌫(j)), 8j 6= q, (25)

where we sample q with Racing-Normal Gibbs and sample
↵(q), ⌫(q) using MH with a proposal from SGLD and a re-
jection step provided by Racing-Normal MH. The rejection
step controls the error introduced in SGLD when the step
size is large.

As the marginal likelihood for each model could be differed
by a few orders of magnitudes, to make sure every model is
sampled sufficiently often, we first adjust the prior distribu-
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Figure 5. Synthetic data. D = 10. Racing uses marginal variance estimate �̂i. ((a),(b),(c)) Estimated error with 95% confidence interval.
Plots not shown if no error occured. ((d),(e),(f)) proportion of sampled data. log fn(i) is sampled from Normal (⇥), Uniform (�) and
LogNormal (⇤) distributions. Plots of Racing-Normal overlap in ((f),(g),(h)).

tion ⇡̃ with the Wang-Landau algorithm with an annealing
adaptation on log ⇡̃, 1/(1 + t/100), so that the posterior
distribution p̃(q|r) is approximately uniform. We then fix
⇡̃ and compare the exact and approximate MCMC algo-
rithms. The real posterior distribution can be computed as
p(q|r) / p̃(q|r)/⇡̃(q).
We choose the step size separately for the exact and
stochastic gradient Langevin dynamics (Welling & Teh,
2011) so that the acceptance rate is about 36%.

We apply the control variates by first segmenting the 2-D
space of z

j,t

def
= (r

t

,↵(j)

0

+ (↵(j)

1:j

)

T

r

t�j:t�1

), where ↵(j)

takes the MAP value, equally into 100 bins according to
marginal quantiles and then taking the reference points at
the mean of each bin. We also notice that some data points
have large residual reward l

i,n

� h
i,n

when z

j,t

is far from
the reference point. We take 20% of the points with the
largest distance in z as outliers, always compute them every
iteration and apply the subsampling algorithm for the rest
data.

C.3. Details of the Author Coreference Experiment

The main differences of this sampling problem from Eq. 1
are that

1. |C
y

| 6= |C
y

0 | and the distribution of the cluster size
follows approximately a power law with the value
varying from as small as 1 to thousands. If we set
m(1)

= 50 as usual, we already draw about 33% of
all the rewards in the first mini-batch. So we slightly
abuse the Normal assumption and use a small size for
m(1)

= 3 and use doubling scheme for the rest with
m(2)

y

= (|C
y

|� 3)/10 ^ 1. The experiment shows an
empirical error 0.045 of mis-identification of the best
arm with the provided bound � = 0.05.

2. The distribution of {f
✓

(x
i

, x
j

) : j 2 C
y

} is inde-
pendent from different clusters/arms. We exploit the
independence of rewards and choose the bound

G
Normal

(�, T
i

, T
j

, �̂
i

, �̂
j
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=

✓
�̂
i

T
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✓
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i

� 1

N
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� 1

◆
+

�̂
j

T
j

✓
1� T

j

� 1

N
j

� 1

◆◆�1/2

B
Normal

.

(26)

This modification has the same performance as with
the pairwise variance estimate and has the same com-
putational complexity as with the marginal variance
estimate O(DN). We compute B

Normal

with a sub-
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Figure 6. Synthetic data. D = 2. Racing uses pairwise variance estimate �̂i,j . ((a),(b),(c)) Estimated error with 95% confidence interval.
Plots not shown if no error occured. ((d),(e),(f)) proportion of sampled data. log fn(i) is sampled from Normal (⇥), Uniform (�) and
LogNormal (⇤) distributions. Plots of Racing-Normal overlap in ((f),(g),(h)).
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Figure 7. Synthetic data. D = 100. Racing uses pairwise variance estimate �̂i,j . ((a),(b),(c)) Estimated error with 95% confidence
interval. Plots not shown if no error occured. ((d),(e),(f)) proportion of sampled data. log fn(i) is sampled from Normal (⇥), Uniform
(�) and LogNormal (⇤) distributions. Plots of Racing-Normal overlap in ((f),(g),(h)).
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optimal but simpler choice as

B
Normal

(�) = �

�1

✓
1� �

t⇤ � 1

◆
. (27)

It is easy to show that Eq. 5 still holds in this case
using a union bound across t. The bound in Eq. 27
is strictly looser than B

Normal

= E�1

(�) but the dif-
ference is small when � ⌧ 1 and diminishes to 0 as
� ! 0.

We obtained the dataset from the authors of Singh et al.
(2012) but it is different from what is used in Singh et al.
(2012) with more difficult citations. The best B3 F-1 score
reported in this paper is a reasonable value for this data set
according to personal communications with the authors of
Singh et al. (2012).


