
Austerity in MCMC Land: Cutting the

Metropolis-Hastings Budget

Anoop Korattikara
Department of Information and Computer Sciences

University of California
Irvine, CA 92697

akoratti@uci.edu

Yutian Chen
Department of Engineering
University of Cambridge

Cambridge, UK
yutian.chen@eng.cam.ac.uk

Max Welling
Institute of Informatics

University of Amsterdam
The Netherlands

welling@ics.uci.edu

Abstract

Can we make Bayesian posterior MCMC sampling more efficient when faced with
very large datasets? We argue that computing the likelihood for N datapoints in
the Metropolis-Hastings (MH) test to reach a single binary decision is computa-
tionally inefficient. We introduce an approximate MH rule based on a sequential
hypothesis test that allows us to accept or reject samples with high confidence us-
ing only a fraction of the data required for the exact MH rule. While this method
introduces an asymptotic bias, we show that this bias can be controlled and is more
than offset by a decrease in variance due to our ability to draw more samples per
unit of time.

1 Introduction

Markov chain Monte Carlo (MCMC) sampling has been the main workhorse of Bayesian computa-
tion ever since its development in the 1950s. A canonical MCMC algorithm proposes samples from
a distribution q and then accepts or rejects these proposals with a certain probability given by the
Metropolis-Hastings (MH) formula [1, 2]. For each proposed sample, the MH rule needs to exam-
ine the likelihood of all data-items. When the number of data-cases is large this is an awful lot of
computation for one bit of information, namely whether to accept or reject a proposal.

In today’s Big Data world, we need to rethink our Bayesian inference algorithms. Standard MCMC
methods do not meet the Big Data challenge for the reason described above. Researchers have made
some progress in terms of making MCMC more efficient, mostly by focusing on parallelization.
Very few question the algorithm itself: is the standard MCMC paradigm really optimally efficient in
achieving its goals? We claim it is not.

Any method that includes computation as an essential ingredient should acknowledge that there is
a finite amount of time, T , to finish a calculation. An efficient MCMC algorithm should therefore
decrease the “error” (properly defined) maximally in the given time T . For MCMC algorithms, there
are two contributions to this error: bias and variance. Bias occurs because the chain needs to burn in
during which it is sampling from the wrong distribution. Bias usually decreases fast, as evidenced
by the fact that practitioners are willing to wait until the bias has (almost) completely vanished after
which they discard these “burn-in samples”. The second cause of error is sampling variance, which

1

occurs because of the random nature of the sampling process. The retained samples after burn-in
will reduce the variance as O(1/T).

However, given a finite amount of computational time, it is not at all clear whether the strategy of
retaining few unbiased samples and accepting an error dominated by variance is optimal. Perhaps,
by decreasing the bias more slowly we could sample faster and thus reduce variance faster? In this
paper we illustrate this effect by cutting the computational budget of the MH accept/reject step. To
achieve that, we conduct sequential hypothesis tests to decide whether to accept or reject a given
sample and find that the majority of these decisions can be made based on a small fraction of the
data with high confidence. A related method was used in [3], where the factors of a graphical model
are sub-sampled to compute fixed-width confidence intervals for the log-likelihood in the MH test.

Our “philosophy” runs deeper than the algorithm proposed here. We advocate MCMC algorithms
with a “bias-knob”, allowing one to dial down the bias at a rate that optimally balances error due to
bias and variance. We only know of one algorithm that would also adhere to this strategy: stochastic
gradient Langevin dynamics [4] and its successor stochastic gradient Fisher scoring [5]. In their
case the bias-knob was the stepsize. These algorithms do not have an MH step which resulted in
occasional samples with extremely low probability. We show that our approximate MH step largely
resolves this, still avoiding O(N) computations per iteration.

In the next section we introduce the MH algorithm and discuss its drawbacks. Then in Section 3,
we introduce the idea of approximate MCMC methods and the bias variance trade-off involved.
Then, we develop approximate MH tests for Bayesian posterior sampling in Section 4. We show our
experimental results in Section 6 and conclude in Section 7.

2 The Metropolis-Hastings algorithm

MCMC methods generate samples from a distribution S0(θ) by simulating a Markov chain designed
to have stationary distribution S0(θ). A Markov chain with a given stationary distribution can be
constructed using the Metropolis-Hastings algorithm [1, 2], which uses the following rule for tran-
sitioning from the current state θt to the next state θt+1:

1. Draw a candidate state θ′ from a proposal distribution q(θ′|θt)
2. Compute the acceptance probability:

Pa = min

[

1,
S0(θ′)q(θt|θ′)
S0(θt)q(θ′|θt)

]

(1)

3. Draw u ∼ Uniform[0, 1]. If u < Pa set θt+1 ← θ′, otherwise set θt+1 ← θt.

Following this transition rule ensures that the stationary distribution of the Markov chain is S0(θ).
The samples from the Markov chain are usually used to estimate the expectation of a function f(θ)
with respect to S0(θ). To do this we collect T samples and approximate the expectation I = 〈f〉S0

as Î = 1
T

∑T

t=1 f(θt). Since the stationary distribution of the Markov chain is S0, Î is an unbiased
estimator of I (if we ignore burn-in).

The variance of Î is V = E[(〈f〉S0
− 1

T

∑T

t=1 f(θt))
2], where the expectation is over multiple

simulations of the Markov chain. It is well known that V ≈ σ2
f,S0

τ/T , where σ2
f,S0

is the variance

of f with respect to S0 and τ is the integrated auto-correlation time, which is a measure of the
interval between independent samples [6]. Usually, it is quite difficult to design a chain that mixes
fast and therefore, the auto-correlation time will be quite high. Also, for many important problems,
evaluating S0(θ) to compute the acceptance probability Pa in every step is so expensive that we can
collect only a very small number of samples (T) in a realistic amount of computational time. Thus

the variance of Î can be prohibitively high, even though it is unbiased.

3 Approximate MCMC and the Bias-Variance Tradeoff

Ironically, the reason MCMC methods are so slow is that they are designed to be unbiased. If we
were to allow a small bias in the stationary distribution, it is possible to design a Markov chain that

2

can be simulated cheaply [4, 5]. That is, to estimate I = 〈f〉S0
, we can use a Markov chain with

stationary distribution Sǫ where ǫ is a parameter that can be used to control the bias in the algorithm.

Then I can be estimated as Î = 1
T

∑T
t=1 f(θt), computed using samples from Sǫ instead of S0.

As ǫ → 0, Sǫ approaches S0 (the distribution of interest) but it becomes expensive to simulate the

Markov chain. Therefore, the bias in Î is low, but the variance is high because we can collect only
a small number of samples in a given amount of computational time. As ǫ moves away from 0, it
becomes cheap to simulate the Markov chain but the difference between Sǫ and S0 grows. Therefore,

Î will have higher bias, but lower variance because we can collect a larger number of samples in the
same amount of computational time. This is a classical bias-variance trade-off and can be studied
using the risk of the estimator.

The risk can be defined as the mean squared error in Î , i.e. R = E[(I − Î)2], where the expectation
is taken over multiple simulations of the Markov chain. It is easy to show that the risk can be
decomposed as R = B2 + V , where B is the bias and V is the variance. If we ignore burn-in, it can
be shown that B = 〈f〉Sǫ

− 〈f〉S0
and V = E[(〈f〉Sǫ

− 1
T
f(θt))

2] ≈ σ2
f,Sǫ

τ/T .

The optimal setting of ǫ that minimizes the risk depends on the amount of computational time avail-
able. If we have infinite computational time, we should set ǫ to 0. Then there is no bias, and the
variance can be brought down to 0 by drawing an infinite number of samples. This is the traditional
MCMC setting. However, given finite computational time, this is not optimal. It might be better to
tolerate a small amount of bias in the stationary distribution if it allows us to reduce the variance
quickly, either by making it cheaper to collect a large number of samples or by mixing faster.

It is interesting to note that two recently proposed algorithms follow this paradigm: Stochastic
Gradient Langevin Dynamics (SGLD) [4] and Stochastic Gradient Fisher Scoring (SGFS) [5]. These
algorithms are biased because they omit the required Metropolis-Hastings tests. However, in both
cases, a knob ǫ (the step-size of the proposal distribution) is available to control the bias. As ǫ→ 0,
the acceptance probability Pa → 1 and the bias from not conducting MH tests disappears. However,
when ǫ → 0 the chain mixes very slowly and the variance increases. As ǫ is increased from 0,
the auto-correlation, and therefore the variance, reduces. But, at the same time, the acceptance
probability reduces and the bias from not conducting MH tests increases as well.

In the next section, we will develop another class of approximate MCMC algorithms for the case
where the target S0 is a Bayesian posterior distribution given a very large dataset. We achieve this
by developing an approximate Metropolis-Hastings test, equipped with a knob for controlling the
bias. Moreover, our algorithm has the advantage that it can be used with any proposal distribution.
For example, our method allows approximate MCMC methods to be applied to problems where it
is impossible to compute gradients (which is necessary to apply SGLD/SGFS). Or, we can even
combine our method with SGLD/SGFS, to obtain the best of both worlds.

4 Approximate Metropolis-Hastings Test for Bayesian Posterior Sampling

An important method in the toolbox of Bayesian inference is posterior sampling. Given a dataset
of N independent observations XN = {x1, . . . , xN}, which we model using a distribution p(x; θ)
parameterized by θ, defined on a space Θ with measure Ω, and a prior distribution ρ(θ), the task is

to sample from the posterior distribution S0(θ) ∝ ρ(θ)
∏N

i=1 p(xi; θ).

If the dataset has a billion datapoints, it becomes very painful to compute S0(.) in the MH test,
which has to be done for each sample we generate. Spending O(N) computation to get just 1 bit of
information, i.e. whether to accept or reject a sample, is not the best use of computational resources.

But, if we try to develop accept/reject tests that satisfy detailed balance exactly with respect to the
posterior distribution using only sub-samples of data, we will quickly see the no free lunch theorem
kicking in. For example, the pseudo marginal MCMC method [7] and the method developed by
Lin et al. [8] provide a way to conduct exact accept/reject tests using unbiased estimators of the
likelihood. However, unbiased estimators of the likelihood that can be computed from mini-batches
of data, such as the Poisson estimator [9] or the Kennedy-Bhanot estimator [8] have very high
variance for large datasets. Because of this, once we get a very high estimate of the likelihood,
almost all proposed moves are rejected and the algorithm gets stuck.

3

Thus, we should be willing to tolerate some error in the stationary distribution if we want faster
accept/reject tests. If we can offset this small bias by drawing a large number of samples cheaply
and reducing the variance faster, we can establish a potentially large reduction in the risk.

We will now show how to develop such approximate tests by reformulating the MH test as a sta-
tistical decision problem. It is easy to see that the original MH test (Eqn. 1) is equivalent to the
following procedure: Draw u ∼ Uniform[0, 1] and accept the proposal θ′ if the average difference
µ in the log-likelihoods of θ′ and θt is greater than a threshold µ0, i.e. compute

µ0 =
1

N
log

[

u
ρ(θt)q(θ

′|θt)
ρ(θ′)q(θt|θ′)

]

and µ =
1

N

N
∑

i=1

li where li = log p(xi; θ
′)− log p(xi; θt) (2)

Then if µ > µ0, accept the proposal and set θt+1 ← θ′. If µ ≤ µ0, reject the proposal and
set θt+1 ← θt. This reformulation of the MH test makes it very easy to frame it as a statistical
hypothesis test. Given µ0 and a random sample {li1 , . . . , lin} drawn without replacement from
the population {l1, . . . , lN}, can we decide whether the population mean µ is greater than or less
than the threshold µ0? The answer to this depends on the precision in the random sample. If the
difference between the sample mean l̄ and µ0 is significantly greater than the standard deviation s of
l̄, we can make the decision to accept or reject the proposal confidently. If not, we should draw more
data to increase the precision of l̄ (reduce s) until we have enough evidence to make a decision.

More formally, we test the hypotheses H1 : µ > µ0 vs H2 : µ < µ0. To do this, we proceed as

follows: We compute the sample mean l̄ and the sample standard deviation sl =
√

(l2 − (l̄)2) n
n−1 .

Then the standard deviation of l̄ can be estimated as:

s =
sl√
n

√

1− n− 1

N − 1
(3)

where
√

1− n−1
N−1 , the finite population correction term, is applied because we are drawing the

subsample without replacement from a finite-sized population. Then, we compute the test statistic:

t =
l̄ − µ0

s
(4)

Algorithm 1 Approximate MH test

Require: θt, θ
′, ǫ, µ0, XN , m

Ensure: accept
1: Initialize estimated means l̄← 0 and l2 ← 0
2: Initialize n← 0, done← false
3: Draw u ∼ Uniform[0,1]
4: while not done do
5: Draw mini-batch X of size min (m, N − n) without replacement from XN and set XN ←

XN \ X
6: Update l̄ and l2 using X , and n← n+ |X |
7: Estimate std s using Eqn. 3

8: Compute δ ← 1− φn−1

(∣

∣

∣

∣

l̄ − µ0

s

∣

∣

∣

∣

)

9: if δ < ǫ then
10: accept← true if l̄ > µ0 and false otherwise
11: done← true
12: end if
13: end while

If n is large enough for the central limit theorem (CLT) to hold, the test statistic t follows a standard
Student-t distribution with n − 1 degrees of freedom, when µ = µ0. Then, we compute δ =
1 − φn−1(|t|) where φn−1(.) is the cdf of the standard Student-t distribution with n− 1 degrees of
freedom. If δ < ǫ (a fixed threshold) we can confidently say that µ is significantly different from µ0.
In this case, if l̄ > µ0, we decide µ > µ0, otherwise we decide µ < µ0. If δ ≥ ǫ, we do not have

4

enough evidence to make a decision. In this case, we draw more data to reduce the uncertainty, s,
in the sample mean l̄. We keep drawing more data until we have the required confidence (i.e. until
δ < ǫ). This procedure will terminate because when we have used all the available data, i.e. n = N ,
the standard deviation s is 0, the sample mean l̄ = µ and δ = 0 < ǫ. So, we will make the same
decision as the original MH test would make. Pseudo-code is shown in Algorithm 1. Here, we start
with a mini-batch of size m for the first test and increase it by m datapoints when required.

The advantage of our method is that often we can make confident decisions with n < N datapoints
and save on computation, although we introduce a small bias in the stationary distribution. But, we
can use the computational time we save to draw more samples and reduce the variance. The bias-
variance trade-off can be controlled by adjusting the knob ǫ. When ǫ is high, we make decisions
without sufficient evidence and introduce a high bias. As ǫ → 0, we make more accurate decisions
but are forced to examine more data which results in high variance.

Our algorithm will behave erratically if the CLT does not hold, e.g. with very sparse datasets or
datasets with extreme outliers. The CLT assumption can be easily tested empirically before running
the algorithm to avoid such pathological situations. However, we expect any algorithm that does not
examine every datapoint to suffer from similar problems on such datasets.

5 Error Analysis and Test Design

In 5.1, we summarize1 the relationships between the parameter ǫ, the error E of the complete se-
quential test, the error ∆ in the acceptance probability and the error in the stationary distribution.
In 5.2, we describe how to design a test that minimizes data usage given a tolerance on the error.

5.1 Error Analysis and Estimation

The parameter ǫ is an upper-bound on the error of a single test and not the error of the complete
sequential test. To compute this error, we assume a) n is large enough that the t statistics can be
approximated with z statistics, and b) the joint distribution of the l̄’s corresponding to different
mini-batches used in the test is multivariate normal. Under these assumptions, we can show that
the test statistic at different stages of the sequential test follows a Gaussian Random Walk process.
This allows us to compute the error of the sequential test E(µstd,m, ǫ), and the expected proportion
of the data required to reach a decision π̄(µstd,m, ǫ), using an efficient dynamic programming
algorithm. Note that E and π̄ depend on θ, θ′ and u only through the ‘standardized mean’ defined

as µstd(u, θ, θ
′)

def
=

(µ(θ, θ′)− µ0(θ, θ
′, u))

√
N − 1

σl(θ, θ′)
where σl is the true standard deviation of the

li’s. The error E(µstd,m, ǫ) is highest in the worst case when µ = µ0. Therefore, E(0,m, ǫ) is
an upper-bound on E . Since the error decreases sharply as µ moves away from µ0, we can get a
more useful estimate of E if we have some knowledge about the distribution of µstd’s that will be
encountered during the Markov chain simulation.

Now, let Pa,ǫ(θ, θ
′) be the actual acceptance probability of our algorithm and let ∆(θ, θ′)

def
=

Pa,ǫ(θ, θ
′)− Pa(θ, θ

′) be the error in Pa,ǫ. We can show that for any (θ, θ′):

∆ =

∫ 1

Pa

E(µstd(u))du−
∫ Pa

0

E(µstd(u))du (5)

i.e., the errors corresponding to different u’s partly cancel each other. Therefore, although |∆(θ, θ′)|
is upper-bounded by the worst-case error E(0,m, ǫ) of the sequential test, the actual error is usually
much smaller. For any given (θ, θ′), ∆ can be computed easily using 1-dimensional quadrature.

Finally, we show that the error in the stationary distribution is bounded linearly by ∆max =
supθ,θ′ |∆(θ, θ′)|. As noted above, ∆max ≤ E(0,m, ǫ) but is usually much smaller. Let dv(P,Q)
denote the total variation distance between two distributions, P and Q. If the transition kernel T0
of the exact Markov chain satisfies the contraction condition dv(PT0,S0) ≤ ηdv(P,S0) for all
probability distributions P with a constant η ∈ [0, 1), we can prove the following upper bound:

1Detailed proofs are available in a longer version of this paper that is currently under review by ICML 2013.
Proof of Theorem 1 is also available in a version submitted to the Proceedings of the JSM 2013.

5

Theorem 1. The distance between the posterior distribution S0 and the stationary distribution of

our approximate Markov chain Sǫ is upper bounded as dv(S0,Sǫ) ≤
∆max

1− η

5.2 Optimal Sequential Test Design

We now briefly describe how to choose the parameters of the algorithm: ǫ, the error of a single test
and m, the mini-batch size. A very simple strategy we recommend is to choose m ≈ 500 so that the
Central Limit Theorem holds and keep ǫ as small as possible while maintaining a low average data
usage. This rule works well in practice and is used in Experiments 6.1 - 6.3.

The more discerning practitioner can design an optimal test that minimizes the data used while
keeping the error below a given tolerance. Ideally, we want to do this based on a tolerance on the
error in the stationary distributionSǫ. Unfortunately, this error depends on the contraction parameter,
η, of the exact transition kernel, which is difficult to compute. A more practical choice is a bound on
the error ∆ in the acceptance probability, since the error in Sǫ increases linearly with ∆. Since ∆ is
a function of (θ, θ′), we can try to control the average value of ∆ over the empirical distribution of
(θ, θ′) that would be encountered while simulating the Markov chain. Given a tolerance ∆∗ on this
average error, we can find the optimal m and ǫ by solving the following optimization problem (e.g.
using grid search) to minimize the average data usage :

min
m,ǫ

Eθ,θ′ [Euπ̄(µstd(u, θ, θ
′),m, ǫ)] s.t. Eθ,θ′ |∆(m, ǫ, θ, θ′)| ≤ ∆∗ (6)

In the above equation, we estimate the average data usage, Eu[π̄], and the error in the acceptance
probability, ∆, using dynamic programming with 1-dimensional quadrature on u. The empirical
distribution for computing the expectation with respect to (θ, θ′) can be obtained using a trial run of
the Markov chain. Without a trial run the best we can do is to control the worst case error E(0,m, ǫ)
(which is also an upper-bound on ∆) in each test by solving the following minimization problem:

min
m,ǫ

π̄(0,m, ǫ) s.t. E(0,m, ǫ) ≤ ∆∗ (7)

But this leads to a conservative design as E(0,m, ǫ) is usually much higher than the average error.

6 Experiments

6.1 Independent Component Analysis

We first use our algorithm to sample from the posterior distribution of the unmixing matrix in
Independent Component Analysis (ICA) [10]. When using prewhitened data, the unmixing ma-
trix W ∈ R

D×D is constrained to lie on the Stiefel manifold of orthonormal matrices. We
choose a prior that is uniform over the manifold and zero elsewhere. We model the data as

p(x|W) = |det(W)|∏D
j=1

[

4 cosh2(12w
T
j x)

]−1
where wj are the rows of W . Since the prior is

zero outside the manifold, the same is true for the posterior. Therefore we use a random walk on the
Stiefel manifold as a proposal distribution [11]. Although the random walk proposal is not efficient,
it is very useful for illustrating our algorithm because the proposal does not contain any information
about the target distribution, unlike Langevin or Hamiltonian methods. So, the responsibility of con-
verging to the correct distribution lies solely with the MH test. Since this is a symmetric proposal
distribution, it does not appear in the MH test and we can use µ0 = 1

N
log [u].

To perform a large scale experiment, we created a synthetic dataset by mixing 1.95 million sam-
ples of 4 sources: (a) a Classical music recording (b) traffic noise (c) & (d) 2 independent Gaus-
sian sources. To measure the correctness of the sampler, we measure the risk in estimating
I = Ep(W |X) [dA(W,W0)] where the test function dA is the Amari distance [12] and W0 is the
true unmixing matrix. We computed the true value of I using a long run (T = 100K samples) of the
exact MH algorithm. Then we ran the approximate MH algorithm with different values of ǫ, each
10 times for≈ 6400 secs. We calculated the risk by averaging the squared error in the estimate from

each Markov chain, over the 10 chains. This is shown in Fig. 1. Since the risk R = B2 + σ2f
T

,
we expect it to decrease as a function of time until the bias dominates the variance. Note that even
after 6400 secs the variance dominates the bias, as evidenced by the still decreasing risk, except

6

0 1000 2000 3000 4000 5000 6000 7000
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Wall Clock Time (secs)

Lo
g

(R
is

k)

ε = 0, T = 5992
ε = 0.01, T = 11320
ε = 0.05, T = 40973
ε = 0.1, T = 171917
ε = 0.2, T = 1894000

Figure 1: ICA: Risk in mean Amari distance

0 1000 2000 3000 4000
−9

−8

−7

−6

−5

−4

−3

−2

−1

Wall Clock Time (secs)

Lo
g

(R
is

k)

ε = 0, T = 24583
ε = 0.01, T = 137375
ε = 0.05, T = 245906
ε = 0.1, T = 419090

Figure 2: RJMCMC: Risk in predictive mean

for the most biased algorithm with ǫ = 0.2. Also, the lowest risk at 6400 secs is obtained with
ǫ = 0.1 and not the exact MH algorithm (ǫ = 0). But we expect the exact algorithm to outperform
all approximate algorithms if we were to run for an infinite time.

6.2 Variable selection in Logistic Regression

Now, we apply our MH test to variable selection in a logistic regression model using the reversible
jump MCMC algorithm of Green [13]. We use a model similar to the Bayesian LASSO for linear
regression [14]. Specifically, givenD input features, our parameter θ = {β, γ}where β is a vector of
D regression coefficients and γ is a D dimensional binary vector that indicates whether a particular

feature is included in the model or not. The prior we choose for β is p(βj |γ, ν) = 1
2ν exp

{

− |βj|
ν

}

if γj = 1. If γj = 0, βj does not appear in the model. Here ν is a shrinkage parameter that pushes
βj towards 0, and we choose a prior p(ν) ∝ 1/ν. We also place a right truncated Poisson prior

p(γ|λ) ∝ λk

(

D
k

)

k!
on γ as in Chen et al. [14] to control the size of the model, k =

∑D

j=1 γj .

Denoting the likelihood of the data by lN (β, γ), the posterior distribution after integrating out ν is

p(β, γ|XN , yN , λ) ∝ lN(β, γ)‖β‖−k
1 λkB(k,D− k+1) where B(., .) is the beta function. Instead

of integrating out λ, we use it as a parameter to control the size of the model. We use the same
proposal distribution as in Chen et al. [14] which is a mixture of 3 type of moves that are picked
randomly in each iteration: an update move, a birth move and a death move.

We applied this to the MiniBooNE dataset from the UCI machine learning repository[15]. Here the
task is to classify electron neutrinos (signal) from muon neutrinos (background). There are 130K
datapoints with 50 features to which we add a feature of all 1’s. We split the data into a training
(80%) and testing (20%) set. To compute ground truth, we collected T=400K samples using the
exact reversible jump algorithm (ǫ = 0). Then, we ran the approximate MH algorithm with different
values of ǫ for around 3500 seconds. We plot the risk in predictive mean of test data (estimated from
10 Markov chains) in Fig. 2. Again we see that the lowest risk is obtained with ǫ > 0.

The acceptance rates for the birth/death moves starts off at ≈ 20% but dies down to ≈ 2% once
a good model is found. The acceptance rate for update moves is kept at ≈ 50%. The model also
suffers from local minima. For the plot in Fig. 2, we started with only one variable and we ended up
learning models with around 12 features, giving a classification error≈ 15%. But, if we initialize the
sampler with all features included and initialize β to the MAP value, we learn models with around 45
features, but with a lower classification error ≈ 10%. Both the exact reversible jump algorithm and
our approximate version suffer from this problem. We should bear this in mind when interpreting
“ground truth”. However, we have observed that when initialized with the same values, we obtain
similar results with the approximate algorithm and the exact algorithm.

6.3 Stochastic Gradient Langevin Dynamics

Finally, we apply our method to Stochastic Gradient Langevin Dynamics[4]. In each it-
eration, we randomly draw a mini-batch Xn of size n, and propose θ′ ∼ q(.|θ,Xn) =

7

N
(

θ +
α

2
∇θ

{

N

n

∑

x∈Xn
log p(x|θ) + log ρ(θ)

}

, α

)

. The proposed state θ′ is always accepted

(without conducting any MH test). Since the acceptance probability approaches 1 as we reduce α,
the bias from not conducting the MH test can be kept under control by using α ≈ 0. However, we
have to use a reasonably large α to keep the mixing rate high. This can be problematic for some
distributions, because SGLD relies solely on gradients of the log density and it can be easily thrown
off track by large gradients in low density regions, unless α ≈ 0.

As an example, consider an L1-regularized linear regression model. Given a dataset {xi, yi}Ni=1
where xi are predictors and yi are targets, we use a Gaussian error model p(y|x, θ) ∝
exp

{

−λ
2 (y − θTx)2

}

and choose a Laplacian prior for the parameters p(θ) ∝ exp(−λ0‖θ‖1). We
will restrict ourselves to a toy version of the problem where θ and x are one dimensional. We use a
synthetic dataset with N = 10000 datapoints generated as yi = 0.5xi + ξ where ξ ∼ N (0, 1/3).
We choose λ = 3 and λ0 = 4950, so that the prior is not washed out by the likelihood. The posterior
density and the gradient of the log posterior are shown in figures 3(a) and 3(b) respectively.

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

60

70

80

θ

p(
θ|

D
at

a)

(a) Posterior density

0 0.01 0.02 0.03 0.04 0.05 0.06
−2000

0

2000

4000

6000

8000

10000

θ

∇
θ lo

g
p(

θ|
D

at
a)

(b) Gradient of log poste-
rior

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

60

70

80

θ
p(

θ|
D

at
a)

SGLD

True

(c) SGLD

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

60

70

80

θ

p(
θ|

D
at

a)

ε = 0.5

True

(d) SGLD + MH, ǫ = 0.5.

Figure 3: Pitfalls of using uncorrected SGLD

A histogram of samples obtained by running SGLD with α = 5 × 10−6 is shown in Fig. 3(c).
The effect of omitting the MH test is quite severe here. When the sampler reaches the mode of the
distribution, the Langevin noise occasionally throws it into the valley to the left, where the gradient
is very high. This propels the sampler far off to the right, after which it takes a long time to find its
way back to the mode. However, if we had used an MH test, most of these troublesome jumps into
the valley would be rejected because the density in the valley is much lower than that at the mode.

To apply an MH test, note that the SGLD proposal q(θ′|θ) can be considered a mixture of component
kernels q(θ′|θ,Xn) corresponding to different mini-batches. The mixture kernel will satisfy detailed
balance if each of the component kernels satisfy detailed balance. Thus, we can use an MH test with

µ0 =
1

N
log

[

u
ρ(θt)q(θ

′|θt,Xn)

ρ(θ′)q(θt|θ′,Xn)

]

.

The result of running SGLD (keeping α = 5 × 10−6 as before) corrected using our approximate
MH test, with ǫ = 0.5, is shown in Fig. 3(d). Note that when ǫ = 0.5, a decision is always made in
the first step (using just m = 500 datapoints) without querying additional data.

7 Conclusions and Future Work

In this work, we have taken a first step towards cutting the computational budget of the Metropolis-
Hastings MCMC algorithm, which takes O(N) likelihood evaluations to make the binary decision
of accepting or rejecting a proposed sample. In our approach, we compute the probability that a
new sample will be accepted based on a subset of the data. We increase the cardinality of the subset
until a prescribed confidence level is reached. In the process we create a bias, which is more than
compensated for by a reduction in variance due to the fact that we can draw more samples per unit
time. Current MCMC procedures do not take these trade-offs into account. In this work we use a
fixed decision threshold for accepting or rejecting a sample, but in theory a better algorithm can be
obtained by adapting this threshold over time. An adaptive algorithm can tune bias and variance
contributions in such a way that at every moment our risk (the sum of squared bias and variance) is
as low as possible. We leave these extensions for future work.

8

References

[1] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and
Edward Teller. Equation of state calculations by fast computing machines. The journal of
chemical physics, 21:1087, 1953.

[2] W Keith Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

[3] Sameer Singh, Michael Wick, and Andrew McCallum. Monte Carlo MCMC: efficient infer-
ence by approximate sampling. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning,
pages 1104–1113. Association for Computational Linguistics, 2012.

[4] M. Welling and Y.W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
Proceedings of the 28th International Conference on Machine Learning (ICML), pages 681–
688, 2011.

[5] S. Ahn, A. Korattikara, and M. Welling. Bayesian posterior sampling via stochastic gradient
Fisher scoring. In International Conference on Machine Learning, 2012.

[6] Dani Gamerman and Hedibert F Lopes. Markov chain Monte Carlo: stochastic simulation for
Bayesian inference, volume 68. Chapman & Hall/CRC, 2006.

[7] Christophe Andrieu and Gareth O Roberts. The pseudo-marginal approach for efficient Monte
Carlo computations. The Annals of Statistics, 37(2):697–725, 2009.

[8] L Lin, KF Liu, and J Sloan. A noisy Monte Carlo algorithm. Physical Review D, 61(7):074505,
2000.

[9] Paul Fearnhead, Omiros Papaspiliopoulos, and Gareth O Roberts. Particle filters for partially
observed diffusions. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 70(4):755–777, 2008.

[10] Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and applications.
Neural networks, 13(4):411–430, 2000.

[11] Zhi Ouyang. Bayesian Additive Regression Kernels. PhD thesis, Duke University, 2008.

[12] Shun-ichi Amari, Andrzej Cichocki, Howard Hua Yang, et al. A new learning algorithm for
blind signal separation. Advances in neural information processing systems, pages 757–763,
1996.

[13] Peter J Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika, 82(4):711–732, 1995.

[14] Xiaohui Chen, Z Jane Wang, and Martin J McKeown. A Bayesian Lasso via reversible-jump
MCMC. Signal Processing, 91(8):1920–1932, 2011.

[15] K. Bache and M. Lichman. UCI machine learning repository, 2013. URL
http://archive.ics.uci.edu/ml.

9

http://archive.ics.uci.edu/ml

	Introduction
	The Metropolis-Hastings algorithm
	Approximate MCMC and the Bias-Variance Tradeoff
	Approximate Metropolis-Hastings Test for Bayesian Posterior Sampling
	Error Analysis and Test Design
	Error Analysis and Estimation
	Optimal Sequential Test Design

	Experiments
	Independent Component Analysis
	Variable selection in Logistic Regression
	Stochastic Gradient Langevin Dynamics

	Conclusions and Future Work

