
Distributed and Adaptive Darting Monte Carlo through Regenerations

Sungjin Ahn, Yutian Chen, and Max Welling
Department of Computer Science
University of California, Irivne

Irvine, CA, USA
{sungjia,yutianc,welling}@ics.uci.edu

Abstract

Darting Monte Carlo (DMC) is a MCMC proce-
dure designed to effectively mix between multi-
ple modes of a probability distribution. We pro-
pose an adaptive and distributed version of this
method by using regenerations. This allows us
to run multiple chains in parallel and adapt the
shape of the jump regions as well as all other as-
pects of the Markov chain on the fly. We show
that this significantly improves the performance
of DMC because 1) a population of chains has a
higher chance of finding the modes in the dis-
tribution, 2) jumping between modes becomes
easier due to the adaptation of their shapes, 3)
computation is much more efficient due to paral-
lelization across multiple processors. While the
curse of dimensionality is a challenge for both
DMC and regeneration, we find that their combi-
nation ameliorates this issue slightly.

1 Introduction

Markov Chain Monte Carlo methods (MCMC) (Metropo-
lis and Ulam, 1949) have revolutionized Bayesian statistics
by providing a tractable approximation procedure for pos-
terior inference (Gelfand and Smith, 1990). MCMC has
also become an important tool for Bayesian approaches to
machine learning (Andrieu et al., 2003). However, both in
statistics as well as in machine learning, the challenges of
today’s large datasets remain a driving force for research in
this area. To list a few research questions: 1) Can we effec-
tively parallelize MCMC simulation across processors? 2)
Can we efficiently mix between distant modes in the poste-
rior? 3) Can we effectively adapt the Markov chain during
execution?

Appearing in Proceedings of the 16th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2013, Scottsdale,
AZ, USA. Volume XX of JMLR: W&CP XX. Copyright 2013 by
the authors.

Regenera'on	

Dar'ng	 Move	

Tour	

Figure 1: Illustration of how darting MCMC generates tours
through regenerations.

In this paper we will touch upon all three of the above
issues (parallelization, multi-modality, adaptation) by ex-
tending Darting Monte Carlo (Andricioaiei et al., 2001;
Sminchisescu and M.Welling, 2007) through regeneration
(Mykland et al., 1995; Gilks et al., 1998). Darting Monte
Carlo (DMC) defines regions at locations of high posterior
probability such that when entered (using a standard local
MCMC move) a jump between regions will be attempted.
This allows the algorithm to effectively move between dis-
tant modes. A drawback of the DMC algorithm is however
that the jump regions need to be predefined and can not be
adapted during a sampling run. This makes it impossible
to discover new modes and include them on the fly. Ide-
ally, one would have multiple Markov chains run in par-
allel, exploring different modes of the state space and reg-
ularly exchanging information in order to populate these
modes in proportion to their volume. This idea is known
as “population MCMC” (Warnes, 2001; Laskey and My-
ers, 2003; Braak, 2006) in the literature. However, these
methods are not very flexible in the way they can adapt
to previous samples. Moreover, they require a lot of com-
munication between the parallel chains making them less

Distributed and Adaptive Darting Monte Carlo through Regenerations

suitable for distributed simulation.

Regeneration is an alternative idea to parallelize MCMC
simulation, with the additional bonus of being able to adapt
all aspects of the Markov chain after each regeneration
event. Enriching DMC with regenerations will allow the
method to jump between regions, adapt the regions on the
fly and simulate in parallel. Regeneration breaks a Markov
chain into independent segments, or tours. At regenera-
tion times one is allowed to adapt the details of the Markov
chain (i.e. its transition kernel) based on available samples
obtained so far (Gilks et al., 1998). We were inspired by
ideas in Mykland et al. (1995) and Brockwell and Kadane
(2005) to identify regeneration times. Regeneration has re-
mained an elegant but somewhat impractical procedure that
has not attracted a lot of attention (certainly not in the ML
literature). Like DMC (or most mode jumping methods for
that matter), it’s main limitation is the curse of dimension-
ality. However, we argue that that regeneration combined
with DMC is able to fine-tune its jump regions and ame-
liorate this problem to some degree, improving both DMC
and regeneration MCMC.

2 Regeneration

Regeneration is an elegant method to break a Markov chain
into smaller independent segments. (Gilks et al., 1998;
Mykland et al., 1995; Brockwell and Kadane, 2005) The
key idea is to split the kernel (i.e. proposal plus ac-
cept/reject step) into a mixture of two kernels as follows:

T (y|x) =S(x)Q(y) + (1− S(x))R(y|x) (1)

R(y|x) =

T (y|x)− S(x)Q(y)

(1− S(x))
IF S(x) ∈ [0, 1)

1 IF S(x) = 1
(2)

Here, S(x) acts as a state dependent mixture coefficient
between an independence kernel Q(y) and the residual
kernel R(y|x). As long as we can find a factorization
S(x)Q(y) ≤ T (y|x),∀x, y then this construction is pos-
sible. If at any point we can interpret the sample as being
generated by Q then this new sample is independent of the
past and the chain has regenerated.

So far the construction is not practical because it is hard
to sample from R. However, there is an elegant trick to de-
cide on regeneration retrospectively which avoids sampling
from R altogether. Introduce an auxiliary variable zt that
will decide which of the two kernels, Q or R, we choose.
Thus, zt follows a Bernoulli distribution with probability
of success S(xt−1). We now sample (zt, xt)|xt−1 jointly.
We may first integrate out zt to sample xt|xt−1 and then
retrospectively sample zt|(xt, xt−1). Marginalizing out zt
will give us back the full mixture given by Eqn.1, i.e. we
can simply propose a move according to T . Writing out the
joint for (xt, zt, xt−1) and conditioning on (xt, xt−1) one

can show that,

zt|(xt, xt−1) ∼ B
(
z;
S(xt−1)Q(xt)

T (xt|xt−1)

)
(3)

Remarkably, the procedure therefore simply uses the kernel
T but decides whether a sample was a regeneration retro-
spectively by sampling from 3 and checking if zt = 1. The
tour that started at the previous regeneration and ends at
xt−1 is independent of all other tours.

Detecting regenerations is very useful for a number of rea-
sons. Firstly, the tours can be generated independently on
different machines and combined later, facilitating paral-
lel simulation (Brockwell and Kadane, 2005). But perhaps
more importantly, all details of the entire procedure, includ-
ing the local kernel (e.g. Hamiltonian Monte Carlo (HMC))
as well as the kernels T and Q can be adapted based on
all the previous samples after a regeneration has occurred
(Gilks et al., 1998).

The difficult part of designing a regenerative MCMC
procedure is to find a valid factorization S(x)Q(y) ≤
T (y|x),∀x, y. However, this is possible when T (y|x) =
f(y)α(x, y) with α the MH accept/reject step and f(y) an
independence sampler. Two methods were proposed for
this in Mykland et al. (1995), which we describe in ap-
pendix A.

3 Darting Monte Carlo with Truncated
DPMMs

To obtain high regeneration rate, it is of the utmost impor-
tance that the proposal distribution, f , (which we use as
our independence sampler – see previous section) is a very
tight fit to the target distribution π whenever we propose
from the independence sampler. The strategy will be to
tighten this fit at the regeneration times. In particular, we
will fit a Dirichlet Process Mixture Model (DPMM) to the
samples (or a suitable subset of the samples) that have been
drawn so far. In particular, we used the “Accelerated Vari-
ational DPMM” algorithm of Kurihara et al. (2006) with a
maximum number of clusters1, K.

While we expect the DPMM to be a close fit in the high
probability regions, the error may become much worse
away from these regions (i.e. in the tails). Indeed, when the
size of data set, N , is large (and under certain conditions),
we may expect a mode to look normal only close to the lo-
cal maximum. We therefore truncate (and re-normalize)
the normal distributions obtained from the DPMM at α
standard deviations from the mean and call these regions,
R = ∪iRi, “jump regions”. Because this “mixture of trun-
cated normals” has zero probability outside R we do not

1Code available at http://sites.google.com/
site/kenichikurihara/academic-software/
variational-dirichlet-process-gaussian-
mixture-model.

Sungjin Ahn, Yutian Chen, and Max Welling

have to attempt sampling from f when the Markov chain is
located outside ofR (because the backward move has zero
probability).

In order to encourage a high regeneration rate, we re-
place the mixture transition kernel in Sminchisescu and
M.Welling (2007) by a cycle kernel, that is, at every iter-
ation we first draw an intermediate sample, θ̃, from a local
sampler and then run a step of independence sampling only
if θ̃ is in R. As shown in Mykland et al. (1995), the ret-
rospective regeneration probability is not dependent on the
local sampler but only on θ̃.

Detailed balance and ergodicity can easily be proved. First,
the proposed method uses a cycle kernel consisting of 2
kernels: the local HMC sampler and the truncated DPMM
independence sampler (TDPMM), each of which is de-
signed to satisfy detailed balance using a MH accept/reject
step. Also, it is easy to see that this kernel is ergodic, since
the first kernel (HMC) is ergodic and the second kernel
(TDPMM) can move the chain to any location inside the
jump regions.

The resulting “Regeneration Darting Monte Carlo”
(RDMC) algorithm, which uses “method 1” in Appendix
A is described in Algorithm 1.

Algorithm 1 Algorithm 1: Regeneration Darting Monte
Carlo (RDMC)

Initialize θ1

for t = 1 : T do
Sample θ̃ according to local sampler (e.g. HMC).
if θ̃ ∈ ∪iRi then

Sample from TDPMM:
1. Sample θ∗ from: f(θ∗) ∝∑K
i=1 ρi Ni(θ|µi,Σi) I[θ ∈ Ri]

2. Accept with probability α =

min

[
1,

π(θ∗)
∑
i:θ̃∈Ri

ρiNi(θ̃|µi,Σi)
π(θ̃)

∑
j:θ∗∈Rj

ρjNj(θ∗|µj ,Σj)

]
.

If accepted, use Eqn. 6 with x = θ̃, y = θ∗ to
determine if the sample was a regeneration.
if Regeneration has occurred then

Adapt the MCMC kernel and discard θ∗.
Apply rejection sampling using f(·) and Eqn. 7
to accept/reject in order to obtain θt+1.

else
Set θt+1 = θ∗.

end if
end if
If θ̃ 6∈ ∪iRi or θ∗ is rejected, set θt+1 = θ̃.

end for

(We note that
∑K
i=1 ρi Ni(θ|µi,Σi) I[θ ∈ Ri] ∝∑K

i=1 ζi TN i(θ|µi,Σi) with ζi = ρi
∫
θ∈Ri Ni(θ)dθ so

that jump proposals are indeed generated from a mixture
of truncated Gaussians.) RDMC can indeed be interpreted
as an improved “Darting Monte Carlo” (DMC) algorithm.

Darting Monte Carlo was developed as an effective way
for MCMC algorithms to jump between modes of a distri-
bution. The initial paper (Andricioaiei et al., 2001) defined
isotropic and uniform regions located close to the modes of
the distribution. A local sampler, say HMC, is interrupted
at regular intervals to check if the current location is inside
one of the jump regions. If so, the DMC would proceed
to propose a new value uniformly at random from within
these regions followed by a standard Metropolis-Hastings
(MH) accept/reject step. The procedure was generalized
in Sminchisescu and M.Welling (2007) to handle overlap-
ping regions of general shape. The independence sampler
proposed in this paper (without regenerations and adapta-
tion) improves on Sminchisescu and M.Welling (2007) by
using truncated normal distributions inside the jump re-
gions {Ri} instead of uniform probabilities, which pro-
vide a much better fit to the target distribution and is
therefore expected to boost the acceptance rate. One can
obtain the procedure from Sminchisescu and M.Welling
(2007) by setting ρi = 1, Ni = const., ∀i in which case∑
i:θ∈Ri 1 = n(θ), the number of regions which include θ.

As another special case one might consider no truncation,
which would set ζi = ρi.

We have experimented with an improvement to the ba-
sic form of RDMC. We exploits the property that any as-
pect of the MCMC procedure based on any information
available at that time can be updated after a regeneration
has occurred. This implies that in parallel to the Markov
chains we can also run a number of mode searching opti-
mization procedures, and incorporate newly found modes
when updating the TDPMM. This flexibility to utilize dif-
ferent kinds of information in such a flexible manner seems
unique to the regeneration procedure.

4 Experiments

In the following experiments, we study how the adapta-
tion and parallelization in the proposed algorithm affect the
convergence rate of the Markov chain. In particular, we
provide experiment results on two models, Gaussian Mix-
ture Model (GMM) and a localization problem of a Wire-
less Sensor Network (WSN). The convergence is diagnosed
in two metrics: the multivariate potential scale reduction
factor (MPSRF or R statistic) (Brooks and Gelman, 1998)
and the relative error of the estimated mean (REM) of all
dimensions. The R statistic is used to measure the conver-
gence of multiple chains and its value approaches 1 when
all chains converge to the stationary distribution. REM is a
summary of the errors in approximating the expectation of
variables across all dimensions computed as:

REMt =

∑d
i=1 |θti − θ∗i |∑

i |θ∗i |
(4)

Distributed and Adaptive Darting Monte Carlo through Regenerations

−10 −5 0 5 10 15

−10

−5

0

5

10

Figure 2: 2-D marginal of 15-component GMM

where θti is the sampling average of i’th variable at time t,
and θ∗i is the mean w.r.t. the true distribution. For WSN
where we cannot compute the true mean analytically, we
simulate a long Markov chain using RDMC that covers all
modes to provide a desirable precision.

We compare the following algorithms: 1) RDMC-PC(p)
is our algorithm running p parallel chains and using com-
bined tours when updating the DPMM. As a special case,
RDMC-PC(1) runs a single chain on a single processor.
To see the effect of combining tours among chains, we
also consider 2) RDMC-P which is the same as RDMC-
PC except that no communication is made between chains
and thus DPMM is updated based on individual chains.
3) DMC-P(p) and 4) HMC-P(p) are respectively the origi-
nal Darting algorithm (Sminchisescu and M.Welling, 2007)
and Hamiltonian Monte Carlo running p chains in paral-
lel. We also studied a population-based MCMC algorithm:
5) differential evolution MCMC (DEMC) (Braak, 2006),
which allows distant mode jumps. DEMC(n) runs a popu-
lation of size n on a single processor.

We briefly describe how the differential evolution MCMC
works. Given a population of n samples, {θi}ni=1, the pro-
posed move for sample i is obtained by

θ∗i = θi + γ(θj − θk) + ε (5)

where θj and θk (where, i 6= j 6= k) are chosen randomly
from the population and the noise ε is subject to a Gaussian
distributionN (0, b). Notice that θj − θk determines the di-
rection for θi to move and thus if θi and θk are in the same
mode while θj in another, it will propose a jump for θi to a
place near the mode of θj . When γ = 0, DEMC is equiv-
alent to the random walk Metropolis sampler. Usually, b is
set to a small number and γ = 1. Also notice that because
of the high dependency among all samples, DEMC has to
be executed sequentially on a single processor.

4.1 Gaussian Mixture Model

We first study how the algorithm is affected by varying the
number of modes K and the dimension D. K = [2, 5, 10]

5 10 15 20

1

1.5

2

2.5

3

3.5

Dimension

R
 a

t
ti
m

e
 =

 8
0

0
 s

e
c

RDMC−PC

RDMC−P

DEMC

DMC−P

(a) R for increasing dimensions

5 10 15 20
0

1

2

3

4

5

Dimension

R
E

M
 a

t
ti
m

e
 =

 8
0
0
 s

e
c

RDMC−PC

RDMC−P

DEMC

DMC−P

(b) REM for increasing dimensions

Figure 3: R and REM of GMM for increasing dimension.

and D = [5, 10, 15, 20] are considered for the comparison.
When varyingK orD, we fixed the other variable,D = 10
or K = 5, respectively. We randomly generate the Gaus-
sian mixture models in such a way that the mean of each
component is uniformly sampled from the d-dimension
space while keeping the average distance among the com-
ponents nearly constant for different K. Figure 2 shows a
2-d marginal distribution of a 15-component GMM.

We simulate 10 parallel chains, each on one processor, for
every algorithm. The population size of DEMC, n, in-
creases with K as n = 20 + 10K. For the HMC local
kernel, we used 10 leapfrog steps and choose the stepsize
to achieve an about 70% acceptance rate. For DMC and
RDMC in order to rule out the possibility that the error
is induced by sampling from different subset of modes,
we perform a preliminary mode search until it finds all
modes. For DMC, we first run gradient ascend algorithm
with restart to find local modes, prune duplicate one, and
then fit the jump regions, each centered at a mode with
shape estimated by the Laplace method, as suggested in
Sminchisescu and M.Welling (2007). For RDMC, we run
a brief burn-in procedure, where we randomly initialize the
samplers repeatedly, and run HMC to collect a few samples
at every restart. The total set of samples are then used to

Sungjin Ahn, Yutian Chen, and Max Welling

2 4 6 8 10
1

1.5

2

Number of Components

R
 a

t
ti
m

e
 =

 8
0

0
 s

e
c

RDMC−PC
RDMC−P
DEMC
DMC−P

(a) R for increasing number of components

2 4 6 8 10
0

1

2

3

Number of Components

R
E

M
 a

t
ti
m

e
 =

 8
0
0
 s

e
c

RDMC−PC
RDMC−P
DEMC
DMC−P

(b) REM for increasing number of components

Figure 4: R and REM of GMM for increasing number of com-
ponents

train an initial DPMM model. The time spent in this burn-
in period is included in all time-related comparisons. We
initialize the DMC and RDMC samples to be overdispersed
so that it is possible to visit all the modes of the Gaussian
mixture model.

Figure 3 and Figure 4 show the results after running the
algorithm for 800 seconds. We can see that both of the
RDMCs converge faster than DMC and DEMC in both R
and REM. We updated the DPMM when a regeneration
have occurred and the number of samples collected after
the last adaptation is more than 2000. Although the effect
of combining tours is reduced by the initial DPMM cover-
ing all the modes, by comparing RDMC-PC to RDMC-P
we actually see that combining the tours improves the val-
ues slightly. Also, RDMC mitigates the curse of dimen-
sionality problem that DMC is suffering from.

We also tested how the mode search on the fly (explained
in the end of the Section 3) affects the convergence of the
Markov chain. For this we tested RDMC-PC(1), RDMC-
PC(2), RDMC-PC(4), and DEMC(n=100) on 8-component
GMM. In this experiment, only one initial mode search is
performed so that the maximum number of modes covered
by the initial DPMM is equal to the number of parallel

0 200 400 600 800 1000
0

1

2

3

4

5

6

Seconds

R
E

M

RDMC−PC(4)
RDMC−PC(2)
RDMC−PC(1)
DEMC

Figure 5: REM with mode search on the fly

Figure 6: A network of 11 sensors with 3 known locations (red
square) and 8 unknown (black circles). Point clouds show the
marginal distribution of each sensor’s location. The joint distribu-
tion is multi-modal and highly skewed.

chains. For example, RDMC-PC(1) started with DPMM
covering only one mode among eight modes. As shown in
Fig.5, it however discovered all modes as the iteration goes
on. Then, we increased the number of parallel chains up to
4 and the error decreased faster with this. This is because
with the increasing number of parallel chains we can not
only start with a DPMM with more modes, but also new
modes can be discovered faster with multiple mode search.

4.2 Sensor Network Localization

In this section we illustrate the advantage of our adaptive
algorithm in a simulated problem of sensor network lo-
calization. Following the experiment setting in Ihler et al.
(2005), assume N sensors are scattered in a planar region
with two-dimensional locations denoted by {xt}Nt=1. The
distance between a pair of sensors (xt,xu) is observed
with a probability Po(xt,xu) = exp(−.5‖xt−xu‖2/R2),
and the observed distance is corrupted by Gaussian noise:

Distributed and Adaptive Darting Monte Carlo through Regenerations

(a)

(b)

Figure 7: Relative error of the estimated posterior mean of sensor
locations. The mean and standard deviation are computed from 10
Markov chains. The bottom figure is a zoom-in view of the top
figure. The first point on each figure indicates the time for the
burn-in period.

dtu = ‖xt − xu‖ + νtu, νtu ∼ N (0, σ2
ν). Given a set of

observations {dtu} and a prior distribution for xt, a uni-
form distribution in this paper, a typical task is to infer the
posterior joint distribution of all the sensor locations. We
choose N = 8, R/L = .3, σν/L = .02 and add three
additional sensors with known locations to avoid the ambi-
guities of translation, rotation, and negation (mirror sym-
metry). The locations of the 8 sensors form a multi-modal
distribution of 16 dimensions, with their marginal distribu-
tion displayed in Figure 6.

We use the same criterion as in the previous section to op-
timize the HMC local sampler and do the mode search for
DMC and RDMC. For the population MCMC algorithm,
DEMC, the population size is selected as 100 to balance
the efficiency and jumping acceptance rate. We set the stan-
dard deviation of the Gaussian noise as 5×10−5 to achieve
an acceptance rate of about 40% for the random walk pro-
posal. 10 Markov chains are simulated for every algorithm.

We compare the errors of estimating the posterior mean of
the sensor locations as a function of time in Figure 7 and
also show the corresponding R statistic in Figure 8.

As there are separated local modes in the posterior distri-

0 200 400 600 800
100

101

Time (s)

R
 S

ta
tis

tic
s

RDMC−P
DMC
DEMC
HMC

Figure 8: R statistic of 10 Markov chains as a function of time.

bution (e.g. the two red clusters in Figure 6) pure local
samplers such as HMC cannot visit all modes, resulting in
a large bias. Consistently the R statistic stays at a large
value indicating that multiple HMC chains do not mix.

For the population MCMC method, DEMC, we use 100
particles for each chain to encourage mode jumping, which
in return slows down the algorithm considerably. In order
to make sure the samplers could still move locally when
the jump proposal is rejected, we improve the algorithm by
decomposing the transition kernel of DEMC into two con-
secutive steps, local random walk and jump proposal, each
followed by a Metropolis-Hastings step. However, even
though we do observe the samplers jump from one mode
to another occasionally, the acceptance rate is still very low
(∼ 10−3). The slow convergence leads to large variance in
the estimated mean and a slow decay of the R value.

In contrast with the two methods above, all the darting
based algorithms show fast convergence in both the esti-
mated error and the R statistic. Moreover, the regeneration
algorithm converges faster than the original darting Monte
Carlo algorithm. As the proposal distribution in RDMC
is adapted with more samples, the difference of these two
curves become more significant.

We study the proposal distributions qualitatively in Figure
9. This figure shows a 2-D projection of the jumping re-
gions at the 2 dimensions corresponding to the 5th sen-
sor. Apparently, the mixture of Gaussian model trained by
DPMM is a tighter fit to the underlying distribution. More-
over, DPMM keeps adapted and improved as more sam-
ples are collected. A tighter proposal distribution provides
both higher jumping acceptance rate and higher regenera-
tion rate, which eventually leads to an improved conver-
gence rate of the Markov chain.

The same conclusion can be made by looking at the regen-
eration rate in Figure 10. The regeneration rate measures

Sungjin Ahn, Yutian Chen, and Max Welling

Sample
MoG using Laplace

(a) Mixture of Gaussian fitted by Laplace after burn-in

Sample
Initial DPMM
Adapted DPMM

(b) Mixture of Gaussian fitted by DPMM after burn-in (red) and
after 1000 seconds (blue).

Figure 9: Marginal distribution of the 5th sensor (green points)
and the 2-D projection of the one standard deviation ellipses of
the mixture of Gaussian model on the sensor’s location.

the frequency of an independent sample generated from the
Markov chain. A higher rate indicates a faster convergence
rate. We find that the regeneration rate of RDMC increases
as the mixture model keeps adapted to the true distribution.

In practical problems with multiple modes, we are not able
to find all the modes in a burn-in period. Figure 11 shows
the case when we cannot find all the modes. Each chain
runs a single mode search, and none of them could find all
the mode. By communicating and exchanging information
among chains, RDMC-PC is able to find more modes and
thereby reduce the estimation error.

Figure 10: The average and standard deviation of the regenera-
tion rate for DMC and RDMC.

Figure 11: Relative error of the estimated posterior mean of sen-
sor locations. Each chain runs one mode search.

5 Conclusion

In the machine learning community, regeneration has not
made its appearance so far to the best of our knowledge2

Yet, regenerations provide a elegant method to parallelize
and adapt MCMC procedures. We found that it was par-
ticularly powerful in combination with DMC because the
jump regions can now be adapted to the shape of the distri-
bution, causing both more jumps and more regenerations.

A challenge for both DMC and RDMC is the curse of di-
mensionality. Due to the fact that RDMC was able to pro-
vide tighter fits to the shape of the mode this problem was
slightly ameliorated relative to DMC. We find in extended

2One paper is similar in spirit to our procedure, called ”Vari-
ational MCMC” (de Freitas et al., 2001) where a variational ap-
proximation acts as the proposal for an independence sampler.
Regenerations are mentioned as a possible way to adapt and im-
prove this proposal.

Distributed and Adaptive Darting Monte Carlo through Regenerations

experiments that RDMC can run effectively up to 50 di-
mensions, which is an order of magnitude more than the
empirical findings of Gilks et al. (1998); Mykland et al.
(1995); Brockwell and Kadane (2005). Future research will
be directed towards further improving this issue.

A Regenerations from an Independence
Sampler

Below we provide details of two regeneration methods
based on the independence sampler (Mykland et al., 1995).
Define w(·) = π(·)/f(·), where π is the target distribution.

Method 1: When y ∼ f is accepted according to α, the
probability of a regeneration is given by,

Preg =

1 IF w(x) ≥ c, w(y) ≤ c

OR w(x) ≤ c, w(y) ≥ c
1
c max [w(x), w(y)] IF w(x) < c,w(y) < c

cmax
[

1
w(x) ,

1
w(y)

]
IFw(x) > c,w(y) > c

(6)

where c is an arbitrary constant which should set to maxi-
mize the probability of regeneration. A reasonable choice
is c = Eπ[w] which can be approximated from samples and
adapted after each regeneration.

If we adapt the transition kernel after a regeneration has oc-
curred, then the last sample y obtained from the old kernel
should be discarded, and a new sample from the indepen-
dence sampler Q(y) should be drawn. We can obtain y
by rejection sampling where we repeatedly propose y from
f(y) until it is accepted with probability (Gilks et al., 1998)

Pnew = min

[
1,
w(y)

c

]
(7)

Method 2: Define an “envelope function” g from the pro-
posal f as follows: g(y) = mf(y), with m > 1 a constant
such that close to the modes we have g(y) > π(y). We call
C the set where g(y) ≥ π(y). Since f is a proper density
and g is just equal to f up to a multiplicative constant m,
samples are repeatedly proposed from f until one sample
gets accepted according to,

Paccept = min

[
1,
w(y)

m

]
(8)

This proposal thus samples from a distribution proportional
to q(y) ∝ min[π(y), g(y)] because if g(y) ≥ π(y) then
it samples correctly from π using standard rejection sam-
pling, but if g(y) < π(y) it incorrectly accepts the sample
drawn from g. Next, we need to accept or reject this pro-

posed sample using a standard MH step (Tierney, 1994),

Paccept =

1 IF x ∈ C
m
w(x) IF x /∈ C, y ∈ C
min

[
1, w(y)

w(x)

]
IF x /∈ C, y /∈ C

(9)

If accepted, we then determine if we have regenerated (us-
ing q instead of f in method 1, Eqn. 6 and setting c = 1),
leading to

Preg =

{
1 IF x ∈ C OR y ∈ C
mmax[1

w(x) ,
1

w(y)] otherwise3

(10)

Note that all accepted samples that fall in the region C are
regenerations.

Similar to method 1, after adaptation we should draw a
new sample of y from Q(y). This implies sampling from
q(y) = min [π(y), g(y)] (using the rejection sampling pro-
cedure described above) and then simply accepting that
sample (because Pnew = min

[
π(y)

min[π(y),g(y)] , 1
]

= 1 in this
case)

References
N. Metropolis and S. Ulam. The monte carlo method. Jour-

nal of the American Statistical Association, 44(247):
335–341, 1949.

A.E. Gelfand and A.F.M. Smith. Sampling-based ap-
proaches to calculating marginal densities. J. American
Statistical Association, 85:398–409, 1990.

C. Andrieu, N. de Freitas, A. Doucet, and M.I. Jordan. An
introduction to mcmc for machine learning. Machine
Learning, 50:5–43, 2003.

I. Andricioaiei, J. Straub, and A. Voter. Smart darting mon-
tecarlo. 114(16), 2001.

C. Sminchisescu and M.Welling. Generalized darting
monte carlo. In Eleventh International Conference
on Artificial Intelligence and Statistics (AISTATS2007),
2007. online proceedings.

P. Mykland, L. Tierney, and B. Yu. Regeneration in markov
chain samplers. Journal of the American Statistical As-
sociation, 90(429):233–241, 1995.

W.R. Gilks, G.O. Roberts, and S.K. Sahu. Adaptive markov
chain monte carlo through regeneration. J. Amer. Statist.
Assoc., 93:1045–1054, 1998.

G.R. Warnes. The normal kernel coupler: An adaptive
markov chain monte carlo method for efficiently sam-
pling from multi-modal distributions. Technical re-
port, University of Washington Department of Statistics,
2001. Technical Report no. 395.
3There is a typo in computing rA in Mykland et al. (1995):

“min” should be replaced by “max”.

Sungjin Ahn, Yutian Chen, and Max Welling

K. B. Laskey and J. W. Myers. Population markov chain
monte carlo. Machine Learning, 50:175–196, 2003.

Cajo J. F. Ter Braak. A markov chain monte carlo ver-
sion of the genetic algorithm differential evolution: easy
bayesian computing for real parameter spaces. Statisti-
cal Computing, 2006.

A.E. Brockwell and J.B. Kadane. Identification of regen-
eration times in mcmc simulation, with application to
adaptive schemes. Journal of Computational and Graph-
ical Statistics, 14(2):436–458, 2005.

K. Kurihara, M. Welling, and N. Vlassis. Accelerated vari-
ational Dirichlet process mixtures. In Advances of Neu-
ral Information Processing Systems – NIPS, volume 19,
2006.

S.P. Brooks and A. Gelman. General methods for monitor-
ing convergence of iterative simulations. Journal of com-
putational and graphical statistics, 7(4):434–455, 1998.

A.T. Ihler, J.W. Fisher III, R.L. Moses, and A.S. Willsky.
Nonparametric belief propagation for self-localization of
sensor networks. Selected Areas in Communications,
IEEE Journal on, 23(4):809–819, 2005.

Nando de Freitas, Pedro A. d. F. R. Hojen-Sorensen, and
Stuart J. Russell. Variational mcmc. In UAI ’01: Pro-
ceedings of the 17th Conference in Uncertainty in Artifi-
cial Intelligence, pages 120–127, 2001.

L. Tierney. Markov chains for exploring posterior distribu-
tions. Annals of Statistics, 22(4):1701–1728, 1994.

