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Abstract sampling of the posterior distribution of the parameters
given data can also be thought of astachasticnonlin-

ear dynamical system. Learning systems based on chaotic
dynamics appears to be a third thus-far unexplored possi-
bility that deserves some attention. The herding system un-
der consideration does not require explicit random number
generation because it derives its pseudo-randomness from
the inherent chaos of the learning equations. Similar to
bagging and Bayesian posterior sampling however, herd-
ing averages predictions over trajectories in model space,
resulting in a variance reduction of the relevant estingator

A parametric version of herding is formulated.
The nonlinear mapping between consecutive
time slices is learned by a form of self-supervised
training. The resulting dynamical system gen-
erates pseudo-samples that resemble the original
data. We show how this parametric herding can
be successfully used to compress a dataset con-
sisting of binary digits. It is also verified that
high compression rates translate into good pre-
diction performance on unseen test data. The nonlinear dynamical system in question turns out to be
on the boundary between order and chaos, formally to be
classified as “weakly chaotic” with polynomial sensitivity
1 INTRODUCTION to initial conditions. One can show that the system is a spe-
cial case of a larger class of weakly chaotic systems known
A deterministic nonlinear dynamical system was recentlyas “piecewise isometries” (Goetz, 1996). In fact, herding i
introduced in (Welling, 2009b; Welling, 2009a) as an alter-a special case of piecewise translations. Certain preserti
native method for learning in Markov random field models have been proven for such systems in the mathematics lit-
(MRF). The proposed method, called herding, uses the daterature. For instance, it is known that piecewise isormtrie
to drive the dynamics of both the weights as well as thehave vanishing topological entropy. This means that the
(hidden and visible) random variables. Unlike learning innumber of distinct subsequences of len@tigrows poly-
the traditional sense, the weights will never converge to anomially in7" (Goetz, 1996), in contrast to the exponential
fixed point. Instead, their trajectories are non-periodi¢ a growth for stochastic and fully chaotic systems which have
generate complicated attractor sets (e.g. with fractakHau non-vanishing topological entropy. We are currently inves
dorff dimension). The relevant information is encoded intigating the implications of these observations.

trltersettr?j%:]torlef, r(i)rir?quwglelntliy,nlri] tthhe rprfo p:ertt;]eslnwgf T Two classes of herding algorithms have been studied so far.
al aé:c; .rmir?i Stllj E rS1Iing C? dc ;:S:“ SI € te r%e na ﬁs The algorithm of (Welling, 2009b) uses average sufficient
bie, dete stchoniinear dynamical System can ellec- o yqiieg (ASS) as input to the system and returns pseudo-

tively capture the intricate dependencies present in a dat?amples that respect these ASS. These samples can in turn

stregm_and transfer that information to the task of makmgOe used for making predictions. In this case, the data are
predictions on unseen data. only represented through their ASS which severely limits
Herding seems a genuinely new approach to learninghe amount of correlations that can be modeled. A second
rooted in the theory of nonlinear dynamical systems. Max-lass of herding systems was studied in (Welling, 2009a)
imum Likelihood learning can be understood as a dynamiwhere hidden units were introduced. In this case, the actual
cal system but with a single fixed point. Similarly, MCMC data itself (not just a few ASS) are used to drive the sys-
- tem. The output of this class of systems is again a sequence
Appearing in Proceedings of thes"" International Conference of pseudo-samples that respects certain (higher order) con

guna Resort, Sardinia, ltaly. Volume 9 of JMLR: W&CP 9. Copy- o dels (MRF) at their maximum likelihood solution. In
right 2010 by the authors.
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addition, the system outputs a sequence of hidden repre-
sentations which can in turn be used for subsequent ti @
such as classification or regression. A

The second variety of herding requires all the data as ir

in order to generate pseudo-samples. Since we are req

to store all data in memory in order to make predictions,
should view this method as inherentign-parametric For
instance, the pseudo-samples can be used to generate i
parametric kernel estimate of the density function, or B
hidden representations can be used as a basis for nei
neighbor classification. However, it makes one wonde
one can define parametricvariant of herding that decou
ples the data and replaces them with a collection of par
eters. In this paper we will show that this can indeed
achieved. Similar to vector quantization (VQ), we will r
place the data with a smaller, weighted set of templa
Interestingly, these templates will be trained using regi
sion, a supervised learning technique. We will show in
experiments that this parametric herding system performs
very well in compressing the training data sequence, tak-
ing the complexity of the model components into accountfigure 1:A: Herding as a dynamical system for the weights.
We also show that this directly translates into good perfor-The original herding algorithm was driven by data, while pine-
mance on test data (as expected through the MDL principosed herding system is driven by a model of the data. B: Same
ple). We believe that this contribution will bring herding S A butnow depicted as a dynamical system over the joirespa
one step closer to being a practical algorithm for machine"**

learning problems.

where the mapping; is defined through,

Wat = Wa,t—1 + Pat(We—1) 3
2 HERDING ASA DYNAMICAL Pat(Wi—1) = Jat(We—1) — Gt (55 (We_1)) (4)
SYSTEM L N
Gat(Wi—1) = N Zga(xam Zont(Wi—1)) (5)
n=1
In the following we will review herding from a slightly dif- z’,(wi_1) = arg max Z Weort-190(Tan, zan)  (6)
ferent perspective, namely that of a dynamical system. We Zn
first introduce visible random variableg wherea labels . st (Wi_1) = ar maXZw 1ga(5a) )
a subset of the total set of random variables (denoted with sAVE=1 gm at—19ala

(e

x). Similarly, we introduce hidden variableg and fea-
ture functionsg, (za, zo)- When we writez,,, we shall ~ We first note that the mapping is a local translation over
mean the observation on the subset,. Similarly to the a vectorp,(w:—1). Moreover, the translation vectegr,
construction of Markov random fields, we first define andepends nonlinearly ow (due to the various maximiza-
energy over joint configurations= (x, z) as follows, tions). Howeverp depends omw only through the quanti-
tiesz* ands* which are themselves defined as maximiza-
tions. Since bothk ands are discrete, their values (obtained
through maximization) are stable against infinitesimat per
£=- Z Waga(Ta, Za) @ turbations ofw, implying that the mapping’ is apiecewise
¢ constant translation For later reference we also note that
the functiong does not depend on the scalevofi.e. mul-
tiplying all weights by a constant factor will have no effect
on the outcome of the maximizations. In (Welling, 2009a)
it was shown thaw will not diverge to infinity, but stay
within a compact region around the origin. The attractor
set that is traced out by the dynamical system can indeed
be quite intricate and seems (numerically) to have fractal
wi = Fi(wi_1) (2) Hausdorff dimension.

wherew,, is a weight associated to featugg. Herding
will now be defined as a nonlinear dynamical system for
the weights (see Figure 1),
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In the following it will also be useful to view the system boundsr;; € [—1,+1] andr; € [—1, +1] is given by,
from a slightly different perspective, namely as a dynami- A
cal system on the joint spaee, s (see Figure 1), rij(w, 0; A, m,b) =

M
(Wi, 8t) = Gi(Wi—1,8¢-1) (8) Z T tanh <b (Z Wik Apm + 91>> Ajm  (10)
m=1 k
where the states is called the symbolic sequence, or ri(w,8; A, 7w, b) =
“itinerary” of the dynamical system. o
Even though the dynamical system is highly nonlinear with Z T tanh (b (Z Wik Agm + 9j> ) (11)
complex dynamics as a result, certain average statistics on ~ m=1 k
the symbolss are conserved, namely, where {Ay,,} representM protoypes to be learned with
T N their corresponding weights,,. b is a scalar andw, 6}
T Z 1 Zga(wan o t)] _ are dynamical variables subject to herding. The form of
T—ooT £~ | N 7~ ran this function is motivated by softening the expressions for
T gi; andg; and introducing prototypes to replace the data.
lim 1 Zga(s*t)l 9) The softening is required to be able to compute gradients
T—oo | T £ “ for optimizing the parameters of the regression function.

_ ~ However, the result of this is that unlike the functians
These are the same constraints that would be satisfied Rie regression functionsdo depend on the scale fin a

the modelPure(x,2z) o exp[—E(x,z)] at its ML solu-  nontrivial way. The parametéris introduced to offset this
tion when we replace averages over pseudo-samples witffect.

averages over the modélyrr. However, samples from _ _ o
Purr Will not necessarily be identically distributed as the We estimate the regression parameters by minimizing the

sample sequencs,} because herding does not generate®Verage sum of squared residuals (SSE) over the time:
samples of maximal entropy subject to these constraints 1 X

(as Purr Would). The characterization of the differences C(A,7,b) = — Z SSE(t) (12)
between herding and maximum entropy/likelihood models T

is currently under investigation. It represents a différen SSE(t) — W 0 AT D) — T (W 00))2
inductive bias on the degrees of freedom that remain un- ®) zi:zj:(m]( 065 A, m,8) = giy(wr, 61))

constrained by the data. )
+) (rj(we, 055 A, 7, b) — g;(wi, 04)) (13)

3 PARAMETRIC HERDING !

wherewy, 8, are samples from herding. The objective
We now turn to the key point of this paper. We note from function represents the expected SSE if we assume that
Eqn.5 that the mapping only depends on the data through herding vv_iII samplt_a from some (unknqwn) distribution
the functionsj, (w). Therefore, if we can learn a param- P(W,8). Since herding generates one pai(0k:, 6:), :)
eterized regression function (w) that approximates this Per |t§rat|on, it's natural to run an online gradient descen
term, then we can decouple the data entirely andyse 2algorithm to update the parametersA, b
instead ofg, . We would have turned an essentially non-
parametric method into a parametric one. 4 DATA COMPRESSION

Fortunately, learning the regression functionsis very . ) ) )
simple in principle. The reason is that by running the herg-One possible way to evaluate a learning algorithm is to test

ing equations using data, we generate an unlimited datasiif 2Pility to compress a dataset. It has long been known
of pairs{w, g: = g(w:)}. Hence, we can take any off-the- that there are close connections between compression per-
shelves regression method to learn the relation between formance and the ability to generalize to new (unseen) data
andg. Interestingly, we are using supervised learning tech-(R'SS_anen’ 198_9)_' Th_e cost of compression, measured in
nigques to solve an unsupervised learning problem. Not unPits, is usually divided in three separate terms: 1) The<{con

like (Welling et al., 2002) one can argue that the system i§taqt) cost of coding the model pa.rameters, 2) the COSF of
“self-supervising’. coding the states of the hidden variables of the model (lin-

ear inN) and 3) the cost of coding the residual errors (lin-
For restricted Boltzman machines (using thé represen-  ear inN'). Optimal model complexity is achieved by trad-
tation) the features are given y; = zx;, ¢ = 2,  ing off the first term against the latter two. It was shown
g;j = x;. Sinceg; = % Zivzl zjn 1S independent ofv in (Hinton & Zemel, 1994) that by choosing the states of
we don’t need a regression function for it. For the otherthe hidden variables stochastically according to its poste
features, a suitable regression function that respects theor p(z|D, 8) (whereD denotes the dataset addienotes
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the parameters) one will get back a refund equal to the enans where.,.,.. is the total coding length for all the pa-
tropy of this posterior distribution This bits-back trick rameters.
will sometimes be used in the following although for some

models, such as the RBM, it will turn out to be intractable.Accordmg to the bits-back argument (Hinton & Zemel,

1994), we can potentially encode cheaper by stochastically
This encoding scheme corresponds to MAP estimatiompicking the indexz,, from some distributiory(z|x,,) and
where in addition to the usual log-likelihood terms certainclaiming a number of bits back after transmission equal to
regularizer terms (corresponding to log-priors for the pa-the entropy of this distributioft/(¢). Note, however, that
rameters) are present. A full Bayesian treatment would reby sub-optimally picking the index we also incur a higher
quire choosing parameters stochastically from its pasteri error. The optimal encoding is achieved if we use the pos-
distributionp(@|D) and receiving another refund equal to terior forg, i.e.

the entropy of this posterior distribution. However, taicia

your refund, you need to be able to compute the posterior  ¢(z|x,) x e~ Leodelerxn) (16)
p(0|D) after all the data have been transmitted. In the case

of MRF models such as the RBM this is intractable andWith the bits-back scheme, we can show that the coding
therefore unrealistic. For this reason we will omit thisbit length becomes

back term. Instead, we will encode the model parameters

up to a certain precision (or quantization level), assum- N

ing a Gaussian distribution for the encoding. The cost of Leode = Z
this encoding is therefore equaltolog A — log N/ (6;) for

every parameter. The value 4fis chosen such thatif we hich is equivalent to the negative log-likelihood of a mix-

add independent uniform quantization noise in the rangg,re of Bernoulli distributions (MoB) with the variables
[—A/2,A/2] to all the parameters, then the contribution {2} marginalized out.

of these perturbations constitute less théh of the total
compression rate.

— logZﬂkB(]I(Xn # c);pok) | (17)
%

n=1

42 COMPRESSION WITH HERDING

41 COMPRESSION WITH VECTOR Recall that herding, instead of defining a model explicitly,
QUANTIZATION defines a model onlimplicitly by generating a sequence
) , . ) of pseudo-samples. As such, it is not immediately evident
The idea of VQ is to divide the data vector space iAo g g yse it to compress a data collection. Our approach
partitions, and represent all the points in a partition by &, e to run herding for a very long time (e.§; = 107
common vector a.k_.g. codeworg. If a data po_mtxn iterations) starting at some randomly initialized values f
is |n_S|de thekth partition, we compress it by stolr!ng iny the weights and biases;, 6, at time¢ = 0 and using the
the indexk and the errox — c;. Given a probability dis- learned regression functior{s;;, ;! (see section 3). In

trlbgtlon .of a S|gnals,. the mn_umgl coding length we can ¢ way we will generate a new codebook veatpat ev-
achieve is the negative log-likelihood. Moreover, we CaNgry jteration given as the visible pat; of the pseudo-

get arbitrary close to that value with entropy encoding on asamlm%;Ek = [x},z}] at iterationt. Note, that the receiver

large enough dataset. Hence, we will trealog(p(s)) 8 ¢4 also generate these codebooks, so they do not have to
the true coding length. be transmitted.

For the binary image compression task in this paper, we asre injtial valueswy, 8o, are sampled from a Normal dis-
sume that the prior for data to bein pgrtltlbnsm and we tribution and communicated by sending a random seed and
model the error at each pixel as an independent Bemoully gcje factor (the standard deviation) so that they can be
random variable with probabilityo, = P(z;n 7 Cﬂ"f)zw_' replicated at the receivers end who uses the same random
Also, we compress the parametgrs; } as Bernoulli dis- mper generator. The time indices of the pseudo-samples
tributed random variables angbor., 7} as Normal dis- 4 serve as our hidden variables and they will be encoded
tributed random variables with a quantization leelThe - qer 4 uniform prior (a.k.a. all time indices are equally
total coding length is thus likely). We pick a time index for each data-casg,(Vn)
according to its posterior distribution which allows us to

L= Lparam + Leode  With (14) receive a modest refund equal to the entropy of this poste-
N rior (which the receiver needs to compute after all data has
Leode = »_ [~ log=, —log B(I(xy # ck); pok,.)] been transmitted). Incorporating this bits-back argument
n=1 (15) we can compute the coding length, . as:

N

- T
1Suboptimal “variational” distributions can also be usedias L. . = —1 l B(1 . 18
substitute for the posterior. code Z °8 T ; IGn # co)ipo) | (18)

n=1
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whereT is the total number of iterations. Note that this 5 EXPERIMENTS

equals a Bernoulli mixture model with a number of com-

ponents equal to the length of herding sequence. We report compression results on the USPS Handwritten
Digits dataset which consists of 1100 examples of each

tributions. However, since the prototypes very closely fol digit 0 through 9 (totaling 11,000 examples). Each image

low a mixture of two Gaussians model we use that for itshas 256 pixels and each pixel has a value between [1..256]

encoding (see Figure 2). The residual prediction errors ar\éVhICh we turned into a binary representation through the

H gxl — . _ K _ 1 —
encoded using a Bernoulli distribution with a single proba—malopln T 2®(XZ. . 50) — 1 with ©(z > 0) . 1. and
bility po of making an error. 0 otherwise. Each digit class was randomly split into 700

train and 400 test examples.

We encode the model parametdrsr, b using Normal dis-

3500

51 REGRESSION FUNCTION TRAINING

3000 -

2500] We train the regression functions on the USPS digit im-
age dataset as follows. A MoB model is first trained by
the regular EM algorithm to provide sensible initializaiso
for the prototypes. The training is then divided into two
phases. We first herd the parameters of an RBM using
the data and feed the paifgw, 0),g(w,0)} to an on-
-15 . NE . line gradient descent algorithm to traiw, 8). The re-
j sulting regression function has a small SSE in the area of
high probability under the true distributigifw, 8). How-
Figure 2:Histogram of the elements of prototypas trained on  ever, when we replace the data by the prototypes, the distri-
the USPS digit image dataset bution of the pseudo-samples;(w, 8), is different from
(but similar to), p(w,0). We have found it beneficial
to further fine-tune the regression functions by collecting
4.3 COMPRESSION WITH RBM pairs{(w, 8), j(w,6)} from herding using the latest esti-
ates of the regression functions (instead of the data). In
this second phase, we are actually attempting to minimize

2000

1500 -

Counts

1000 -

500 (-

A natural question is how herding compares in terms o
compression performance with its associated energy bas SE) s (w.e). Figure 3 shows the average SSE ovet

X > 7 (w,0)-
modedl (a restrlcter(]j Bdoltzmlzgng machine or RBMR(‘,We ha(;’_enerations when we run herding on images of digit “8” with
tested RBMs on the described compression task in two 'Sf(w,o). The plot with fine tuned regression functions has

tinctways. The first mgthod (RBM-S) i,s similar to .the Strat- | ver and more stable SSE than those trained only by phase
egy employed for herding and uses Gibbs sampling to ge . Figure 4 shows some examples of learnt prototypes.
erate a large codebook given by these samples. Althoug

sampling is random and thus unrepeatable in principle, thi:
can be circumvented on a digital computer using a pseudc
random number generator where again the sender and r
ceiver have to agree on the seed value (and a scale factor
sample the initial values from a Normal distribution).

N
o
o

prototypes from end of traning phase 1
prototypes from end of traning phase 2

w
a
o

w

(=3

o
T

N

13

o
T

The second way to compress with RBMs (RBM-H) is to
map the data-vector to the latent state space of the RBN
and transmit that latent statg) @long with the reconstruc-
tion error. During decoding, the signal is recovered as
X = argmaxx p(x|z) + error. The optimal latent state
is searched locally through hill climbing for a minimal re- ‘ ‘ ‘ ‘
construction error starting from the state max, p(z|x). ° 2 Number of iterations 20
Both the latent states and errors are encoded as Bernoulli

random variables with probabilities;, = p(z; = 1), Figure 3: Average SSE of the regression functions oief it-

g = p(errorj = 1)2_ erqtions with 2Q prototypes for an RBM with 100 hidden units,
trained on 700 imagesr(w) are trained through only phase 1

21t should be noted that for RBMs it is intractable to apply the (top) or both phases (bottom)

bits-back argument. The reason is that one needs the mhargina

distributionp(z) to encode the hidden units stochastically and if Next, we test the estimated models in termd.gf,. (see

one uses a variational distribution instead, it is intrhktdo com- Eqn 18) by Comparing the Compression performance of

pute the variational posterior distribution necessarettaimthe _—_ °~ ~

redundant bits. *Downloaded fronhttp://www.cs.toronto.edw/roweis/data.html

= =

o w

S o
T T

Average SSE over 10* iterations
g 8

o
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ning herding with data and averaging the valueg.gfover
time: r, = % Zthl Jo(we, 0;). In effect, we approxi-
mate a RBM with hidden variables with a fully observed
one where the functions, play the role of observed suf-
ficient statistics (ASS). In Figure 6, we compare the cod-
ing cost of herding driven by a regression function (100
hidden units and various numbers of prototypes), data and
ASS. With 100 hidden units in the RBM, we need regres-
sion functions with about 200 prototypes to achieve simi-
lar performance to the ASS method. However, to decrease
the model complexity (with fewer bits for encoding pa-
rameters) we can reduce the number of prototypes with-
out changing the structure of RBM. This is not true for
herding with ASS because it has to reduce its number of

herding with various number of prototypes against that oflidden units to save on parameters which severely affects
herding with data. The coding lengths are plotted in Figurdn€ performance. Around the optimal model complexity

5 as a function of iteration. We observe that longer herd(M/K = 20) for the subset of digits8” the coding cost
ing will improve the compression performance because i?f ASS is much higher than that of our proposed regression

becomes increasingly likely that a pseudo-sample is geneftnction.

ated that resembles the data-case we wish to encode. How-

ever, there is a price to be paid, namely the fact that we , 12X1%"
need to encode the time indices of the pseudo-sample.
is interesting that even after 1M iterations the curve i$ sti
descending.

Figure 4:Examples of tuned prototypes on images of digit “8”
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We further note that we have omitted the cost of encoding
the parameters in this plot which explains why herding with
data has the lowest coding chstiowever, one should keep

in mind that the latter method is not a realistic method to
compress the data (since it requires the data itself to run).

©
T

—+—M=20
—e—M=100

7L ——M=200
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Coding cost for indices and errors
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Figure 6: L..q. of herding for images of digit “8” driven by re-
gression function (with M prototypes and 100 hidden unis}a
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> 5| —==M=400 52 COMPRESSION PERFORMANCE

% ____Driven by data . ) . .

8 (700 data cases)| ‘ ‘ The various algorithms are compared in terms of their total
0 10° 10° 10° 10° 10° coding length on the 16x16 USPS digit image dataset. We

Number of samples use a small set of a images from the digit ‘and a larger

set including all the digits. The bench mark is to treat every
pixel as an independent Bernoulli random variable with a
probabilityp. The average coding length of each pixel is
then(p), where the minimum is achieved wheris the

In (Welling, 2009a) (section 9) an alternative method toPercentage of pixels with value

parametrize herding was proposed. There, the functionRgms are trained using contrastive divergence with 10

ga(wi,0;) were simply approximated by constants(in-  steps (CD-10) (Hinton, 2002) or by using persistent CD

dependent ofv, 6). Their values were estimated by run- (pcp) (Tieleman, 2008). Parameters such as the num-

“This was done to easily assess how accurately parametriger of codewords for VQ, the number of hidden units for

herding approximates the “nonparametric” herding verstmt ~ RBM and herding and the number of prototypes for herding
requires the data itself to run. are found by a linear or grid search for a minimal coding

Figure 5: L.,q. for images of digit “8” by herding parameters
of an RBM with 100 hidden units with various numbers of proto-

types.
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x

length. The samples from RBM-S are subsampled at a rate ,,xw

of 1 : 100 from their Gibbs sampling sequence to reduce Eﬁfﬁials
the autocorrelation (there is no extra coding cost involved I B Model
for this but encoding and decoding will be more time con- 8

suming). Parameter quantization is set by the method de- |
scribed in section 4.

Figure 7 and 8 show the decrease of the total coding length
with the number of samples for herding and RBM-S on the
dataset of digit “8” and on the full set respectively. As the O Bench  MoB RBM-H RBM-H RBM-S RBM-S Herding
number of samples increases, the number of bits for en- Mark €b-10 PCD CD-10 PCD
coding the errors decreases while that for indices inceease

Given enough iterations, these plots will most likely start

increase. However, the minima are beyond the scope of our
experiments. We find that herding always achieves smaller — 1x%

Figure 9:Total coding length for the digit “8”.

. . . .. Il Residual
coding length than RBMs with either training methods. Blndices
or Il Model
14X 10° ‘ ‘ 8
B — - Benck mark
=g —— Herding 61
13 —©—RBM-S CD-10]|
1.6

RBM-S PCD 4

Bench MoB RBM-H RBM-H RBM-S RBM-S Herding
Mark CD-10 PCD CD-10 PCD

Total coding length

o
©

Figure 10:Total coding length for all the digits.

o
©

10* 10
Number of samples The gap in coding length between herding and RBM meth-
Figure 7: Total coding length against the number of sam- ods, even at the first iteration in figures 7 and 8 can be
ples for digit “8” for herding (x-mark) and RBM-S CD- traced back to the f_act_ thatwe can more cheaply encode the
10(circle)/PCD(square). The black line is the bench mark. prototypes shown in figure 4 using a mixture of two Gaus-
sians (see figure 2) than that we can encode the weights of
6 the RBM. In fact, the RBM weights were much more sen-

[N
o
=
o

1'4’_ Bench Mark sitive to their quantization level. To render the contribu-
1R X:g&[‘g co10l tion of the qua_ntization level negligible (i.e. less thgh
1.2\ RBM-S PCD_ || of the total coding cost), we had to encode the RBM param-

eters to a higher precision than the parameters for herding
(i.e. the prototypes). If we discard the cost for encoding
parameters and only compare models with an equal hum-
ber of parameters then the remaining coding lendths.

are comparable.

11r

Total coding length

‘ ‘ ‘ Finally, we looked at compression performance on a test
10° 10° " 10° | 10° set. Suppose that we want to compress a data stream of
Number of samples i.i.d. signals. A model can be trained with the first a few

Figure 8: Total coding length against the number of sam- ;amples, and then applied to the remaining data. Accord-

ples for all the digits for herding (x-mark) and RBM-S cD- ing to the MDL principle, the model with the minimal total

10(circle)/PCD(square). The black line is the bench mark. coding length on the training data should also be optimal
for unseen test data. Hence, we compare these models with

Figures 9 and 10 show the coding length of various comztheir optimal choice of parameters in terms of MDL. We

pression methods in three parts: model complexity, bitdested on 300 (unseen) images for each digit. The num-

for indices and the errors. All the methods achieve aboubers of bits for encoding time indices and errdrg,q., are

60 ~ 70% compression ratio on digit “8” anb ~ 70% on  shown in figure 11 and 12 respectively for images of a sin-

the whole dataset compared to the benchmark. Althougile digit “8” and the full set. Note thak.,q. is equal to

the differences are small, herding does seem to have the log-likelihood of the test data (which the usual crite-

shortest coding length. rion for prediction performance) and that it doesn't make




Parametric Herding

much sense to include the cost of encoding the parametemsinistic but weakly chaotic dynamical system while Gibbs
in this case. Again, herding is performing well on both sampling is a stochastic system. An important advantage of
datasets. Its test coding length is shorter than MoB andherding is that it, unlike many MCMC methods, is designed
RBM-S while marginally longer than RBM-H on digit “8”, to avoid getting stuck in local modes of the distribution.

and it's slightly better than all the other algorithms on the

full set Herding has also important computational advantages. Un-

like MRF learning, it integrates learning and sampling into
. one algorithm. What we have shown in this paper is that
‘ MlResiduals this somewhat unconventional way of generating pseudo-
[indices
samples can be successfully employed to the task of data
compression. The reported compression rates are similar
to the results obtained by RBMs. This basically confirms

1 our intuition that (at least for the binary dataset that weeha

1 studied) herding samples from a distribution that is chpsel

| related to the distribution from which the data are sampled
but at a lower computational cost (due to the absence of a

Bench  MoB RBM-H RBM-H RBM-S RBM-S Herding separate learning phase and the much smaller, often nega-
Mark CD-10 PCD CD-10 PCD . .

tive auto-correlation between subsequent samples). We be-
lieve that this validates the approach as a viable altemati
to more standard learning approaches.

Figure 11: Coding length for test images of digit “8".
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