
Parametric Herding

Yutian Chen Max Welling
Bren School of Information and Computer Science

University of California, Irvine
Irvine, CA, USA

{yutianc, welling}@ics.uci.edu

Abstract

A parametric version of herding is formulated.
The nonlinear mapping between consecutive
time slices is learned by a form of self-supervised
training. The resulting dynamical system gen-
erates pseudo-samples that resemble the original
data. We show how this parametric herding can
be successfully used to compress a dataset con-
sisting of binary digits. It is also verified that
high compression rates translate into good pre-
diction performance on unseen test data.

1 INTRODUCTION

A deterministic nonlinear dynamical system was recently
introduced in (Welling, 2009b; Welling, 2009a) as an alter-
native method for learning in Markov random field models
(MRF). The proposed method, called herding, uses the data
to drive the dynamics of both the weights as well as the
(hidden and visible) random variables. Unlike learning in
the traditional sense, the weights will never converge to a
fixed point. Instead, their trajectories are non-periodic and
generate complicated attractor sets (e.g. with fractal Haus-
dorff dimension). The relevant information is encoded in
these trajectories, or equivalently, in the properties of the
attractor. The surprising conclusion is therefore that a sim-
ple, deterministicnonlinear dynamical system can effec-
tively capture the intricate dependencies present in a data
stream and transfer that information to the task of making
predictions on unseen data.

Herding seems a genuinely new approach to learning
rooted in the theory of nonlinear dynamical systems. Max-
imum Likelihood learning can be understood as a dynami-
cal system but with a single fixed point. Similarly, MCMC

Appearing in Proceedings of the13th International Conference
on Artificial Intelligence and Statistics (AISTATS) 2010, Chia La-
guna Resort, Sardinia, Italy. Volume 9 of JMLR: W&CP 9. Copy-
right 2010 by the authors.

sampling of the posterior distribution of the parameters
given data can also be thought of as astochasticnonlin-
ear dynamical system. Learning systems based on chaotic
dynamics appears to be a third thus-far unexplored possi-
bility that deserves some attention. The herding system un-
der consideration does not require explicit random number
generation because it derives its pseudo-randomness from
the inherent chaos of the learning equations. Similar to
bagging and Bayesian posterior sampling however, herd-
ing averages predictions over trajectories in model space,
resulting in a variance reduction of the relevant estimators.

The nonlinear dynamical system in question turns out to be
on the boundary between order and chaos, formally to be
classified as “weakly chaotic” with polynomial sensitivity
to initial conditions. One can show that the system is a spe-
cial case of a larger class of weakly chaotic systems known
as “piecewise isometries” (Goetz, 1996). In fact, herding is
a special case of piecewise translations. Certain properties
have been proven for such systems in the mathematics lit-
erature. For instance, it is known that piecewise isometries
have vanishing topological entropy. This means that the
number of distinct subsequences of lengthT grows poly-
nomially inT (Goetz, 1996), in contrast to the exponential
growth for stochastic and fully chaotic systems which have
non-vanishing topological entropy. We are currently inves-
tigating the implications of these observations.

Two classes of herding algorithms have been studied so far.
The algorithm of (Welling, 2009b) uses average sufficient
statistics (ASS) as input to the system and returns pseudo-
samples that respect these ASS. These samples can in turn
be used for making predictions. In this case, the data are
only represented through their ASS which severely limits
the amount of correlations that can be modeled. A second
class of herding systems was studied in (Welling, 2009a)
where hidden units were introduced. In this case, the actual
data itself (not just a few ASS) are used to drive the sys-
tem. The output of this class of systems is again a sequence
of pseudo-samples that respects certain (higher order) con-
straints similar to those enforced by Markov random field
models (MRF) at their maximum likelihood solution. In

Parametric Herding

addition, the system outputs a sequence of hidden repre-
sentations which can in turn be used for subsequent tasks
such as classification or regression.

The second variety of herding requires all the data as input
in order to generate pseudo-samples. Since we are required
to store all data in memory in order to make predictions, we
should view this method as inherentlynon-parametric. For
instance, the pseudo-samples can be used to generate a non-
parametric kernel estimate of the density function, or the
hidden representations can be used as a basis for nearest-
neighbor classification. However, it makes one wonder if
one can define aparametricvariant of herding that decou-
ples the data and replaces them with a collection of param-
eters. In this paper we will show that this can indeed be
achieved. Similar to vector quantization (VQ), we will re-
place the data with a smaller, weighted set of templates.
Interestingly, these templates will be trained using regres-
sion, a supervised learning technique. We will show in
experiments that this parametric herding system performs
very well in compressing the training data sequence, tak-
ing the complexity of the model components into account.
We also show that this directly translates into good perfor-
mance on test data (as expected through the MDL princi-
ple). We believe that this contribution will bring herding
one step closer to being a practical algorithm for machine
learning problems.

2 HERDING AS A DYNAMICAL
SYSTEM

In the following we will review herding from a slightly dif-
ferent perspective, namely that of a dynamical system. We
first introduce visible random variablesxα whereα labels
a subset of the total set of random variables (denoted with
x). Similarly, we introduce hidden variableszα and fea-
ture functionsgα(xα, zα). When we writexαn we shall
mean the observationn on the subsetxα. Similarly to the
construction of Markov random fields, we first define an
energy over joint configurationss = (x, z) as follows,

E = −
∑

α

wαgα(xα, zα) (1)

wherewα is a weight associated to featuregα. Herding
will now be defined as a nonlinear dynamical system for
the weights (see Figure 1),

wt = Ft(wt−1) (2)

!
"#$
% !

"
% !

"&$
%

'
"
% '

"&$
%

()*+,%

!
"#$
% !

"
% !

"&$
%

-
"
% -

"&$
%

.
"
% .

"&$
% .

"&/
%

()*+,%

0%

1% 23"3%

23"3%

Figure 1:A: Herding as a dynamical system for the weightswα.
The original herding algorithm was driven by data, while thepro-
posed herding system is driven by a model of the data. B: Same
as A, but now depicted as a dynamical system over the joint space
w, s.

where the mappingFt is defined through,

wαt = wα,t−1 + ραt(wt−1) (3)

ραt(wt−1)
.
= ḡαt(wt−1) − gαt(s

∗

αt(wt−1)) (4)

ḡαt(wt−1)
.
=

1

N

N
∑

n=1

gα(xαn, z∗αnt(wt−1)) (5)

z
∗

nt(wt−1)
.
= arg max

zn

∑

α

wα,t−1gα(xαn, zαn) (6)

s
∗

t (wt−1)
.
= arg max

s

∑

α

wα,t−1gα(sα) (7)

We first note that the mappingF is a local translation over
a vectorρt(wt−1). Moreover, the translation vectorρt

depends nonlinearly onw (due to the various maximiza-
tions). However,ρ depends onw only through the quanti-
tiesz

∗ ands
∗ which are themselves defined as maximiza-

tions. Since bothz ands are discrete, their values (obtained
through maximization) are stable against infinitesimal per-
turbations ofw, implying that the mappingF is apiecewise
constant translation. For later reference we also note that
the functionḡ does not depend on the scale ofw, i.e. mul-
tiplying all weights by a constant factor will have no effect
on the outcome of the maximizations. In (Welling, 2009a)
it was shown thatw will not diverge to infinity, but stay
within a compact region around the origin. The attractor
set that is traced out by the dynamical system can indeed
be quite intricate and seems (numerically) to have fractal
Hausdorff dimension.

Chen, Welling

In the following it will also be useful to view the system
from a slightly different perspective, namely as a dynami-
cal system on the joint spacew, s (see Figure 1),

(wt, st) = Gt(wt−1, st−1) (8)

where the statess is called the symbolic sequence, or
“itinerary” of the dynamical system.

Even though the dynamical system is highly nonlinear with
complex dynamics as a result, certain average statistics on
the symbolss are conserved, namely,

lim
T→∞

1

T

T
∑

t=1

[

1

N

N
∑

n=1

gα(xαn, z∗αnt)

]

=

lim
T→∞

[

1

T

T
∑

t=1

gα(s∗αt)

]

(9)

These are the same constraints that would be satisfied by
the modelPMRF(x, z) ∝ exp[−E(x, z)] at its ML solu-
tion when we replace averages over pseudo-samples with
averages over the modelPMRF. However, samples from
PMRF will not necessarily be identically distributed as the
sample sequence{st} because herding does not generate
samples of maximal entropy subject to these constraints
(asPMRF would). The characterization of the differences
between herding and maximum entropy/likelihood models
is currently under investigation. It represents a different
inductive bias on the degrees of freedom that remain un-
constrained by the data.

3 PARAMETRIC HERDING

We now turn to the key point of this paper. We note from
Eqn.5 that the mappingF only depends on the data through
the functions̄gα(w). Therefore, if we can learn a param-
eterized regression functionrα(w) that approximates this
term, then we can decouple the data entirely and userα

instead of̄gα . We would have turned an essentially non-
parametric method into a parametric one.

Fortunately, learning the regression functionsrα is very
simple in principle. The reason is that by running the herd-
ing equations using data, we generate an unlimited dataset
of pairs{wt, ḡt

.
= ḡ(wt)}. Hence, we can take any off-the-

shelves regression method to learn the relation betweenw

andḡ. Interestingly, we are using supervised learning tech-
niques to solve an unsupervised learning problem. Not un-
like (Welling et al., 2002) one can argue that the system is
“self-supervising”.

For restricted Boltzman machines (using the±1 represen-
tation) the features are given bygij = zixj , gi = zi,
gj = xj . Sinceḡj = 1

N

∑N

n=1 xjn is independent ofw
we don’t need a regression function for it. For the other
features, a suitable regression function that respects the

boundsrij ∈ [−1, +1] andri ∈ [−1, +1] is given by,

rij(w, θ;A, π, b) =

M
∑

m=1

πm tanh

(

b

(

∑

k

wikAkm + θi

))

Ajm (10)

rj(w, θ;A, π, b) =

M
∑

m=1

πm tanh

(

b

(

∑

k

wjkAkm + θj

))

(11)

where{Akm} representM protoypes to be learned with
their corresponding weightsπm. b is a scalar and{w, θ}
are dynamical variables subject to herding. The form of
this function is motivated by softening the expressions for
ḡij and ḡj and introducing prototypes to replace the data.
The softening is required to be able to compute gradients
for optimizing the parameters of the regression function.
However, the result of this is that unlike the functionsḡ,
the regression functionsr do depend on the scale ofw in a
nontrivial way. The parameterb is introduced to offset this
effect.

We estimate the regression parameters by minimizing the
average sum of squared residuals (SSE) over the time:

C(A, π, b) =
1

T

T
∑

t=1

SSE(t) (12)

SSE(t) =
∑

i

∑

j

(rij(wt, θt;A, π, b) − ḡij(wt, θt))
2

+
∑

j

(rj(wt, θt;A, π, b) − ḡj(wt, θt))
2 (13)

wherewt, θt are samples from herding. The objective
function represents the expected SSE if we assume that
herding will sample from some (unknown) distribution
p̂(w, θ). Since herding generates one pair of((wt, θt), ḡt)
per iteration, it’s natural to run an online gradient descent
algorithm to update the parametersπ,A, b

4 DATA COMPRESSION

One possible way to evaluate a learning algorithm is to test
its ability to compress a dataset. It has long been known
that there are close connections between compression per-
formance and the ability to generalize to new (unseen) data
(Rissanen, 1989). The cost of compression, measured in
bits, is usually divided in three separate terms: 1) The (con-
stant) cost of coding the model parameters, 2) the cost of
coding the states of the hidden variables of the model (lin-
ear inN) and 3) the cost of coding the residual errors (lin-
ear inN). Optimal model complexity is achieved by trad-
ing off the first term against the latter two. It was shown
in (Hinton & Zemel, 1994) that by choosing the states of
the hidden variables stochastically according to its poste-
rior p(z|D, θ) (whereD denotes the dataset andθ denotes

Parametric Herding

the parameters) one will get back a refund equal to the en-
tropy of this posterior distribution1. This bits-back trick
will sometimes be used in the following although for some
models, such as the RBM, it will turn out to be intractable.

This encoding scheme corresponds to MAP estimation
where in addition to the usual log-likelihood terms certain
regularizer terms (corresponding to log-priors for the pa-
rameters) are present. A full Bayesian treatment would re-
quire choosing parameters stochastically from its posterior
distributionp(θ|D) and receiving another refund equal to
the entropy of this posterior distribution. However, to claim
your refund, you need to be able to compute the posterior
p(θ|D) after all the data have been transmitted. In the case
of MRF models such as the RBM this is intractable and
therefore unrealistic. For this reason we will omit this bits-
back term. Instead, we will encode the model parameters
up to a certain precision (or quantization level),∆, assum-
ing a Gaussian distribution for the encoding. The cost of
this encoding is therefore equal to− log∆− logN (θi) for
every parameter. The value of∆ is chosen such that if we
add independent uniform quantization noise in the range
[−∆/2, ∆/2] to all the parameters, then the contribution
of these perturbations constitute less than1% of the total
compression rate.

4.1 COMPRESSION WITH VECTOR
QUANTIZATION

The idea of VQ is to divide the data vector space intoK
partitions, and represent all the points in a partition by a
common vector a.k.a. codewordck. If a data pointxn

is inside thekth partition, we compress it by storing only
the indexk and the errorx − ck. Given a probability dis-
tribution of a signals, the minimal coding length we can
achieve is the negative log-likelihood. Moreover, we can
get arbitrary close to that value with entropy encoding on a
large enough dataset. Hence, we will treat− log(p(s)) as
the true coding length.

For the binary image compression task in this paper, we as-
sume that the prior for data to be in partitionk is πk and we
model the error at each pixel as an independent Bernoulli
random variable with probabilityp0k = P (xjn 6= cjk), ∀j.
Also, we compress the parameters{ck} as Bernoulli dis-
tributed random variables and{p0k, πk} as Normal dis-
tributed random variables with a quantization level∆. The
total coding length is thus

L = Lparam + Lcode with (14)

Lcode =
N
∑

n=1

[− logπzn
− logB(I(xn 6= ck); p0kn

)]

(15)

1Suboptimal “variational” distributions can also be used asa
substitute for the posterior.

ans whereLparam is the total coding length for all the pa-
rameters.

According to the bits-back argument (Hinton & Zemel,
1994), we can potentially encode cheaper by stochastically
picking the indexzn from some distributionq(z|xn) and
claiming a number of bits back after transmission equal to
the entropy of this distributionH(q). Note, however, that
by sub-optimally picking the index we also incur a higher
error. The optimal encoding is achieved if we use the pos-
terior forq, i.e.

q(z|xn) ∝ e−Lcode(ck,xn) (16)

With the bits-back scheme, we can show that the coding
length becomes

Lcode =

N
∑

n=1

[

− log
∑

k

πkB(I(xn 6= ck); p0k)

]

(17)

which is equivalent to the negative log-likelihood of a mix-
ture of Bernoulli distributions (MoB) with the variables
{zk} marginalized out.

4.2 COMPRESSION WITH HERDING

Recall that herding, instead of defining a model explicitly,
defines a model onlyimplicitly by generating a sequence
of pseudo-samples. As such, it is not immediately evident
how to use it to compress a data collection. Our approach
will be to run herding for a very long time (e.g.T = 107

iterations) starting at some randomly initialized values for
the weights and biases,w, θ, at timet = 0 and using the
learned regression functions{rij , ri} (see section 3). In
this way we will generate a new codebook vectorct at ev-
ery iteration given as the visible part,x∗

t of the pseudo-
samples∗t = [x∗

t , z
∗

t] at iterationt. Note, that the receiver
can also generate these codebooks, so they do not have to
be transmitted.

The initial values,w0, θ0, are sampled from a Normal dis-
tribution and communicated by sending a random seed and
a scale factor (the standard deviation) so that they can be
replicated at the receivers end who uses the same random
number generator. The time indices of the pseudo-samples
now serve as our hidden variables and they will be encoded
under a uniform prior (a.k.a. all time indices are equally
likely). We pick a time index for each data-case (τn, ∀n)
according to its posterior distribution which allows us to
receive a modest refund equal to the entropy of this poste-
rior (which the receiver needs to compute after all data has
been transmitted). Incorporating this bits-back argument,
we can compute the coding lengthLcode as:

Lcode =

N
∑

n=1

[

− log
1

T

T
∑

t=1

B(I(xn 6= ct); p0)

]

(18)

Chen, Welling

whereT is the total number of iterations. Note that this
equals a Bernoulli mixture model with a number of com-
ponents equal to the length of herding sequence.

We encode the model parametersA, π, b using Normal dis-
tributions. However, since the prototypes very closely fol-
low a mixture of two Gaussians model we use that for its
encoding (see Figure 2). The residual prediction errors are
encoded using a Bernoulli distribution with a single proba-
bility p0 of making an error.

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

500

1000

1500

2000

2500

3000

3500

A
ij

C
ou

nt
s

Figure 2:Histogram of the elements of prototypesA, trained on
the USPS digit image dataset

4.3 COMPRESSION WITH RBM

A natural question is how herding compares in terms of
compression performance with its associated energy based
model (a restricted Boltzmann machine or RBM). We have
tested RBMs on the described compression task in two dis-
tinct ways. The first method (RBM-S) is similar to the strat-
egy employed for herding and uses Gibbs sampling to gen-
erate a large codebook given by these samples. Although
sampling is random and thus unrepeatable in principle, this
can be circumvented on a digital computer using a pseudo-
random number generator where again the sender and re-
ceiver have to agree on the seed value (and a scale factor to
sample the initial values from a Normal distribution).

The second way to compress with RBMs (RBM-H) is to
map the data-vector to the latent state space of the RBM
and transmit that latent state (z) along with the reconstruc-
tion error. During decoding, the signal is recovered as
x = argmaxx p(x|z) + error. The optimal latent state
is searched locally through hill climbing for a minimal re-
construction error starting from the stateargmaxz p(z|x).
Both the latent states and errors are encoded as Bernoulli
random variables with probabilitiespi = p(zi = 1),
qj = p(errorj = 1)2.

2It should be noted that for RBMs it is intractable to apply the
bits-back argument. The reason is that one needs the marginal
distributionp(z) to encode the hidden units stochastically and if
one uses a variational distribution instead, it is intractable to com-
pute the variational posterior distribution necessary to reclaim the
redundant bits.

5 EXPERIMENTS

We report compression results on the USPS Handwritten
Digits dataset3 which consists of 1100 examples of each
digit 0 through 9 (totaling 11,000 examples). Each image
has 256 pixels and each pixel has a value between [1..256]
which we turned into a binary representation through the
mappingX ′

i = 2Θ(Xi − 50) − 1 with Θ(x > 0) = 1 and
0 otherwise. Each digit class was randomly split into 700
train and 400 test examples.

5.1 REGRESSION FUNCTION TRAINING

We train the regression functions on the USPS digit im-
age dataset as follows. A MoB model is first trained by
the regular EM algorithm to provide sensible initializations
for the prototypes. The training is then divided into two
phases. We first herd the parameters of an RBM using
the data and feed the pairs{(w, θ), ḡ(w, θ)} to an on-
line gradient descent algorithm to trainr(w, θ). The re-
sulting regression function has a small SSE in the area of
high probability under the true distribution̂p(w, θ). How-
ever, when we replace the data by the prototypes, the distri-
bution of the pseudo-samples,p̂∗(w, θ), is different from
(but similar to), p̂(w, θ). We have found it beneficial
to further fine-tune the regression functions by collecting
pairs{(w, θ), ḡ(w, θ)} from herding using the latest esti-
mates of the regression functions (instead of the data). In
this second phase, we are actually attempting to minimize
〈SSE〉p̂∗(w,θ). Figure 3 shows the average SSE over104

iterations when we run herding on images of digit “8” with
r(w, θ). The plot with fine tuned regression functions has
lower and more stable SSE than those trained only by phase
1. Figure 4 shows some examples of learnt prototypes.

0 2 4 6 8 10

x 10
6

0

50

100

150

200

250

300

350

400

Number of iterations

A
ve

ra
ge

 S
S

E
 o

ve
r

10
4 it

er
at

io
ns

prototypes from end of traning phase 1

prototypes from end of traning phase 2

Figure 3: Average SSE of the regression functions over104 it-
erations with 20 prototypes for an RBM with 100 hidden units,
trained on 700 images.r(w) are trained through only phase 1
(top) or both phases (bottom)

Next, we test the estimated models in terms ofLcode (see
Eqn. 18) by comparing the compression performance of

3Downloaded fromhttp://www.cs.toronto.edu/∼roweis/data.html

Parametric Herding

Figure 4:Examples of tuned prototypes on images of digit “8”

herding with various number of prototypes against that of
herding with data. The coding lengths are plotted in Figure
5 as a function of iteration. We observe that longer herd-
ing will improve the compression performance because it
becomes increasingly likely that a pseudo-sample is gener-
ated that resembles the data-case we wish to encode. How-
ever, there is a price to be paid, namely the fact that we
need to encode the time indices of the pseudo-sample. It
is interesting that even after 1M iterations the curve is still
descending.

We further note that we have omitted the cost of encoding
the parameters in this plot which explains why herding with
data has the lowest coding cost4. However, one should keep
in mind that the latter method is not a realistic method to
compress the data (since it requires the data itself to run).

10
1

10
2

10
3

10
4

10
5

10
6

5

6

7

8

9

10

11
x 10

4

Number of samples

C
od

in
g

co
st

 fo
r

in
di

ce
s

an
d

er
ro

rs

M=20

M=50

M=100

M=200

M=400

Driven by data
(700 data cases)

Figure 5: Lcode for images of digit “8” by herding parameters
of an RBM with 100 hidden units with various numbers of proto-
types.

In (Welling, 2009a) (section 9) an alternative method to
parametrize herding was proposed. There, the functions
ḡα(wt, θt) were simply approximated by constantsrα (in-
dependent ofw, θ). Their values were estimated by run-

4This was done to easily assess how accurately parametric
herding approximates the “nonparametric” herding versionthat
requires the data itself to run.

ning herding with data and averaging the values ofḡαt over
time: rα = 1

T

∑T

t=1 ḡα(wt, θt). In effect, we approxi-
mate a RBM with hidden variables with a fully observed
one where the functionsrα play the role of observed suf-
ficient statistics (ASS). In Figure 6, we compare the cod-
ing cost of herding driven by a regression function (100
hidden units and various numbers of prototypes), data and
ASS. With 100 hidden units in the RBM, we need regres-
sion functions with about 200 prototypes to achieve simi-
lar performance to the ASS method. However, to decrease
the model complexity (with fewer bits for encoding pa-
rameters) we can reduce the number of prototypes with-
out changing the structure of RBM. This is not true for
herding with ASS because it has to reduce its number of
hidden units to save on parameters which severely affects
the performance. Around the optimal model complexity
(M/K = 20) for the subset of digits “8” the coding cost
of ASS is much higher than that of our proposed regression
function.

10
1

10
2

10
3

10
4

10
5

10
6

5

6

7

8

9

10

11

12
x 10

4

Number of samples

C
od

in
g

co
st

 fo
r

in
di

ce
s

an
d

er
ro

rs

M=20

M=100

M=200

Driven by data

ASS K=20

ASS K=100

Figure 6:Lcode of herding for images of digit “8” driven by re-
gression function (with M prototypes and 100 hidden units),data
itself, and ASS (with K hidden units).

5.2 COMPRESSION PERFORMANCE

The various algorithms are compared in terms of their total
coding length on the 16x16 USPS digit image dataset. We
use a small set of a images from the digit “8” and a larger
set including all the digits. The bench mark is to treat every
pixel as an independent Bernoulli random variable with a
probabilityp. The average coding length of each pixel is
thenH(p), where the minimum is achieved whenp is the
percentage of pixels with value1.

RBMs are trained using contrastive divergence with 10
steps (CD-10) (Hinton, 2002) or by using persistent CD
(PCD) (Tieleman, 2008). Parameters such as the num-
ber of codewords for VQ, the number of hidden units for
RBM and herding and the number of prototypes for herding
are found by a linear or grid search for a minimal coding

Chen, Welling

length. The samples from RBM-S are subsampled at a rate
of 1 : 100 from their Gibbs sampling sequence to reduce
the autocorrelation (there is no extra coding cost involved
for this but encoding and decoding will be more time con-
suming). Parameter quantization is set by the method de-
scribed in section 4.

Figure 7 and 8 show the decrease of the total coding length
with the number of samples for herding and RBM-S on the
dataset of digit “8” and on the full set respectively. As the
number of samples increases, the number of bits for en-
coding the errors decreases while that for indices increases.
Given enough iterations, these plots will most likely startto
increase. However, the minima are beyond the scope of our
experiments. We find that herding always achieves smaller
coding length than RBMs with either training methods.

10
0

10
2

10
4

10
6

0.8

0.9

1

1.1

1.2

1.3

1.4
x 10

5

Number of samples

T
ot

al
 c

od
in

g
le

ng
th

Benck mark
Herding
RBM−S CD−10
RBM−S PCD

Figure 7: Total coding length against the number of sam-
ples for digit “8” for herding (x-mark) and RBM-S CD-
10(circle)/PCD(square). The black line is the bench mark.

10
0

10
2

10
4

10
6

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
x 10

6

Number of samples

T
ot

al
 c

od
in

g
le

ng
th

Bench Mark
Herding
RBM−S CD−10
RBM−S PCD

Figure 8: Total coding length against the number of sam-
ples for all the digits for herding (x-mark) and RBM-S CD-
10(circle)/PCD(square). The black line is the bench mark.

Figures 9 and 10 show the coding length of various com-
pression methods in three parts: model complexity, bits
for indices and the errors. All the methods achieve about
60 ∼ 70% compression ratio on digit “8” and65 ∼ 70% on
the whole dataset compared to the benchmark. Although
the differences are small, herding does seem to have the
shortest coding length.

0

2

4

6

8

10

12
x 10

4

Bench
Mark

MoB RBM−H
CD−10

RBM−H
PCD

RBM−S
CD−10

RBM−S
PCD

Herding

Residuals
Indices
Model

Figure 9:Total coding length for the digit “8”.

0

2

4

6

8

10

12
x 10

5

Bench
Mark

MoB RBM−H
CD−10

RBM−H
PCD

RBM−S
CD−10

RBM−S
PCD

Herding

Residuals
Indices
Model

Figure 10:Total coding length for all the digits.

The gap in coding length between herding and RBM meth-
ods, even at the first iteration in figures 7 and 8 can be
traced back to the fact that we can more cheaply encode the
prototypes shown in figure 4 using a mixture of two Gaus-
sians (see figure 2) than that we can encode the weights of
the RBM. In fact, the RBM weights were much more sen-
sitive to their quantization level∆. To render the contribu-
tion of the quantization level negligible (i.e. less than1%
of the total coding cost), we had to encode the RBM param-
eters to a higher precision than the parameters for herding
(i.e. the prototypes). If we discard the cost for encoding
parameters and only compare models with an equal num-
ber of parameters then the remaining coding lengthsLcode

are comparable.

Finally, we looked at compression performance on a test
set. Suppose that we want to compress a data stream of
i.i.d. signals. A model can be trained with the first a few
samples, and then applied to the remaining data. Accord-
ing to the MDL principle, the model with the minimal total
coding length on the training data should also be optimal
for unseen test data. Hence, we compare these models with
their optimal choice of parameters in terms of MDL. We
tested on 300 (unseen) images for each digit. The num-
bers of bits for encoding time indices and errors,Lcode, are
shown in figure 11 and 12 respectively for images of a sin-
gle digit “8” and the full set. Note thatLcode is equal to
the log-likelihood of the test data (which the usual crite-
rion for prediction performance) and that it doesn’t make

Parametric Herding

much sense to include the cost of encoding the parameters
in this case. Again, herding is performing well on both
datasets. Its test coding length is shorter than MoB and
RBM-S while marginally longer than RBM-H on digit “8”,
and it’s slightly better than all the other algorithms on the
full set.

0

1

2

3

4

5

6
x 10

4

Bench
Mark

MoB RBM−H
CD−10

RBM−H
PCD

RBM−S
CD−10

RBM−S
PCD

Herding

Residuals
Indices

Figure 11: Coding length for test images of digit “8”.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Bench
Mark

MoB RBM−H
CD−10

RBM−H
PCD

RBM−S
CD−10

RBM−S
PCD

Herding

Residuals
Indices

Figure 12: Coding length for test images of all the digits.

6 CONCLUSIONS

The results of this paper may be interpreted as a new
method to train a (weakly chaotic) nonlinear dynamical
system(wt, st) = Gt(wt−1, st−1) in such a way that the
sequence of discrete states{st} (or at least the visible sub-
setxt of it) approximates the distribution that generated
the data from which it was trained. This definition of a
“model” is perhaps a little different than what we are used
to. The approach is perhaps best compared with depen-
dency networks (Heckerman et al., 2000). In this method
the conditional probability distributions are learned from
data which can subsequently be used as kernels for Gibbs
sampling. However, the conditional probability distribu-
tions by themselves do not provide access to any analytic
expression for the joint probability distribution. The lat-
ter is only accessible indirectly through the samples gener-
ated by the Markov chain. In a similar fashion, parametric
herding provides a way to generate pseudo-samples which
in turn indirectly represent the joint probability distribu-
tion. The important difference is that herding is adeter-

ministic, but weakly chaotic dynamical system while Gibbs
sampling is a stochastic system. An important advantage of
herding is that it, unlike many MCMC methods, is designed
to avoid getting stuck in local modes of the distribution.

Herding has also important computational advantages. Un-
like MRF learning, it integrates learning and sampling into
one algorithm. What we have shown in this paper is that
this somewhat unconventional way of generating pseudo-
samples can be successfully employed to the task of data
compression. The reported compression rates are similar
to the results obtained by RBMs. This basically confirms
our intuition that (at least for the binary dataset that we have
studied) herding samples from a distribution that is closely
related to the distribution from which the data are sampled
but at a lower computational cost (due to the absence of a
separate learning phase and the much smaller, often nega-
tive auto-correlation between subsequent samples). We be-
lieve that this validates the approach as a viable alternative
to more standard learning approaches.

Acknowledgements

This work is supported in part by NSF grants IIS- 0447903
and IIS-0535278 as well as ONR/MURI grant 00014-06-1-
073.

References

Goetz, A. (1996). Dynamics of piecewise isometries.Illinois
Journal of Mathematics, 44, 465–478.

Heckerman, D., Chickering, D. M., Meek, C., Rounthwaite, R.,
& Kadie, C. (2000). Dependency networks for inference, col-
laborative filtering, and data visualization.Journal of Machine
Learning Research, 1, 49–75.

Hinton, G. (2002). Training products of experts by minimizing
contrastive divergence.Neural Computation, 14, 1771–1800.

Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum
description length and helmholtz free energy.Advances in
Neural Information Processing Systems 6(pp. 3–10). Morgan
Kaufmann.

Rissanen, J. (1989).Stochastic complexity in statistical inquiry
theory. River Edge, NJ, USA: World Scientific Publishing Co.,
Inc.

Tieleman, T. (2008). Training restricted boltzmann machines us-
ing approximations to the likelihood gradient.Proceedings of
the International Conference on Machine Learning(pp. 1064–
1071).

Welling, M. (2009a). Herding dynamic weights for partiallyob-
served random field models.Proc. of the Conf. on Uncertainty
in Artificial Intelligence. Montreal, Quebec, CAN.

Welling, M. (2009b). Herding dynamical weights to learn.Pro-
ceedings of the 21st International Conference on Machine
Learning. Montreal, Quebec, CAN.

Welling, M., Zemel, R., & Hinton, G. (2002). Self-supervised
boosting.Neural Information Processing Systems. Vancouver,
Canada.

