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Abstract

Interpolation between compatible triangle meshes that represent different poses of some object is a fundamental

operation in geometry processing. A common approach is to consider the static input shapes as points in a suitable

shape space and then use simple linear interpolation in this space to find an interpolated shape. In this paper, we

present a new interpolation technique that is particularly tailored for meshes that represent articulated shapes. It is

up to an order of magnitude faster than state-of-the-art methods and gives very similar results. To achieve this, our

approach introduces a novel shape space that takes advantage of the underlying structure of articulated shapes and

distinguishes between rigid parts and non-rigid joints. This allows us to use fast vertex interpolation on the rigid

parts and resort to comparatively slow edge-based interpolation only for the joints.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Hierarchy and geometric transformations

1. Introduction

For processing geometric mesh data, the concept of a shape

space has proved invaluable for creating [SP04, CH12], inter-
polating [KMP07,WDAH10], posing [LSLCO05,FB11], and
editing [KG08, YYPM11] static shapes or dynamic geometry
sequences. For a given mesh connectivity graph G, an associ-
ated shape space S allows every geometric realization of G to
be represented as a point in S . The simplest such shape space
is Sv = R

3V , to store the coordinates of V vertices in R
3.

However, linearly combining shapes in Sv leads to artefacts
for rotating parts (see Figure 1).

To avoid this effect, we therefore have two options. We can
choose to combine shapes in a non-linear way, for example
by using geodesics with respect to an appropriate Rieman-
nian metric [KMP07] or by computing the deformation path
with least energy dissipation [HRWW12]. Alternatively, we
can represent shapes using a space that encodes differential
properties of the mesh instead [SP04,LSLCO05], so that sim-
ple linear combinations better preserve the shape of rotating
parts. Usually, the dimension of such a differential shape

space is greater than 3V and therefore not every point in S
corresponds to a realization of G as a mesh in R

3. In this case,
existing approaches introduce an operator P which projects
from S back into Sv.

source target

Sv S f Se

Figure 1: An example of linear interpolation between two

poses (top) using different shape spaces. Linear vertex in-

terpolation in Sv leads to shrinking effects on the legs be-

cause they are pointing in opposite directions in the source

and target poses (left). Linear interpolation of deformation

gradients [SP04] in S f prefers shortest rotation paths and

rotates the left leg in the wrong direction (middle). Instead,

linearly interpolating edge coordinates [WDAH10] in Se

gives physically plausible results (right). We propose an algo-

rithm that produces results of a similar quality to Winkler et

al. [WDAH10] but is much faster. It relies on a segmentation

of the shape into rigid parts and non-rigid joints.
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Figure 2: Overview of our fast mesh interpolation method. Source and target mesh are first segmented into rigid parts (green)

and non-rigid joints (red). We then use edge-based interpolation [WDAH10] to compute the interpolated shape of corresponding

joints and linear vertex interpolation for corresponding rigid parts, after having registered the rigid parts into a common

coordinate system. Finally, we align all the interpolated components and stitch them together to obtain the interpolated mesh.

1.1. Differential shape spaces

Sumner and Popović [SP04] propose one such alternative
shape space based on deformation gradients, which describe
each face of the mesh as a linear transformation of a corre-
sponding reference triangle. As the translational part of the
transformation is omitted, the representation of a mesh in this
shape space S f is invariant under translations. The projection
operator Pf only requires the solution of a linear system and
can therefore be computed in real time. However, Kircher and
Garland [KG08] observe that when combining deformation
gradients, faces rotate along the shortest path in the embed-
ding space, so interpolation between two or more poses can
give unnatural, non-smooth deformations (see Figure 1).

Several shape spaces [LSLCO05, KG08, BVGP09] ad-
dress this shortcoming and give natural results even for very
large rotations. Winkler et al. [WDAH10] and Fröhlich and
Botsch [FB11] demonstrate excellent results based on a shape
space Se which stores the edge lengths and dihedral angles

of a mesh and therefore represents the mesh in a way that is
invariant under both translations and rotations (see Figure 1).
The standard Euclidean metric in this space gives the dis-
crete shell energy proposed by Grinspun et al. [GHDS03],
and so linear interpolation in Se results in interpolations that
minimize this shell energy on G. However, these favourable
properties come at a cost, as the corresponding projection Pe

requires the solution of an expensive non-linear problem,
which Winkler et al. [WDAH10] tackle with a multi-scale
approach and Fröhlich and Botsch [FB11] solve with a non-
linear Gauss–Newton optimization.

1.2. Our contribution

In this paper, we observe that for the common class of articu-

lated shapes, much of the work that goes into computing Pe

is unnecessary, as these shapes are composed of a number
of rigid parts connected by joints, and it is only the joints
that benefit from expensive non-linear handling. The majority
of the shape is described by its rigid parts, and for these it
is sufficient to use fast linear vertex interpolation. This ob-
servation leads to a new shape space Sm, which stores edge
lengths and dihedral angles only where necessary and uses
vertex coordinates to represent the rest of the shape. We use
the subscript m here to emphasize that Sm is a mixed rigid
and non-rigid shape space.

Mixing these two representations gives a more compact
shape space, as vertex coordinates require less storage than
their edge-based counterparts, and a faster projection opera-
tor Pm, by avoiding expensive non-linear optimization where
it is not needed. To demonstrate the advantages of Sm, we
use the application of interpolating or morphing between
articulated shapes, as summarized in Figure 2 and reported
in Section 3.

Our mixed shape space makes it possible to compute an
interpolated mesh as much as 11 times faster than edge-based
interpolation on whole shapes as described by Winkler et
al. [WDAH10]. We find that interpolations in Sm may also
better respect linearly interpolated edge lengths and dihedral
angles than in Se (see Figure 11). As an additional benefit,
we demonstrate that decomposing the problem into rigid
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Figure 3: Flowchart of the segmentation process described by Marras et al. [MBH∗12]. Given a set of input poses of an

articulated shape (a), the perceptually relevant edges (b) are extracted before studying the deformation in edge length and

dihedral angle that occurs at each vertex of the shape (c). The local maxima of the minimal distance function with respect to

these deforming vertices are used as seeds for a region-growing algorithm (d), which results in a segmentation of the shape into

disjoint regions (e).

parts and joints leads to a more robust reconstruction in the
presence of local self-intersections (see Section 3.3), which
can cause distortions when using earlier approaches.

1.3. Segmentation

To decompose an articulated shape into rigid parts and joints,
we rely on existing mesh segmentation techniques. Many
segmentation methods fit into a common framework, which
works by assigning a descriptive property value to each el-
ement of the mesh. For example, this value could be the
dihedral angle, geodesic, or diffusion distance; see the survey
by Shamir [Sha08] for a detailed list of possibilities. The
segmentation then partitions the mesh into meaningful parts
using either k-means, hierarchical, or fuzzy clustering on the
property values.

For interpolating between two or more poses, it is impor-
tant that we use a segmentation technique that is based on
multiple mesh poses. In this situation we want the segmenta-
tion to reflect the behaviour of the mesh in all available poses
and to return connected subsets of G that move in a rigid
fashion, and joint regions that deform non-rigidly. Instead
of using a static metric, each element of the mesh therefore
needs to be characterized by some measure which expresses
the variation in that element.

James and Twigg [JT05] characterize each face of the
source mesh by a set of rotation and scaling matrices. The
faces described by similar deformations are then clustered
to reveal the articulated structure of the object. Wuhrer and
Brunton [WB10] investigate the behaviour of edges and dihe-
dral angles instead, characterizing each edge of the deforming

shape by its maximum dihedral angle variation. A spanning-
tree of the edge graph is computed, and this tree is finally
cut to detect the boundaries between rigid parts. Another
edge-based method is due to Marras et al. [MBH∗12], and as
we decided to mainly rely on this approach for the examples
presented in this paper, we discuss it in more detail in Sec-
tion 2.1. In principle, however, any segmentation technique
can be used for splitting the given poses into rigid parts and
non-rigid joints, as demonstrated in Section 3.2.

The rigid parts of our segmentation often resemble the
bones of a deformation skeleton, as used in animation [JT05,
CBC∗05,SZT∗08,KP11]. Indeed, a rigged skeleton would be
yet another way to derive the initial segmentation we use in
this work. However, there are some key differences between
our interpolation and skeletal-driven deformation. One is that
we start from a disjoint classification into separate rigid parts,
rather than finding skinning weights that loosely associate
vertices with a collection of skeletal bones. Another is that the
range of motion possible through our interpolation is much
wider, as the joints can exhibit arbitrary non-rigid motion
rather than being constrained to model a single skeletal joint.
This makes our interpolation better suited to high-quality
mesh interpolations which are computed off-line, rather than
the real-time animation targeted by linear blend skinning.

2. A shape space Sm for articulated shapes

We build our shape space Sm from a mesh segmentation that
identifies the rigid parts of an articulated shape (Section 2.1).
The space is defined by combining a rotation-invariant rep-
resentation with values that locate a shape in space. When
interpolating between shapes, we must therefore account for
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the structure of Sm that results from this rotation invariance
(Section 2.2). As for many other shape spaces, it is trivial
to embed a mesh in Sm by extracting the required edge and
vertex properties. However, there is a trade-off, in that com-
plexity is moved to the operator Pm that maps a point in Sm

back into a mesh with connectivity G in R
3. We discuss our

implementation of Pm in Section 2.3.

2.1. Segmentation and joint creation

As mentioned in Section 1.3, we use the method described by
Marras et al. [MBH∗12] to identify parts of the mesh which
move in a rigid or near-rigid fashion (see Figure 3). In order to
find the rigid parts of the shape, this method starts by observ-
ing the N input poses from K different viewpoints. For each
viewpoint, a set of perceptually-relevant edges are extracted:
those edges which connect a visible and a hidden face with-
out taking occlusions into account. The perceptually-relevant
edges of each silhouette are then collected in a graph-based
structure named the augmented silhouette, because it contains
more edges than the standard silhouette. To reduce the size of
the problem, only K′ out of all the possible K ·N silhouettes
are randomly selected. For each silhouette, a further analysis
identifies the vertices where the surrounding triangles deform
the most, by measuring the maximum variation in both dihe-
dral angle and length of the edges incident on each vertex.
Using these values, the vertices which are characterized by
a large deformation for each silhouette are marked as sig-

nificant. Finally, counting the number of times that a vertex
has been marked as significant, it is possible to identify the
vertices which are affected by significant deformation.

We now consider the diffusion distance [BB11, CLL∗05]
between the significant and all other vertices, and assign to
each vertex the smallest amongst all distances to the signif-
icant vertices. The vertices where this minimal distance is
locally maximal are then used as seeds for a classical region-
growing algorithm. This region-growing partitions the shape
into disjoint, connected regions, with each vertex of the shape
characterized by a single label. We employ the same imple-
mentation of this whole process as Marras et al. [MBH∗12],
taking advantage of GPU-based parallelism to extract and
analyse the silhouettes.

While artificial or man-made objects might be completely
described by their rigid parts, many articulated shapes occur-
ring in nature have rigid parts which are connected together
by joints exhibiting some non-rigid deformation. In this case,
the joints correspond to regions of the mesh with a high
concentration of ‘significant’ vertices.

Instead of explicitly detecting joints in the segmentation
step, our shape space infers the position of each joint by
growing strips of triangles around the boundaries between
segmented mesh regions (see Figure 4). We use a default
joint width of three triangle strips for our implementation,
although we also find that the result does not depend signifi-
cantly on the joint width that we select (see Section 3.1). We

(a) (b)

(c)

Figure 4: In order to build the mixed shape space Sm, we

first decompose our input meshes (a) with any multiple seg-

mentation method into meaningful articulated segments (b).

We then create the joint regions by growing a triangle strip

of width three around each boundary between the parts. The

rigid parts are constructed by removing two triangle strips

from their boundaries (c). Joints and rigid parts therefore

overlap by one triangle strip.

remove triangles from the rigid parts so that they overlap with
connecting joints by just one triangle strip. This overlap is
important for the stitching described in Section 2.3 that forms
a whole shape from its component parts.

After creating joints and shrinking rigid parts, the end
result is p rigid parts, with Vi vertices in the i-th rigid part,
and q joints, with Ek edges in the k-th joint. Our shape space
now stores the shape of all of these components separately,
by defining the shape spacesR1, . . . ,Rp to store the shape
of each rigid part, and J1, . . . ,Jq for the rotation-invariant
shape of each joint. The rigid part shape spaces areRi =R

3Vi

as rigid parts are simply described using the coordinates of
their vertices, and the joint spaces are Jk = R

2Ek as joints are
described by the length and dihedral angle of each of their
edges.

2.2. Shape space structure

We are now able to formally define the complete shape space
Sm as the Cartesian product of all its component shape spaces,
with the addition of six real values to resolve translational
and rotational invariance. That is,

Sm = J1×·· ·×Jq×R1×·· ·×Rp×R
6,

and the dimension of Sm is therefore

2
q

∑
k=1

Ek +3
p

∑
i=1

Vi +6.
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Figure 5: For corresponding joints (left), the operator A

computes a direct linear interpolation in edge space (right).

The dimension of Sm is significantly smaller than the di-
mension of the full edge-based shape space Se, as shown
in Table 2. This is because the set of joint edges is just a
small subset of the whole edge set and, as a consequence, the
dimension of Sm is influenced mainly by the number of mesh
vertices.

We consider each component part to be specified up to a
rigid-body transform, as the rotations and translations that
match the parts together are determined automatically by the
projection Pm (see Section 2.3). Joints are already stored in
a rotation-invariant way, but the same is not true of the rigid
parts, and so we define a custom operator A to compute affine

combinations of points in Sm. This operator takes account
of the fact that each rigid part shape spaceRi is a redundant
representation for an infinite number of equivalence classes,
where shapes belong to the same equivalence class if they are
related to each other by a rigid-body motion. With this view, a
shape R ∈Ri is only a representative of its equivalence class,
and to combine shapes in two different classes, we must first
align the representatives to each other.

Formally, A is a map

A : (Sm×R)n→Sm

where each of the n shapes in Sm is associated with a weight
in R. For any combination

S = A
(

(S1,w1), . . . ,(Sn,wn)
)

we also enforce the constraint on the weights that ∑l wl = 1,
so that A computes an affine combination. We can now define
the action of A in detail by considering its effect on each
component of Sm.

Edge-based interpolation for joints By transforming joints
into an edge-based rotation-invariant representation, A is very
easy to compute on each joint shape space Jk. If Jk,l is the
shape of the k-th joint in Sl , then the new shape of that joint in
S is simply ∑i wlJk,l (see Figure 5). In other words, we inter-
polate edge lengths and dihedral angles linearly [WDAH10],
which gives the good properties described in Section 1.1 for
non-rigid deformations.

→ ց

→ ր

Figure 6: For corresponding rigid parts (left), the operator

A first aligns (middle) and then linearly interpolates in vertex

space (right).

Multi-registration for rigid parts We have to do more work
to compute A in the rigid-part spacesRk, as the shapes Rk,l ,
l = 1, . . . ,n are only representatives, in a particular orien-
tation, of the rotation-invariant shapes they describe. While
these shapes are modelled as rigid and may correspond to true
rigid entities such as bones, in fact we expect to interpolate
between parts that also show slight non-rigid variations.

To combine rigid parts, we must therefore align the shapes
before using linear vertex interpolation, which we find to
be sufficient to resolve any small non-rigid deformation.
We approach the alignment in the same way as Winkler et
al. [WDAH10], by using the simultaneous registration de-
scribed by Williams and Bennamoun [WB00]. Their method
finds the rigid transformation for each part Rk,l (l = 1, . . . ,n)
that minimizes the squared differences between all pairs of
corresponding vertices. If we write R̃k,l for the result of trans-
forming Rk,l using the computed translations and rotations,
then the final step to compute A inRk is to linearly interpo-
late the vertices of the transformed parts. That is, the new
shape of the k-th rigid part in s is ∑l wl R̃k,l (see Figure 6).

Linear interpolation for pose parameters We now have
A defined on J1, . . . ,Jq andR1, . . . ,Rp, so it only remains

to describe its action on the pose parameters θl in R
6 which

define the final position and orientation of each shape Sl .
For these degrees of freedom, we can use the barycentre to
describe position in space and the three independent entries
that result from the logarithm of a rotation matrix to describe
orientation. This rotation could give the orientation of the first
face with respect to a reference triangle, for example. Both
of these descriptions can be combined linearly to good effect,
so again A can take the simple weighted linear combination
∑l wlθl as the pose parameters for s.

2.3. The projection operator Pm

After representing a collection of shapes in Sm and taking
affine combinations using the operator A, the last step in an
interpolation is to project back into the space of meshes with
fixed connectivity G in R

3. This projection consists of three
steps: alignment, stitching, and global positioning.
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F V
MSGI DSO MixIT

Init. Interp. Total Iter. Time/iter. Total Align. Init. Interp. Stitch. Total Speed-up

lion 9996 5000 112 1305 1417 25 529 13217 0 12 189 237 438 3.2

cat 14410 7207 196 1727 1923 27 919 24816 0 9 167 265 441 4.3

horse 16843 8431 257 2051 2308 22 1248 27454 1 14 277 329 621 3.7

standing elephant 79946 39969 5025 11728 16853 13 21268 276489 14 9 217 2005 2245 7.5

galloping elephant 84638 42321 5135 12395 17530 6 35933 215597 15 21 447 1716 2199 8.0

armadillo 331904 165954 77396 58581 135977 11 289830 3188130 62 73 1681 9776 11592 11.7

Table 1: Comparison of the interpolation between two poses using MSGI, DSO and MixIT. All times are given in milliseconds.

For DSO, the number of iterations and the average time per iteration are given.

↓ ↑ ↓

→ ←

Figure 7: Different steps of the algorithm: starting from

the original shapes, we perform a segmentation. The corre-

sponding parts are then interpolated and aligned, and finally

stitched to obtain the final shape.

Alignment A shape in Sm is a collection of q rotation-
invariant joints, and p rigid parts, which we also consider
modulo rigid-body transforms. So the first step to convert
these parts back into a coherent shape is to align the joints
and rigid parts to each other, to position them in a common
coordinate system. To do so, we can use the same registration
technique by Williams and Bennamoun [WB00] we used in
Section 2.2. The problem is the same, since we have a collec-
tion of mesh parts with corresponding vertices provided by
the overlapping strips of triangles we describe in Section 2.1.
This multi-registration method therefore gives us rotations
and translations for each part, found to minimize the squared
differences between all corresponding vertices. The rotation
invariance of this procedure is later resolved by keeping one
part fixed and then finding the optimal global rotation for the
remaining parts.

Stitching Once the component parts have been placed in
alignment, there is likely to still be some residual error be-
tween corresponding vertices. We therefore stitch the parts
together by using the edge blending described by Winkler et
al. [WDAH10]. Consider two vertices vi and v j, which are
connected by an edge in the original shape, and suppose that
this edge is also part of the overlapping region between some
rigid part Rh and some joint Jk. Denoting the positions of
these two vertices inRh by v′i and v′j and those in Jk by v′′i

and v′′j , we have v′i− v′j ≈ v′′i − v′′j after the alignment step,
with some small alignment error, and likewise for every pair
of vertices connected by an edge in the overlapping region.
To compensate for this slight remaining mismatch, we first
compute the linearly-interpolated edge length li j and then
determine the coordinates of the vertices vi and v j in the
stitched mesh by matching all conditions

vi− v j =
v′i− v′j

‖v′i− v′j‖
li j and vi− v j =

v′′i − v′′j

‖v′′i − v′′j ‖
li j (1)

in a least squares sense. This amounts to solving the linear
system MT Mv = e, where M is the matrix which represents
the edge connectivity structure, v is the vector of all vertices
in the overlapping region, and e is the vector containing all
right-hand sides in (1). Note that M is sparse with exactly one
entry 1 and one entry −1 per row.

Global positioning The result of the stitching step is a co-
herent mesh with connectivity G, but with arbitrary position
and orientation in R

3. The final step in Pm is therefore to
use the six pose parameters to locate the projected shape in
space. This involves a rotation, so that the first face is oriented
correctly with respect to its reference triangle, followed by a
translation to correctly locate the mesh barycentre.

Although we have described the action of A and Pm in
general terms, an interpolation pipeline using Sm is the com-
position of many simple operations. Figure 7 summarizes
this complete process for the common case of interpolation
between just two input meshes (i.e., n = 2).

3. Results

We demonstrate the advantages of our mixed shape space
Sm by interpolating between two or more poses of the same
object. Figures 8 and 9 and the accompanying video show
several examples of our results. We implemented this mixed

interpolation technique (MixIT) in C++ and compare it to
the Multi-Scale Geometry Interpolation (MSGI) method de-
scribed by Winkler et al. [WDAH10] as well as to our imple-
mentation of the discrete shell optimization (DSO) proposed
by Fröhlich and Botsch [FB11].
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Figure 8: Results of our mixed interpolation technique for several sets of two input poses and interpolation weight

w1 ∈ {0.25,0.5,0.75}. From top to bottom we show the datasets ‘cat’, ‘horse’, ‘standing elephant’, ‘galloping elephant’

and ‘armadillo’.

Figure 9: Result of our mixed interpolation between six different input poses with interpolation weights w1 = · · ·= w6 = 1/6.
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Figure 10: Comparison of errors for the standing elephant dataset (third row in Figure 8). The plots show the relative error in

edge length and degree error in dihedral angle, compared to the linearly-interpolated target values for each edge and plotted

over the interpolation weight w1 ∈ [0,1]. Every plot for length error shows the envelopes for all edges —, as well as the worst

99.9% — and 99% — of edges. In every plot for dihedral angle error, the envelopes show all edges —, as well as the worst

99.99% — and 99.9% — of edges. For this example, MSGI gives lower error overall.
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Figure 11: Comparison of errors for the horse dataset (second row in Figure 8); cf. Figure 10. For this example, our method

MixIT gives lower error overall.
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Figure 12: Comparison of errors for the galloping elephant dataset (fourth row in Figure 8); cf. Figures 10 and 11. For this

example, DSO gives a lower error overall.
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Figure 13: Comparison of errors for interpolation between two poses of the horse using joint width three (left) and five (right).

The result is relatively insensitive to this parameter, but we find a slight decrease in performance for larger joints.
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dimSe dimSm
dimSe

dimSm

lion 44994 22035 2.0

cat 64857 27251 2.4

horse 75847 34641 2.2

standing elephant 359751 127441 2.8

galloping elephant 380883 141217 2.7

armadillo 1493580 541528 2.8

Table 2: Comparison between the dimensions of the edge

shape space Se and the mixed shape space Sm for the shapes

listed in Table 1.

Width Align. Init. Interp. Stitch. Total dim Sm

cat
5 0 21 267 254 542 29140

9 0 26 571 436 1033 34232

horse
5 1 87 557 308 953 37492

9 1 91 657 410 1159 41280

galloping 5 9 41 834 1909 2793 145713

elephant 9 9 71 1606 2229 3915 153084

armadillo
5 45 497 3309 11603 15454 556309

9 51 621 7013 15550 23235 575401

Table 3: Comparison of times and dimensions for interpola-

tion between two poses using different joint widths for some

of the shapes listed in Table 1. Joint width is expressed as the

number of triangle strips per joint. All times are expressed in

milliseconds.

The input meshes were taken from the Aim@Shape repos-
itory [aim] and the Sumner shape dataset [SP04], and we
mainly used the multiple mesh segmentation described by
Marras et al. [MBH∗12] to create consistent segmentations of
corresponding poses (see Section 2.1), although Section 3.2
also shows results for some different segmentation tech-
niques. All tests were carried out on an Intel QuadCore Q9550
2.83GHz with 4GB onboard memory. The segmentation al-
gorithm uses GPU parallelization as described in the original
work by Marras et al. [MBH∗12], while the interpolation step
takes advantage of a multi-threaded implementation.

To perform a quantitative comparison between MSGI,
DSO, and MixIT, we measure the interpolation error in terms
of edge lengths and dihedral angle in the same way as Win-
kler et al. [WDAH10]. That is, we measure the difference
between the linearly interpolated target lengths and angles
and the actual lengths and angles of the interpolated shape.
We measure the relative error for edge lengths and the ab-
solute error for dihedral angles, and plot the minimum and
maximum such errors. These metrics give an immediate idea
of how far the result is from the ideal shape that fits the
prescribed lengths and angles exactly. Although this shape
may not be realizable, the lowest-error envelope does give
an upper bound on the error of the realizable interpolation

p q Align. Init. Interp. Stitch. Total dim Sm

cat
7 6 0 16 154 242 412 25153

30 12 0 54 700 421 1175 38610

horse
7 6 0 23 257 293 573 30725

30 20 0 54 631 477 1177 41753

galloping 7 6 13 18 368 1878 2277 136655

elephant 18 14 13 37 653 1934 2637 144729

armadillo
5 4 64 55 966 11215 12300 514868

14 13 48 131 2512 11373 14064 550432

Table 4: Comparison of times and dimensions for interpola-

tion between two poses using different numbers of rigid parts

(p) and joints (q) for some of the shapes listed in Table 1.

Notice that for increasing values of p the number of joints

q tends to decrease because overlapping joints are merged

together. All times are expressed in milliseconds.

source target source target

Figure 14: Interpolation between the same poses of the ar-

madillo using two different segmentations. A segmentation

that does not capture the articulation of the legs (left) pro-

duces artefacts around the knee and the foot, which we can

avoid by using a good segmentation (right).

which follows this ideal shape as closely as possible. Our
experiments show that the error behaves very similarly for
all three methods: MSGI is slightly better for some examples
(see Figure 10), while MixIT produces lower errors in other
cases (see Figure 11). The same consideration holds for DSO
(see Figure 12), since this method achieves results that are
quite similar to the results using MSGI. However, the main
advantage of our method is that it is significantly faster than
both MSGI and DSO, in particular for large meshes (see Ta-
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source target

[MBH∗12]

source target

[WB10]

source target

manual

Figure 15: Comparison of using different segmentation techniques as input to our MixIT algorithm: augmented silhouettes (left),

spanning-tree cut (middle), and a manual segmentation performed by a human user (right). The interpolation results are visually

similar, even though the techniques detect different numbers of joints and rigid parts. The interpolation times are similar, too:

323 milliseconds (left), 321 milliseconds (middle), and 375 milliseconds (right).

ble 1). Moreover, the dimension of Sm is typically smaller
than that of Se by a factor between 2 and 3 (see Table 2),
which greatly reduces the amount of memory needed to store
shape data. The time required to compute an interpolation
is strongly influenced by the dimension of Sm (see Tables 3
and 4). Apart from the size of a shape, this dimension de-
pends mainly on the number of segments and on the width of
the joints. In the next sections we investigate the behaviour
of the algorithm with respect to these parameters.

Our DSO implementation differs from the original imple-
mentation in several aspects. For example, we do not employ
a multi-resolution hierarchy and instead carry out the in-
terpolation on the original meshes. We also use the Eigen
library [GJ∗10] instead of CHOLMOD [CDHR08] to handle
large sparse matrices. This may account for the lower perfor-
mance, shown in Table 1, compared to the implementation
reported by Fröhlich and Botsch [FB11]. However, MixIT
appears to be faster and less expensive than DSO, even on
the basis of Fröhlich and Botsch’s implementation. For ex-
ample, in the case of the standing elephant (see Table 1),
the original DSO implementation requires 3100 ms for a sin-
gle iteration, while MixIT performs the whole interpolation
in 2245 ms. Similarly, for the armadillo data set, the DSO
multi-resolution approach requires approximately 21 seconds
to build a coarse mesh, then 30 ms per iteration, and finally
1290 ms to go back to the original resolution, which gives a
total of at least 22.5 seconds. On the other hand, MixIT com-
putes the whole interpolation process on the full resolution
mesh in 11.6 seconds.

3.1. Sensitivity to joint width

Our tests found that a joint width of three triangle strips
at each boundary between segmented parts usually gives
good results. Increasing this size does not have a significant
influence on the interpolation in terms of error (see Figure 13)

or computational speed, although performance does drop
slightly for larger joints (see Table 3) because edge-based
interpolation is slower than vertex interpolation. It is not
advisable, however, to use smaller joints, as the stitching (see
Section 2.3) can then lead to unwanted artefacts.

3.2. Sensitivity to segmentation

In contrast, both the quality of the results and the run-time per-
formance depend crucially on the quality of the initial shape
segmentation. On the one hand, a poor segmentation (for ex-
ample, if some joints are missing due to under-segmentation)
results in large errors and unwanted interpolation artefacts
(see Figure 14). On the other hand, while the interpolation is
resilient with respect to over-segmentation, a large number
of joints means that an interpolation takes longer to compute
(see Table 4).

In order to show that our method can be used with any
reasonable shape segmentation algorithm, we tested our al-
gorithm with several different initial segmentations (see Fig-
ure 15). The results show that as long as the segmentation
satisfies the basic criteria discussed above, our interpolation
in a mixed shape space still performs consistently in terms of
both quality and computational effort.

3.3. Robustness

An interesting result from our tests is that MixIT seems to
be more robust with respect to noise like vertex perturba-
tions than MSGI. This is due to the fact that rigid parts are
robustly interpolated by construction, while joints, whose
interpolation may be less robust with respect to noise, cover
only a small part of the shape and hence do not affect the
overall result. Moreover, if the input meshes contain local
self-intersections, then MSGI can give implausible results,
and so these self-intersections must be removed in a prepro-
cessing step. Our algorithm can overcome this limitation if
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source target

MSGI MixIT

Figure 16: Results of the interpolation between two poses

of the horse (top) using MSGI and MixIT in the presence of

local self-intersections (middle) and after removing them in a

preprocessing step (bottom). The consistency of MixIT in the

second and third rows shows that our method is more robust

with respect to such artefacts.

the self-intersections occur in the rigid parts, because the
linear vertex interpolation is not affected by such artefacts
(see Figure 16).

DSO also avoids these artefacts by including a volume
preservation constraint in the interpolation operator. However,
if the source and target poses are too different in terms of
edge lengths and dihedral angles, DSO may get trapped in a
local minimum, and therefore fail to achieve a suitable final
configuration (see Figure 17). We have not observed any such
problems with local minima using our interpolation in Sm.

3.4. Deforming mesh sequences

Recently, Cashman and Hormann [CH12] introduced a new
way to represent, visualize, and manipulate a deforming mesh
sequence. The input sequence is decomposed in three separate
phases, corresponding to three different and editable signals
in time, pose, and shape. By modifying each of the signals it
is possible, among other things, to create new frames, to re-
sample the animation, or to transfer the deformation from one
shape to another. The proposed representation can be com-
puted for an arbitrary shape space, as long as shapes in that
space can be combined with the usual Euclidean operators.

As an example application of MixIT, we show that it is pos-
sible to use Sm as the underlying space for this representation.
This might seem difficult at first glance, as our affine com-
bination operator A (see Section 2.2) is not a linear operator
because of the alignment step that we use to combine rigid

source target

DSO MixIT

Figure 17: Results of the interpolation between two signifi-

cantly different poses of the cat (top) using DSO and MixIT.

While the discrete shell optimization runs into a local min-

imum and the interpolated shape exhibits some artefacts,

MixIT is more robust and achieves a better interpolation

result.

parts. This stands in contrast to simple linear interpolation in
Sv, S f [SP04], or Se [WDAH10]. Instead, A combines points
in Sm in a non-linear way, as for the shape spaces described
by Kilian et al. [KMP07] and Kircher and Garland [KG08].

However, if the complete set of shapes to be represented
is known in advance, we can move the alignment of rigid
parts into a preprocessing step. We then regain a linear affine
combination operator A as every alignment transform is sim-
ply the identity. This allows us to exploit the robustness and
efficiency of Sm in the deforming mesh sequence context.
Each frame of the sequence is represented using the vertex
coordinates of the aligned rigid parts plus the edge coordi-
nates of the joint edges. Finally, to place the resulting shape
in R

3, we position each mesh using the six pose parameters
explained in Section 2.3: three for the rotation of a frame
face with respect to a reference triangle, plus the coordinates
of one of its vertices to specify the translation. Using this
representation, frames can be linearly interpolated and the
resulting shape can still be properly reconstructed and po-
sitioned by the projection operator Pm. Figure 18 shows an
example of applying our mixed shape space to a deforming
mesh sequence and a comparison between MixIT and LRI
coordinates [LSLCO05].

4. Conclusion

The main limitation of our fast interpolation method is its
inherent restriction to articulated shapes, because the advan-
tages of the mixed shape space Sm rely on a meaningful
segmentation into rigid parts and non-rigid joints. However,
the class of articulated shapes is large, and our technique
appears to generalize well among this class (see Figure 8).

The main advantage of our method is that it keeps the
strength and the robustness of edge interpolation, while work-
ing in a shape space with significantly smaller dimension,
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Figure 18: Comparison between the default layout and interpolation of a given mesh sequence using LRI coordinates [LSLCO05]

(top) and MixIT (bottom) in Cashman and Hormann’s representation for deforming mesh sequences [CH12]. Each row shows

the time signal of the sequence (left), a close-up on the region of interest (middle), and the interpolated shape (right). While

interpolation with LRI coordinates may lead to artefacts in the reconstructed surface, MixIT appears to be give more reliable

results, as the eye of the interpolated shape demonstrates.

thus providing fast and high-quality interpolation. It outper-
forms other techniques in terms of efficiency and scalability.

In future work we plan to investigate different applications
of the mixed shape space Sm, such as compressing static and
dynamic geometry, or animating static shapes to create new
deforming mesh sequences.
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