
Vision, Modeling, and Visualization (2012)
M. Goesele, T. Grosch, B. Preim, H. Theisel, and K. Toennies (Eds.)

A mixed shape space for fast interpolation of articulated shapes

S. Marras T. J. Cashman K. Hormann

University of Lugano, Switzerland

Abstract
Interpolation between compatible triangle meshes that represent different poses of some object is a fundamental
operation in geometry processing. A common approach is to consider the static input shapes as points in a suitable
shape space and then use simple linear interpolation in this space to find an interpolated shape. In this paper, we
present a new interpolation technique that is particularly tailored for meshes that represent articulated shapes. It is
up to an order of magnitude faster than state-of-the-art methods and gives very similar results. To achieve this, our
approach introduces a novel space shape that takes advantage of the underlying structure of articulated shapes and
distinguishes between rigid parts and non-rigid joints. This allows us to use fast vertex interpolation on the rigid
parts and resort to comparatively slow edge-based interpolation only for the joints.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Hierarchy and geometric transformations

1. Introduction

For processing geometric mesh data, the concept of a shape
space has proved invaluable for creating [SP04, CH12], inter-
polating [KMP07,WDAH10], posing [LSLCO05,FB11], and
editing [KG08, YYPM11] static shapes or dynamic geometry
sequences. For a given mesh connectivity graph G, an associ-
ated shape space S allows every geometric realization of G to
be represented as a point in S . The simplest such shape space
is Sv = ℝ3V , to store the coordinates of V vertices in ℝ3.
However, linearly combining shapes in Sv leads to artefacts
for rotating parts [WDAH10].

To avoid this effect, we therefore have two options. We can
choose to combine shapes in a non-linear way, for example
by using geodesics with respect to an appropriate Rieman-
nian metric [KMP07]. Alternatively, we can represent shapes
using a space that encodes differential properties of the mesh
instead [SP04, LSLCO05], so that simple linear combina-
tions better preserve the shape of rotating parts. Usually, the
dimension of such a differential shape space is greater than
3V and therefore not every point in S corresponds to a real-
ization of G as a mesh in ℝ3. In this case, existing approaches
introduce an operator P which projects from S back into Sv.

1.1. Differential shape spaces

Sumner and Popović [SP04] propose one such alternative
shape space based on deformation gradients, which describe

each face of the mesh as a linear transformation of a cor-
responding reference triangle. As the translational part of
the transformation is omitted, the representation of a mesh
in this shape space S f is invariant under translations. The
projection operator Pf only requires the solution of a lin-
ear system and can therefore be computed in real time.
However, Kircher and Garland [KG08] observe that when
combining deformation gradients, faces rotate along the
shortest path in the embedding space, so interpolation be-
tween two or more poses can give unnatural, non-smooth
deformations.

Several shape spaces [LSLCO05, KG08, BVGP09] ad-
dress this shortcoming and give natural results even for very
large rotations. Winkler et al. [WDAH10] and Fröhlich and
Botsch [FB11] demonstrate excellent results based on a shape
space Se which stores the edge lengths and dihedral angles
of a mesh, and therefore represents the mesh in a way that
is invariant under both translations and rotations. The stan-
dard Euclidean metric in this space gives the discrete shell
energy proposed by Grinspun et al. [GHDS03], and so linear
interpolation in Se results in interpolations that minimize
this shell energy on G. However, these favourable properties
come at a cost, as the corresponding projection Pe requires
the solution of an expensive non-linear problem, which Win-
kler et al. [WDAH10] tackle with a multi-scale approach and
Fröhlich and Botsch [FB11] solve with a non-linear Gauss–
Newton optimization.

c⃝ The Eurographics Association 2012.



S. Marras & T. J. Cashman & K. Hormann / A mixed shape space for fast interpolation of articulated shapes

Figure 1: Overview of our fast mesh interpolation method. Source and target mesh are first segmented into rigid parts (green)
and non-rigid joints (red). We then use edge-based interpolation [WDAH10] to compute the interpolated shape of corresponding
joints and linear vertex interpolation for corresponding rigid parts, after having registered the rigid parts into a common
coordinate system. Finally, we align all the interpolated components and stitch them together to obtain the interpolated mesh.

1.2. Our contribution

In this paper, we observe that for the common class of articu-
lated shapes, much of the work that goes into computing Pe
is unnecessary, as these shapes are composed of a number
of rigid parts connected by joints, and it is only the joints
that benefit from expensive non-linear handling. The majority
of the shape is described by its rigid parts, and for these it
is sufficient to use fast linear vertex interpolation. This ob-
servation leads to a new shape space Sm, which stores edge
lengths and dihedral angles only where necessary and uses
vertex coordinates to represent the rest of the shape. We use
the subscript m here to emphasize that Sm is a mixed rigid
and non-rigid shape space.

Mixing these two representations gives a more compact
shape space, as vertex coordinates require less storage than
their edge-based counterparts, and a faster projection opera-
tor Pm, by avoiding expensive non-linear optimization where
it is not needed. To demonstrate the advantages of Sm, we
use the application of interpolating or morphing between
articulated shapes, as summarized in Figure 1 and reported
in Section 3.

Our mixed shape space makes it possible to compute an
interpolated mesh as much as 11 times faster than edge-based
interpolation on whole shapes as described by Winkler et
al. [WDAH10]. We find that interpolations in Sm may also
better respect linearly interpolated edge lengths and dihedral
angles than in Se (see Figure 7). As an additional benefit,
we demonstrate that decomposing the problem into rigid
parts and joints leads to a more robust reconstruction in the

presence of local self-intersections (see Section 3.3), which
can cause distortions when using earlier approaches.

1.3. Segmentation

To decompose an articulated shape into rigid parts and joints,
we rely on existing mesh segmentation techniques. Many
segmentation methods fit into a common framework, which
works by assigning a descriptive property value to each el-
ement of the mesh. This value could be the dihedral angle,
geodesic or diffusion distance, for example; see the survey
by Shamir [Sha08] for a detailed list of possibilities. The
segmentation then partitions the mesh into meaningful parts
using either k-means, hierarchical, or fuzzy clustering on the
property values.

For interpolating between two or more poses, it is impor-
tant that we use a segmentation technique that is based on
multiple mesh poses. In this situation we want the segmenta-
tion to reflect the behaviour of the mesh in all available poses
and to return connected subsets of G that move in a rigid
fashion, and joint regions that deform non-rigidly. Instead
of using a static metric, each element of the mesh therefore
needs to be characterized by some measure which expresses
the variation in that element. Common choices are rotation
matrices [JT05] or dihedral angles [WB10, MBH∗12], and
the final clustering then reveals the articulated structure of
the object. In this work, we adopt the approach by Marras et
al. [MBH∗12], but in principle, any other existing technique
could be used instead.

c⃝ The Eurographics Association 2012.



S. Marras & T. J. Cashman & K. Hormann / A mixed shape space for fast interpolation of articulated shapes

Figure 2: In order to build the mixed shape space Sm, we first
decompose our input meshes (left) with any multiple segmen-
tation method into meaningful articulated segments (middle).
We then create the joint regions by growing a triangle strip
of width three around each boundary between the parts. The
rigid parts are constructed by removing two triangle strips
from their boundaries (right). Joints and rigid parts therefore
overlap by one triangle strip.

The rigid parts of our segmentation often resemble the
skeletal bones of an animation technique [JT05, CBC∗05,
SZT∗08, KP11]. Indeed, a rigged skeleton would be one way
to derive the initial segmentation we use in this work. How-
ever, there are some key differences between our interpolation
and skeletal-driven deformation. One is that we start from
a disjoint classification into separate rigid parts, rather than
finding skinning weights that loosely associate vertices with
a collection of skeletal bones. Another is that the range of
motion possible through our interpolation is much wider, as
the joints can exhibit arbitrary non-rigid motion rather than
being constrained to model a single skeletal joint. This makes
our interpolation better suited to high-quality mesh interpola-
tions which are computed off-line, rather than the real-time
animation targeted by linear blend skinning.

2. A shape space Sm for articulated shapes

We build our shape space Sm from a mesh segmentation that
identifies the rigid parts of an articulated shape (Section 2.1).
The space is defined by combining a rotation-invariant rep-
resentation with values that locate a shape in space. When
interpolating between shapes, we must therefore account for
the structure of Sm that results from this rotation invariance
(Section 2.2). As for many other shape spaces, it is trivial
to embed a mesh in Sm by extracting the required edge and
vertex properties. However, there is a trade off, in that com-
plexity is moved to the operator Pm that maps a point in Sm
back into a mesh with connectivity G in ℝ3. We discuss our
implementation of Pm in Section 2.3.

2.1. Segmentation and joint creation

As mentioned in Section 1.3, we use the method described by
Marras et al. [MBH∗12] to identify parts of the mesh which
move in a rigid or near-rigid fashion. A mesh segmentation
assigns a label to each face of the mesh so that the entire mesh
is partitioned into disjoint regions. However, while artificial
or man-made objects might be completely described by their
rigid parts, many articulated shapes occurring in nature have

↓ ↑ ↓

→ ←

Figure 3: Different steps of the algorithm: starting from
the original shapes, we perform a segmentation. The corre-
sponding parts are then interpolated and aligned, and finally
stitched to obtain the final shape.

rigid parts which are connected together by joints exhibiting
some non-rigid deformation.

Our shape space uses an explicit segmentation for these
joints, which we obtain by growing strips of triangles around
the boundaries between segmented mesh regions (see Fig-
ure 2). We use a default joint width of three triangle strips
for our implementation, although we also find that the result
does not depend significantly on the joint width that we select
(see Section 3.1). We remove triangles from the rigid parts so
that they overlap with connecting joints by just one triangle
strip. This overlap is important for the stitching described
in Section 2.3 that forms a whole shape from its component
parts.

After creating joints and shrinking rigid parts, the end
result is p rigid parts, with Vi vertices in the i-th rigid part,
and q joints, with Ek edges in the k-th joint. Our shape space
now stores the shape of all of these components separately,
by defining the shape spacesℛ1, . . . ,ℛp to store the shape
of each rigid part, and J1, . . . ,Jq for the rotation-invariant
shape of each joint. The rigid part shape spaces areℛi =ℝ3Vi

as rigid parts are simply described using the coordinates of
their vertices, and the joint spaces are Jk = ℝ2Ek as joints are
described by the length and dihedral angle of each of their
edges.

2.2. Shape space structure

We are now able to define the complete shape space Sm as
the Cartesian product of all its component shape spaces, with
the addition of six real values to resolve translational and
rotational invariance. That is,

Sm = J1×⋅⋅ ⋅×Jq×ℛ1×⋅⋅ ⋅×ℛp×ℝ6,

and the dimension of Sm is therefore

2
q

∑
k=1

Ek +3
p

∑
i=1

Vi +6.

We consider each component part to be specified up to a

c⃝ The Eurographics Association 2012.



S. Marras & T. J. Cashman & K. Hormann / A mixed shape space for fast interpolation of articulated shapes

rigid-body transform, as the rotations and translations that
match the parts together are determined automatically by the
projection Pm (see Section 2.3). Joints are already stored in
a rotation-invariant way, but the same is not true of the rigid
parts, and so we define a custom operator A to compute affine
combinations of points in Sm. This operator takes account
of the fact that each rigid part shape spaceℛi is a redundant
representation for an infinite number of equivalence classes,
where shapes belong to the same equivalence class if they are
related to each other by a rigid-body motion. With this view, a
shape R ∈ℛi is only a representative of its equivalence class,
and to combine shapes in two different classes, we must first
align the representatives to each other.

Formally, A is a map

A : (Sm×ℝ)n→Sm

where each of the n shapes in Sm is associated with a weight
in ℝ. For any combination

S = A
(
(S1,w1), . . . ,(Sn,wn)

)
we also enforce the constraint on the weights that ∑l wl = 1,
so that A computes an affine combination. We can now define
the action of A in detail by considering its effect on each
component of Sm.

Edge-based interpolation for joints By transforming joints
into an edge-based rotation-invariant representation, A is very
easy to compute on each joint shape space Jk. If Jk,l is the
shape of the k-th joint in Sl , then the new shape of that joint
in S is simply ∑i wlJk,l . In other words, we interpolate edge
lengths and dihedral angles linearly [WDAH10], which gives
the good properties described in Section 1.1 for non-rigid
deformations.

Multi-registration for rigid parts We have to do more work
to compute A in the rigid-part spacesℛk, as the shapes Rk,l ,
l = 1, . . . ,n are only representatives, in a particular orien-
tation, of the rotation-invariant shapes they describe. While
these shapes are modelled as rigid and may correspond to true
rigid entities such as bones, in fact we expect to interpolate
between parts that also show slight non-rigid variations.

To combine rigid parts, we must therefore align the shapes
before using linear vertex interpolation, which we find to
be sufficient to resolve any small non-rigid deformation.
We approach the alignment in the same way as Winkler et
al. [WDAH10], by using the simultaneous registration de-
scribed by Williams and Bennamoun [WB00]. Their method
finds the rigid transformation for each part Rk,l (l = 1, . . . ,n)
that minimizes the squared differences between all pairs of
corresponding vertices. If we write R̃k,l for the result of trans-
forming Rk,l using the computed translations and rotations,
then the final step to compute A inℛk is to linearly interpo-
late the vertices of the transformed parts. That is, the new
shape of the k-th rigid part in s is ∑l wl R̃k,l .

Linear interpolation for pose parameters We now have
A defined on J1, . . . ,Jq andℛ1, . . . ,ℛp, so it only remains
to describe its action on the pose parameters θl in ℝ6 which
define the final position and orientation of each shape Sl .
For these degrees of freedom, we can use the barycentre to
describe position in space and the three independent entries
that result from the logarithm of a rotation matrix to describe
orientation. This rotation could give the orientation of the first
face with respect to a reference triangle, for example. Both
of these descriptions can be combined linearly to good effect,
so again A can take the simple weighted linear combination
∑l wlθl as the pose parameters for s.

2.3. The projection operator Pm

After representing a collection of shapes in Sm and taking
affine combinations using the operator A, the last step in an
interpolation is to project back into the space of meshes with
fixed connectivity G in ℝ3. This projection consists of three
steps: alignment, stitching, and global positioning.

Alignment A shape in Sm is a collection of q rotation-
invariant joints, and p rigid parts, which we also consider
modulo rigid-body transforms. So the first step to convert
these parts back into a coherent shape is to align the joints
and rigid parts to each other. To do so, we can use the same
registration technique by Williams and Bennamoun [WB00]
we used in Section 2.2. The problem is the same, since we
have a collection of mesh parts with corresponding vertices
provided by the overlapping strips of triangles we describe in
Section 2.1. This multi-registration method therefore gives
us rotations and translations for each part, found to minimize
the squared differences between all corresponding vertices.

Stitching Once the component parts have been placed in
alignment, there is likely to still be some residual error be-
tween corresponding vertices. We therefore stitch the parts
together by using the edge blending described by Winkler
et al. [WDAH10]. In summary, their method solves a linear
system that minimizes the error between each edge and a
target vector, for each part in which that edge appears. Each
such target vector retains the orientation of its corresponding
edge, but sets the target length to be the linearly-interpolated
edge length. Note that this target length always appears in a
joint shape space Jk for some k, as we connect one or more
joints to a rigid part, and never connect rigid parts to each
other.

Global positioning The result of the stitching step is a co-
herent mesh with connectivity G, but with arbitrary position
and orientation in ℝ3. The final step in Pm is therefore to
use the six pose parameters to locate the projected shape in
space. This involves a rotation, so that the first face is oriented
correctly with respect to its reference triangle, followed by a
translation to correctly locate the mesh barycentre.

c⃝ The Eurographics Association 2012.



S. Marras & T. J. Cashman & K. Hormann / A mixed shape space for fast interpolation of articulated shapes

Figure 4: Results of our mixed interpolation technique for several sets of two input poses and interpolation weight
w1 ∈ {0.25,0.5,0.75}. From top to bottom we show the datasets ‘cat’, ‘horse’, ‘standing elephant’, ‘galloping elephant’
and ‘armadillo’.

Figure 5: Result of our mixed interpolation between six different input poses with interpolation weights w1 = ⋅ ⋅ ⋅= w6 = 1/6.

c⃝ The Eurographics Association 2012.



S. Marras & T. J. Cashman & K. Hormann / A mixed shape space for fast interpolation of articulated shapes

0 0.5 1

−20%

0%

20%

0 0.5 1
−180

−90

0

90

180

MSGI

0 0.5 1

−20%

0%

20%

0 0.5 1
−180

−90

0

90

180

MixIT
Figure 6: Comparison of errors for the standing elephant data set (third row in Figure 4). The plots show the relative error in
edge length and degree error in dihedral angle, compared to the linearly-interpolated target values for each edge and plotted
over the interpolation weight w1 ∈ [0,1]. Every plot for length error shows the envelopes for all edges , as well as the worst
99.9% and 99% of edges. In every plot for dihedral angle error, the envelopes show all edges , as well as the worst
99.99% and 99.9% of edges. For this example, MSGI gives lower error overall.

0 0.5 1

−50%

0%

50%

0 0.5 1

−90

−45

0

45

90

MSGI

0 0.5 1

−50%

0%

50%

0 0.5 1

−90

−45

0

45

90

MixIT
Figure 7: Comparison of errors for the horse dataset (second row in Figure 4); cf. Figure 6. For this example, our method MixIT
gives lower error overall.

F V
MSGI MixIT dimSe

dimSmdimSe Init. Interp. Total dimSm Align. Init. Interp. Stitch. Total Speed-up

lion 9996 5000 44994 112 1305 1417 22035 0 12 189 237 438 3.2 2.0

cat 14410 7207 64857 196 1727 1923 27251 0 9 167 265 441 4.3 2.4

horse 16843 8431 75847 257 2051 2308 34641 1 14 277 329 621 3.7 2.2

standing elephant 79946 39969 359751 5025 11728 16853 127441 14 9 217 2005 2245 7.5 2.8

galloping elephant 84638 42321 380883 5135 12395 17530 141217 15 21 447 1716 2199 8.0 2.7

armadillo 331904 165954 1493580 77396 58581 135977 541528 62 73 1681 9776 11592 11.7 2.8

Table 1: Comparison of the interpolation between two poses using MSGI and MixIT. All times are given in milliseconds.

3. Results

We demonstrate the advantages of our mixed shape space
Sm by interpolating between two or more poses of the same
object. Figures 4 and 5 and the accompanying video show
several examples of our results. We implemented this mixed
interpolation technique (MixIT) in C++ and compare it to
the Multi-Scale Geometry Interpolation (MSGI) method de-
scribed by Winkler et al. [WDAH10].

The input meshes were taken from the Aim@Shape repos-
itory [aim] and the Sumner shape dataset [SP04], and we
used the multiple mesh segmentation described by Marras
et al. [MBH∗12] to create consistent segmentations of corre-
sponding poses. All tests were carried out on an Intel Quad-
Core Q9550 2.83GHz with 4GB onboard memory. The seg-
mentation algorithm uses GPU parallelization as described in
the original work, while the interpolation step takes advan-

tage of a multi-threaded implementation. Our results show
that MixIT is not only faster than the MSGI algorithm, but
also that it scales better, achieving the highest speed-up for
the largest meshes.

To perform a quantitative comparison between MSGI and
MixIT, we measure the interpolation error in terms of edge
lengths and dihedral angle in the same way as Winkler et
al. [WDAH10]. Our experiments show that the error behaves
very similarly for both methods: MSGI is slightly better for
some examples (see Figure 6), while MixIT produces lower
errors in other cases (see Figure 7). However, the main ad-
vantage of our method is that it is significantly faster than
MSGI, in particular for large meshes (see Table 1). Moreover,
the dimension of Sm is typically smaller than that of Se by a
factor between 2 and 3, which greatly reduces the amount of
memory needed to store shape data.

c⃝ The Eurographics Association 2012.



S. Marras & T. J. Cashman & K. Hormann / A mixed shape space for fast interpolation of articulated shapes

0 0.5 1
−60%

−40%

−20%

0%

20%

40%

0 0.5 1

−180

−90

0

90

180

Standard joint width

0 0.5 1
−60%

−40%

−20%

0%

20%

40%

0 0.5 1

−180

−90

0

90

180

Wider joints

Figure 8: Comparison of errors for interpolation between two poses of the horse using joint width three (left) and five (right).
The result is relatively insensitive to this parameter, but we find a slight decrease in performance for larger joints.

3.1. Insensitivity to joint width

Our tests found that a joint width of three triangle strips
at each boundary between segmented parts usually gives
good results. Increasing this size does not have a significant
influence on the interpolation in terms of error (see Figure 8)
or computational speed, although performance does drop
slightly for larger joints because edge-based interpolation is
slower than vertex interpolation. It is not advisable, however,
to use smaller joints, as the stitching (see Section 2.3) can
then lead to unwanted artefacts.

3.2. Sensitivity to segmentation quality

In contrast, both the quality of the results and the run-time per-
formance depend crucially on the quality of the initial shape
segmentation. On the one hand, a poor segmentation (for ex-
ample, if some joints are missing due to under-segmentation)
will result in large errors and unwanted interpolation artefacts
(see Figure 9). On the other hand, while the interpolation is
resilient with respect to over-segmentation, a high number of
joints will mean that an interpolation takes longer to compute.

3.3. Robustness with respect to noise

An interesting result from our tests is that MixIT seems to be
more robust with respect to noise than MSGI. In particular, if
the input meshes contain local self-intersections, then MSGI
can give implausible results, and so these self-intersections
must be removed in a preprocessing step. Our algorithm can
overcome this limitation if the self-intersections occur in
the rigid parts, because the linear vertex interpolation is not
affected by such artefacts (see Figure 10).

4. Conclusion

The main limitation of our fast interpolation method is its
inherent restriction to articulated shapes, because the advan-

source target source target

Figure 9: Interpolation between the same poses of the ar-
madillo using two different segmentations. A segmentation
that does not capture the articulation of the legs (left) pro-
duces artefacts around the knee and the foot, which we can
avoid by using a good segmentation (right).

tages of the mixed shape space Sm rely on a meaningful
segmentation into rigid parts and non-rigid joints.

It is important to note that our affine combination oper-
ator A (see Section 2.2) is not a linear operator because of
the rigid alignment step that we introduce for rigid parts.
This stands in contrast to simple linear interpolation in Sv,
S f [SP04], or Se [WDAH10]. Instead, points in Sm are com-
bined in a non-linear way, as for the shape spaces described
by Kilian et al. [KMP07] and Kircher and Garland [KG08].
This complication appears to make it impossible to use Sm as

c⃝ The Eurographics Association 2012.



S. Marras & T. J. Cashman & K. Hormann / A mixed shape space for fast interpolation of articulated shapes

source target

MSGI MixIT
Figure 10: Results of the interpolation between two poses of
the horse (top row) using MSGI and MixIT in the presence
of local self-intersections (middle row) and after removing
them in a preprocessing step (bottom row). The consistency
of MixIT in the second and third rows shows that our method
is more robust with respect to such artefacts.

the underlying shape space of the deforming mesh represen-
tation recently introduced by Cashman and Hormann [CH12].
However, if we are willing to consider the shape space con-
struction as an offline process, where the total set of shapes
in the space is already known (which is usually the case),
then we can carry out the rigid-part alignment in a prepro-
cessing step and subsequently, combine shapes in a purely
linear way. We then recover all the tools from linear algebra
that are required by Cashman and Hormann’s representation
for deforming mesh sequences [CH12].

Acknowledgements

This work was supported by the SNF under project number
200021-134639. The authors thank the anonymous reviewers
for their valuable comments and suggestion.

References

[aim] The aim@shape shape repository. http://shapes.
aimatshape.net/. 6

[BVGP09] BARAN I., VLASIC D., GRINSPUN E., POPOVIĆ J.:
Semantic deformation transfer. ACM Trans. Graph. 28, 3 (2009),
#36:1–6. 1

[CBC∗05] CAPELL S., BURKHART M., CURLESS B., DUCHAMP
T., POPOVIĆ Z.: Physically based rigging for deformable charac-
ters. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (2005), pp. 301–310. 3

[CH12] CASHMAN T. J., HORMANN K.: A continuous, editable
representation for deforming mesh sequences with separate signals

for time, pose and shape. Comput. Graph. Forum 31, 2 (2012),
735–744. 1, 8

[FB11] FRÖHLICH S., BOTSCH M.: Example-driven deformations
based on discrete shells. Comput. Graph. Forum 30, 8 (2011),
2246–2257. 1

[GHDS03] GRINSPUN E., HIRANI A. N., DESBRUN M.,
SCHRÖDER P.: Discrete shells. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(2003), pp. 62–67. 1

[JT05] JAMES D. L., TWIGG C. D.: Skinning mesh animations.
ACM Trans. Graph. 24, 3 (2005), 399–407. 2, 3

[KG08] KIRCHER S., GARLAND M.: Free-form motion process-
ing. ACM Trans. Graph. 27, 2 (2008), #12:1–13. 1, 7

[KMP07] KILIAN M., MITRA N. J., POTTMANN H.: Geometric
modeling in shape space. ACM Trans. Graph. 26, 3 (2007), #64:1–
8. 1, 7

[KP11] KIM J., POLLARD N. S.: Fast simulation of skeleton-
driven deformable body characters. ACM Trans. Graph. 30, 5
(2011), #121:1–19. 3

[LSLCO05] LIPMAN Y., SORKINE O., LEVIN D., COHEN-OR
D.: Linear rotation-invariant coordinates for meshes. ACM Trans.
Graph. 24, 3 (2005), 479–487. 1

[MBH∗12] MARRAS S., BRONSTEIN M. M., HORMANN K.,
SCATENI R., SCOPOGNO R.: Motion-based mesh segmentation
using augmented silhouettes. Graph. Models 74, 4 (2012), 164–
172. 2, 3, 6

[Sha08] SHAMIR A.: A survey on mesh segmentation techniques.
Comput. Graph. Forum 27, 6 (2008), 1539–1556. 2

[SP04] SUMNER R. W., POPOVIĆ J.: Deformation transfer for
triangle meshes. ACM Trans. Graph. 23, 3 (2004), 399–405. 1, 6,
7

[SZT∗08] SHI X., ZHOU K., TONG Y., DESBRUN M., BAO H.,
GUO B.: Example-based dynamic skinning in real time. ACM
Trans. Graph. 27, 3 (2008), #29:1–8. 3

[WB00] WILLIAMS J. A., BENNAMOUN M.: Simultaneous reg-
istration of multiple point sets using orthonormal matrices. In
Proceedings of the 2000 IEEE International Conference on Acous-
tics, Speech, and Signal Processing (2000), vol. 4, pp. 2199–2202.
4

[WB10] WUHRER S., BRUNTON A.: Segmenting animated ob-
jects into near-rigid components. Visual Comput. 26, 2 (2010),
147–155. 2

[WDAH10] WINKLER T., DRIESEBERG J., ALEXA M., HOR-
MANN K.: Multi-scale geometry interpolation. Comput. Graph.
Forum 29, 2 (2010), 309–318. 1, 2, 4, 6, 7

[YYPM11] YANG Y.-L., YANG Y.-J., POTTMANN H., MITRA
N. J.: Shape space exploration of constrained meshes. ACM
Trans. Graph. 30, 6 (2011), #124:1–12. 1

c⃝ The Eurographics Association 2012.

http://shapes.aimatshape.net/
http://shapes.aimatshape.net/

