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Abstract

In this paper we study subdivision schemes that both interpolate

and preserve the monotonicity of the input data, and we derive a

simple ratio condition that guarantees the continuous differentiability

of the limit function. We then show that the condition holds for both

a scheme of Kuijt and van Damme, based on rational functions, and

a scheme of Sabin and Dodgson, based on square roots.

MSC: 65D05, 65D17
Keywords: Interpolatory subdivision, monotonicity-preservation

1 Introduction

Given a sample of function values fk = f(k), k = 0, 1, 2, . . . , n, of a func-
tion f : [0, n] → R, one way to construct an interpolant, i.e., a function
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g : [0, n] → R such that g(k) = fk, is to use subdivision. In this paper
we study subdivision schemes that preserve monotonicity in the sense that
they generate an interpolant that is increasing, i.e., g(x) < g(y) for x < y,
whenever f is increasing.

Monotonicity is a natural shape property to preserve, and various meth-
ods address this problem using piecewise polynomials and rational functions
[5, 11, 12, 13]. The use of subdivision to achieve this [15, 16] has recently
gained greater focus because monotonicity is required for the parameter val-
ues used when interpolating points with a parametric curve. If a subdivision
method is used to construct the curve, such as in [1, 2, 7, 17], the parameter
values will themselves satisfy a subdivision scheme which should preserve
monotonicity. As suggested in [17], it might be desirable that these param-
eter values become ‘smoothed out’ in some sense in the limit, which we can
interpret as saying that the scheme for the parameter values should have at
least C1 smoothness.

In this paper we derive a simple ratio condition that guarantees the con-
tinuous differentiability of the limit function. By applying this condition, we
show that both a scheme proposed by Kuijt and van Damme and a scheme
proposed by Sabin and Dodgson are C1, and could therefore be applied to
smooth parameter values used for curve subdivision.

2 A ratio condition

Both of the schemes we analyze are four-point schemes, and so in both cases
we start by adding two data at each end, so that we have increasing data fk

for −2 ≤ k ≤ n + 2, the extra data acting as ‘boundary conditions’. We now
initialize the scheme by setting g0,k = fk, k = −2, . . . , n + 2, and then for
each j ∈ N0 we generate data by the rules

gj+1,2k = gj,k, gj,k < gj+1,2k+1 < gj,k+1. (1)

For each j let gj be the polygon through the data (2−jk, gj,k). The limit
function, if it exists, is then

g(x) := lim
j→∞

gj(x), x ∈ [0, n]. (2)

Our approach to the convergence analysis is to study the behaviour of
the differences

dj,k = gj,k+1 − gj,k > 0,
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and their ratios
rj,k = dj,k+1/dj,k.

We will show that g is C1 if these ratios converge to 1 geometrically as
j → ∞. In this, we are building on the idea of [15], but, unlike in [15], we
show this without assuming anything about the form of the scheme being
used, only that it preserves monotonicity.

When working with a ratio r > 0 it will be convenient to use the notation

r∗ := max{r, 1/r} ≥ 1.

It is useful to note that |r − 1| ≤ r∗ − 1. Let

Rj := max
k

r∗j,k.

Theorem 1 If
Rj+1 ≤ Rj, j ∈ N0, (3)

and if there is some positive constant λ < 1 such that

Rj+2 − 1 ≤ λ(Rj − 1), j ∈ N0, (4)

then the limit g in (2) exists and is C1.

If we define
ej := Rj − 1,

then the first two inequalities in Rj imply that

ej+1 ≤ ej, ej+2 ≤ λej,

and so
e2j+1 ≤ e2j ≤ λje0, (5)

which shows that ej → 0 geometrically.

Proof. A standard condition for C1 continuity [3, 9, 19, 20] is that there are
constants C and µ < 1/2 such that

max
k

|gj,k−1 − 2gj,k + gj,k+1| ≤ Cµj. (6)

Since
gj,k−1 − 2gj,k + gj,k+1 = dj,k−1(rj,k−1 − 1),
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it follows from (4) that (6) holds with µ =
√

λ/2 if there is a constant C ′ > 0
such that

dj := max
k

dj,k ≤ C ′2−j. (7)

To show this, observe that

dj+1,2k = dj,k/(1 + rj+1,2k),

dj+1,2k+1 = dj,k/(1 + 1/rj+1,2k),

and therefore,

dj+1 ≤
1

1 + 1/Rj+1

dj =
1 + ej+1

2 + ej+1

dj ≤
1

2

(

1 +
ej+1

2

)

dj ≤
1

2
exp

(ej+1

2

)

dj.

Hence, applying this recursively, we see that (7) holds with

C ′ = exp

(

e1 + e2 + · · ·
2

)

d0,

and C ′ < ∞ due to (5). 2

3 The scheme of Kuijt and van Damme

Consider now the following non-linear, four-point scheme, studied by Kuijt
and van Damme [15]:

gj+1,2k = gj,k, (8)

gj+1,2k+1 =
gj,k + gj,k+1

2
+

dj,k

4
Q(rj,k−1, rj,k), (9)

where

Q(x, y) =
1

1 + x
− 1

1 + 1/y
, x, y > 0.

Since |Q(x, y)| < 1 the scheme clearly preserves monotonicity.

Theorem 2 Kuijt and van Damme’s scheme (8–9) is C1.
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Proof. The scheme for the first order differences of (8–9) is

dj+1,2k =
1

2
dj,k +

dj,k

4
Q(rj,k−1, rj,k),

dj+1,2k+1 =
1

2
dj,k −

dj,k

4
Q(rj,k−1, rj,k),

and so there is a scheme for the ratios:

rj+1,2k = F (rj,k−1, rj,k), (10)

rj+1,2k+1 = G(rj,k−1, rj,k, rj,k+1), (11)

where

F (x, y) =
2 − Q(x, y)

2 + Q(x, y)
, (12)

G(x, y, z) = y

(

1 + 1/F (x, y)

1 + F (y, z)

)

, (13)

and we will apply Theorem 1. To prove (3), we see from (10–11) that it is
sufficient to show that for any x, y, z > 0, if x∗, y∗, z∗ ≤ R for some R ≥ 1
then

F (x, y)∗ ≤ R, and G(x, y, z)∗ ≤ R. (14)

To this end, observe that F has the ‘reciprocal symmetry’ property,

1/F (x, y) = F (1/y, 1/x), (15)

which we can see from the fact that

−Q(x, y) = Q(1/y, 1/x),

and so G also has ‘reciprocal symmetry’:

1/G(x, y, z) = G(1/z, 1/y, 1/x). (16)

Therefore (14) holds if

F (x, y) ≤ R and G(x, y, z) ≤ R. (17)

Considering the first of these inequalities, observe that Q(x, y) is decreasing
in both x and y, and therefore F (x, y) is increasing in both x and y, and so

F (x, y) ≤ F (R,R) =: CR, (18)
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and since

Q(R,R) =
1 − R

R + 1
,

we find

CR =
3R + 1

R + 3
.

Since CR ≤ R, this proves the bound on F . Considering the second inequality
in (17), since G is decreasing in x and z,

G(x, y, z) ≤ G(1/R, y, 1/R). (19)

From (12),

F (x, y) =
1 + 2x + 2y + 3xy

3 + 2x + 2y + xy
,

and it follows that F has the symmetry,

F (x, y) = F (y, x), (20)

and so
G(x, y, x) = y/F (x, y). (21)

The right hand side is increasing in y for all x, y > 0 because it can be
expressed as the product of the two terms

y

1 + 2x + 2y + 3xy
, 3 + 2x + 2y + xy,

both of which are increasing in y. Therefore,

G(1/R, y, 1/R) = y/F (1/R, y) ≤ R/F (1/R,R) = R,

from which the second inequality in (17) follows.
Having now established (3), we turn to (4). Taking two steps of the ratio
scheme gives

rj+2,4k = G0(rj,k−2, rj,k−1, rj,k),

rj+2,4k+1 = G1(rj,k−2, rj,k−1, rj,k, rj,k+1),

rj+2,4k+2 = G2(rj,k−1, rj,k, rj,k+1),

rj+2,4k+3 = G3(rj,k−1, rj,k, rj,k+1),
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where

G0(a, b, c) = F (G(a, b, c), F (b, c)),

G1(a, b, c, d) = G(G(a, b, c), F (b, c), G(b, c, d)),

G2(b, c, d) = F (F (b, c), G(b, c, d)),

G3(b, c, d) = G(F (b, c), G(b, c, d), F (c, d)).

Since both F and G have reciprocal symmetry, i.e. satisfy (15) and (16), it
follows that the functions Gi, i = 0, 1, 2, 3, also have reciprocal symmetry
and so a sufficient condition for (4) to hold is that there is some λ < 1 such
that if a∗, b∗, c∗, d∗ ≤ R then

Gi − 1 ≤ λ(R − 1), i = 0, 1, 2, 3. (22)

Consider first G0 and G2. Since

F (R,R) − 1 = CR − 1 =
2(R − 1)

R + 3
≤ 1

2
(R − 1),

it follows that (22) holds for i = 0, 2 with λ = 1/2. Consider next G1. Using
(18) and (21), we find

G1(a, b, c, d) ≤ G(1/R, y, 1/R) = y/F (1/R, y),

where y = F (b, c) ≤ CR, and so

G1(a, b, c, d) ≤ CR/F (1/R,CR).

Since

Q(1/R,CR) =
R − 1

4(1 + R)
,

we find

1/F (1/R,CR) = DR :=
9R + 7

7R + 9
.

Since
CRDR − 1 = ER(R − 1),

where

ER =
20(R + 1)

(R + 3)(7R + 9)
,
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and

ER =
5

8

(

1 − (7R + 5)(R − 1)

(R + 3)(7R + 9)

)

≤ 5

8
,

this establishes (22) for i = 1 with λ = 5/8.
Finally consider G3. Using (18) and (21), we find

G3(b, c, d) ≤ G(1/CR, y, 1/CR) = y/F (1/CR, y),

where y = G(b, c, d) ≤ R, and so

G3(b, c, d) ≤ R/F (1/CR, R) = R/DR.

Since
R/DR − 1 = FR(R − 1),

where

FR =
7(R + 1)

9R + 7
=

7

8

(

1 − R − 1

9R + 7

)

≤ 7

8
,

this establishes (22) for i = 3 with λ = 7/8, and hence (4) with λ = 7/8. 2

4 The scheme of Sabin and Dodgson

In their four-point circle-preserving curve scheme, Sabin and Dodgson [17]
choose where to locate new points in terms of old ones in a way which can
be viewed as choosing parameter values. For functional data the parameter-
value scheme defines the new value gj+1,2k+1 by the equation

dj+1,2k+1

dj+1,2k

=

√

dj,k + dj,k+1

dj,k−1 + dj,k

. (23)

This scheme trivially preserves monotonicity, and it also admits a ratio
scheme, which is as for Kuijt and van Damme’s scheme, but with F in (10)
replaced by

F (x, y) =

√

1 + y

1 + 1/x
. (24)

Theorem 3 Sabin and Dodgson’s scheme (23) is C1.
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Proof. The function F in (24) has reciprocal symmetry (15), and thus to
prove (3), it is sufficient to establish the two inequalities in (17). Considering
first F , we find

F (x, y) ≤ F (R,R) =
√

R ≤ R.

Considering G, inequality (19) holds as for Kuijt and van Damme’s scheme,
but F in (24) does not have the symmetry (20) and so the equation for
G(x, y, x) in (21) does not hold. Nevertheless we will show that G(x, y, x) is
increasing in y for all x, y > 0. To do this we can use the property of F in
(24) that

F (x, y)F (y, x) =
√

xy

to eliminate the term F (y, x) from the expression for G(x, y, x) in (13), giving

1

G(x, y, x)
=

1

1 + F (x, y)

(

F (x, y)

y
+

√

x

y

)

,

which is decreasing in y since F (x, y)/y is clearly decreasing in y. Therefore,
since F (1/R,R) = 1,

G(x, y, z) ≤ G(1/R,R, 1/R) = R.

To demonstrate (4) we will again establish the four inequalities in (22). Since

F (R,R) − 1 =
√

R − 1 ≤ 1

2
(R − 1),

inequality (22) holds for i = 0, 2 with λ = 1/2. Considering G1 and G3,

G1(a, b, c, d) ≤ G(1/R,CR, 1/R) = DR,

G3(b, c, d) ≤ G(1/CR, R, 1/CR) = ER,

where DR and ER can be expressed as

DR =
αR3/4 + βR1/2

α + β
, ER =

αR + βR3/4

α + β
,

with
α =

√
R + 1, β =

√

R + R1/2.

Since these are affine combinations with R3/4 ≥ R1/2, R ≥ R3/4, and β ≥ α,
we deduce that

DR ≤ R3/4 + R1/2

2
, ER ≤ R + R3/4

2
.
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Figure 1: Limit and derivative of Kuijt and van Damme’s scheme

Using the fact that for any λ ∈ [0, 1],

Rλ − 1 ≤ λ(R − 1),

it follows that (22) holds for i = 1, 3 with λ = 5/8, 7/8 respectively, and
hence (4) holds with the same constant λ = 7/8 as in Kuijt and van Damme’s
scheme. 2

5 Numerical examples and final remarks

Figure 1 shows the limit function of Kuijt and van Damme’s scheme applied
to the data set used in their paper [15]. Figure 2 shows the limit function
and derivative of Sabin and Dodgson’s scheme applied to the same data. For
comparison, Figure 3 shows the limit function and derivative of the linear
four-point scheme of [6] and [8], which gives a limit function that is clearly
not monotonic.

5.1 Non-strict monotonicity

The schemes in Sections 3 and 4 extend in a natural way to data that is not
strictly increasing. Both rules for the new value gj+1,2k+1 are valid unless all
four values gj,k−1, . . . , gj,k+2 are equal, in which case we can define gj+1,2k+1

to be this same value.
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Figure 2: Limit and derivative of Sabin and Dodgson’s scheme
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Figure 3: Limit and derivative of the linear four-point scheme

5.2 Hölder regularity

Since we have shown that (4) holds for both schemes with λ = 7/8 it follows
that the Hölder regularity of both schemes is at least C1+α, where

α = − log2(
√

7/8) ≈ 0.0963.

Our numerical tests suggest that both schemes have Hölder regularity C2−ǫ

for any small ǫ > 0. This is interesting in comparison with the regularity of
the convexity-preserving scheme of [14] and [10] which, according to Yu [20]
varies between C1 and C2−ǫ depending on the data.
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5.3 Application to subdivision on irregular data

The schemes in this paper can be applied to the subdivision of data (fk, hk)
where function values hk, k = 0, 1, 2, . . . , n, are associated with parameter
values fk. In this context, the values gj+1,2k+1 are the new parameter values
of points which are introduced on level j.

The linear four-point scheme [6, 8] has been shown to have Hölder regu-
larity C2−ǫ for the uniform case fk = k and the semi-regular parameterization
gj+1,2k+1 = (gj,k + gj,k+1)/2 [18]. The same is true for an arbitrary irregular
parametrization (1), as long as the newly inserted values satisfy a condition
that ensures they are not too far from the interval midpoint [4]. By proving
(5), in this paper we show that the considered schemes are asymptotically uni-
form: they insert values which are arbitrarily close to interval midpoints as
j → ∞. We can therefore use these results to show that the linear four-point
scheme, using either Kuijt and van Damme’s scheme or Sabin and Dodgson’s
scheme to choose parameter values, has the same Hölder regularity C2−ǫ for
irregular data as in the uniform case.

5.4 A fourth root scheme

While working on Theorems 2 and 3 we discovered another interpolatory
scheme that preserves monotonicity and is C1. The scheme chooses the new
value gj+1,2k+1 by the equation

dj+1,2k+1

dj+1,2k

=

(

dj,k+1

dj,k−1

)1/4

,

and so F in (12) is replaced by

F (x, y) = (xy)1/4.

The proof that this scheme is C1 is similar to that of Sabin and Dodgson’s
scheme, but simpler, and the limit function also looks similar. However,
the scheme becomes unstable when strictly monotonic data approaches non-
strictly monotonic data: as strictly monotonic data approaches the four lim-
iting values gj,k−1 = gj,k = 0 and gj,k+1 = gj,k+2 = 1 the limiting value
gj+1,2k+1 can be anywhere in the range [0, 1]. This could be viewed as a
drawback in practical applications.
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