
EUROGRAPHICS 2012 / P. Cignoni, T. Ertl
(Guest Editors)

Volume 31 (2012), Number 2

A continuous, editable representation for deforming mesh

sequences with separate signals for time, pose and shape

Thomas J. Cashman Kai Hormann

University of Lugano

Abstract

It is increasingly popular to represent non-rigid motion using a deforming mesh sequence: a discrete sequence of

frames, each of which is given as a mesh with a common graph structure. Such sequences have the flexibility to

represent a wide range of mesh deformations used in practice, but they are also highly redundant, expensive to

store, and difficult to edit in a time-coherent manner. We address these limitations with a continuous representation

that extracts redundancy in three separate phases, leading to separate editable signals in time, pose and shape. The

representation can be applied to any deforming mesh sequence, in contrast to previous domain-specific approaches.

By modifying the three signal components, we demonstrate time-coherent editing operations such as local repetition

of part of a sequence, frame rate conversion and deformation transfer. We also show that our representation makes

it possible to design new deforming sequences simply by sketching a curve in a 2D pose space.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

There are a large and growing number of applications for
dynamic geometry data, that is, 3D objects with time-varying
shape. Where non-rigid motion is important, it is popular
to represent dynamic geometry using a ‘deforming mesh se-
quence’ [XZY∗07]: a surface mesh with changing vertex
positions but fixed connectivity. Deforming mesh sequences
provide a very expressive description for an object under
complex motion; they appear, for example, in cloth simu-
lation [GHF∗07], in human reconstruction from captured
data [dAST∗08], and in facial animation from realtime depth
scans [WBLP11]. In each of these cases, the deforming se-
quence is discretely sampled in time, and it is either expensive
or impossible to gain a denser time sampling. The result-
ing discrete sequence is also highly redundant, as it repre-
sents the same object under deformation and so different
frames capture broadly similar shapes. As a result of these
two properties, the sequence is very inflexible and difficult to
edit [KG06].

Animation systems also work with deforming mesh se-
quences, but very rarely expose the discretized data directly.
Instead they offer a continuous, compact and editable repre-
sentation, which is sampled to gain discrete frames only for
rendering. Skeletal subspace deformation [LCF00], for ex-

ample, generates articulated deformation of a dense mesh by
associating vertices with a low-dimensional skeletal model.
However, this type of representation is applicable only when
the deforming sequence portrays articulated skeletal motion
with little variation in high-frequency detail. In this paper,
we extend the benefits of a continuous and editable represen-
tation to a much wider class of deforming mesh sequences.
The proposed representation decomposes dynamic geometry
data into signals at three different levels, allowing separate
analyses and editing operations in time, pose and shape.

Our main target is a representation for short sequences:
typically no longer than about 30 seconds. This limits com-
plexity so that we can provide a useful overview of an entire
sequence at once (see Figure 1 for an example). We discuss
this design decision further in Section 6. We emphasize that
compressing a deforming mesh sequence is not our primary
goal; although compression is one effect of using our repre-
sentation, it would also be possible to gain further compres-
sion rates as a post-process. The most important property is
not the size of storage, but whether the representation is suffi-
ciently compact to make typical editing operations possible,
such as those shown in Section 4. We compress the sequence
to the extent that these two goals are compatible, but avoid a
representation that is so compact that it is no longer editable.

c© 2012 The Author(s)

Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publish-

ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK

and 350 Main Street, Malden, MA 02148, USA.

T. J. Cashman & K. Hormann / A continuous representation for mesh sequences with separate time, pose and shape signals

i = 1 i = 3 i = 5 i = 7 i = 9 i = 11

i = 13 i = 15 i = 17 i = 19 i = 21 i = 23

1

3

5

7

9

11

13

15

17

19

21

23

Figure 1: An example of our representation for a galloping horse, generated by reconstructing a sequence with n = 24 frames.

The shapes shown left are the result ψ(i) of evaluating our representation at the given values for i. The time signal (right) shows

positions { f (i)}n
1 marked with red and blue points; red points indicate frames where the corresponding mesh ψ(i) is shown left.

As this sequence consists of two similar 12-frame cycles, the time signal loops twice. Positions f (i) and f (i+12) are close in

pose space, and therefore generate similar shapes. This example uses the constants k = 16, l = 12 and m = 7 (see Section 3.4).

1.1. Related work and contributions

To take advantage of a continuous, compact and editable
representation, the first step is often to convert an exist-
ing deforming mesh sequence into the target representa-
tion. Most existing work addresses the conversion into a
skeleton-based representation. Following the seminal work
of James and Twigg [JT05], there are methods for finding
and fitting a suitable skeleton to single meshes [BP07], mesh
sequences [dATTS08], motion capture data [ASK∗05], or
even non-skeletal objects like cloth [KSO10]. Conversion
into our representation does not require skeletal, physical or
semantic annotations, and we show that it can be achieved by
using just the information in discretely sampled meshes (Sec-
tion 3). We do not limit ourselves to articulated motion, as in
skeletal deformation [LCF00], and neither do we specialize
our representation for a particular type of animation, like
linear blendshapes for facial expression [ARL∗09]. Kircher
and Garland [KG06, KG08] and Xu et al. [XZY∗07] also
work without these constraints, providing an editable repre-
sentation for arbitrary deforming mesh sequences, but they
maintain the inherently discrete nature of the source data.
While this allows them to modify the spatial characteristics
of the data in a time-coherent way, it rules out, for example,
the addition of new frames.

In our representation it is possible to add new frames
and extend the animation by simply editing a curve in a
two-dimensional pose space (Section 4.1). More generally,
we can explore meaningful poses by interactively navigat-
ing this pose space and even create new animations from
scratch (Section 4.4), in a similar way to the systems Kilian
et al. [KMP07] and Yang et al. [YYPM11] propose for shape-
space exploration. Lewis et al. [LCF00] pioneer this idea
of exploring and editing animations by means of a simple
user interface and, like us, use scattered data interpolation
to connect the simple navigation space to the complicated
nonlinear manifold of meaningful poses. Working from video
rather than mesh sequences, Favreau et al. [FRDC04] also

create animations by using radial basis functions to map from
a reduced-dimension pose space: the same techniques that we
use to construct shape and pose signals (Sections 3.1 and 3.2).

Another advantage of the continuous nature of our repre-
sentation is the ability to modify the temporal characteristics
of a deforming mesh sequence both globally and locally. This
allows us to convert the frame rate as well as to slow down
and speed up certain parts of the animation (Section 4.2).

Finally, our representation can also be used for deformation
transfer [SP04], where a given animation of a certain charac-
ter is adapted to another (Section 4.3). While the method and
results turn out to be similar to semantic deformation trans-
fer [BVGP09] and are not novel in this sense, this emphasizes
the flexibility of our approach.

2. Proposed representation

This section explains the time, pose and shape signals that
we use to encode a deforming mesh sequence. In Section 3
we address the question of how these signals should be set
to reconstruct a sequence given as discrete mesh frames,
and Section 4 covers editing and creating deforming mesh
sequences by manipulating these signals.

We start by choosing a static representation for meshes
with a given graph structure. Since a deforming mesh se-
quence does not modify the mesh connectivity, each frame
is specified completely by the positions of all mesh vertices.
We require a static representation that encodes each possi-
ble configuration of the mesh vertices as a single point in a
shape space that we denote S . Mesh representations which fit
this description include deformation gradients [SP04], linear
rotation-invariant coordinates [LSLCO05], and mesh storage
based on edge lengths and dihedral angles [WDAH10, FB11].
Section 5 discusses the choice of shape space further. With S
in place, we can write the n frames of the deforming mesh
sequence as {zi}

n
1 = {z1,z2, . . . ,zn} ⊂ S.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

T. J. Cashman & K. Hormann / A continuous representation for mesh sequences with separate time, pose and shape signals

Since every possible configuration of the 3D target mesh
is contained in S, the dimension d of S must be at least 3V ,
where V is the number of vertices in the mesh. Indeed, the
simplest possible shape space is simply R

3V , where the mesh
vertices are directly stacked into a single vector of length 3V

(see Section 5). As discussed in Section 1, a deforming mesh
sequence {zi}

n
1 ⊂ S is discrete, redundant and inflexible. Our

representation aims to find a continuous trajectory in S from
which these frames might have been sampled. That is, we
view a deforming mesh sequence as a sampled curve in S.
To represent this high-dimensional trajectory compactly, we
introduce three spaces of lower dimension, namely a shape
subspace R

m, a pose space R
2, and a time interval I ⊂ R.

We connect these spaces together using functions f , g and h,
which serve as our time, pose and shape signals, respectively:

R⊃ I
f

R
2 g

R
m

h
S. (1)

Together, these functions define a continuous map ψ : I → S ,
where ψ = h◦g◦ f . Each signal is described in detail below.

2.1. Shape signal

For a sequence of n frames {zi}
n
1, where typically n ≪ 3V ,

the dimension of S is far greater than we need to represent the
data with a linear space. We exploit this shape redundancy

by replacing S with a linear shape subspace R
m instead,

where m < n, so that the frame with index i is represented
by a vector xi ∈ R

m. This vector gives the coordinates of the
frame with respect to m basis vectors {h j}

m
1 ⊂ S which form

the columns of a matrix H ∈ R
d×m.

To give meaningful basis vectors which allow a useful
range of editing operations, we find it useful to offset the
shape signal by h0 ∈ S, leading to the definition

h : Rm →S, h(x) = h0 +Hx

for the map from the reduced-dimension subspace to the
original shape space. Our goal is that h(Rm) contains the
sequence of frames {zi}

n
1 that form the deforming mesh se-

quence. This is always possible by setting m sufficiently high
(see Section 3.4), but the success of the linear shape sig-
nal h in spanning useful mesh deformations is affected by the
choice of shape space S (see Figure 7 and Section 5).

2.2. Pose signal

Where the deforming sequence includes the same mesh pose
more than once, the shape coordinates {xi}

n
1 contain a dupli-

cated point in R
m. We extract this pose redundancy, specify-

ing the mesh pose more concisely, by constructing a map to
the shape subspace from a 2D pose space. We expect that the
dimension m of the shape subspace is minimal with respect
to linear projection, so this map from the pose space must be
non-linear instead. That is, we construct a 2-manifold in the
shape subspace R

m and want this manifold to pass through
all the target mesh poses exactly once.

f1

f2

f3

f4 f5

f6

f (I) = f̃ (J)

f (1) = f̃ (t1)

f (4) = f̃ (t4)
f (5) = f̃ (t5)

f (8) = f̃ (t8)

Figure 2: An example time signal curve, for a simple case

where n = 8 and k = 6. Spline control points {f j}
k
1 are shown

in blue; points evaluated from the spline are shown in red.

If we already know the pose-space positions {pi}
n
1 ⊂ R

2

for each frame (see Section 3.2.1), then finding this non-linear
map is a scattered data approximation problem. This is the
inspiration for us to use radial basis functions to construct the
pose manifold. Given a radial basis function φ : R+ → R and
a set of l sites {s j}

l
1 in the plane, the map from pose space is

g : R2 → R
m, g(p) = g0 +

l

∑
j=1

φ(‖s j −p‖)g j +Gp,

where the offset g0 and the matrix G = (gl+1,gl+2) ∈ R
m×2

ensure that the radial basis approximation has linear precision.
This also guarantees the uniqueness of the representation
when φ(r) = r2 logr, to give a thin-plate spline [Wah90] (see
Section 3.2). Each radial basis function is multiplied by a
coefficient g j ∈R

m, which controls how the shape of the pose
signal is related to distance from the site s j in pose space.

2.3. Time signal

Each frame is now represented by a position pi in pose
space R

2. The final step in our representation extracts tem-

poral redundancy by providing a continuous approximation
to these discrete positions. We might be able to exploit parts
of the sequence that hold the same pose, for example, such
that the points pi cluster in the same position of pose space.
Alternatively, for sequences that show smooth deformation
of the target mesh, we expect the points pi to move smoothly
through the pose space, allowing us to represent the same
data with fewer than n points in the plane (see Figures 1 and 2
for examples).

To approximate discrete positions with a continuous curve,
a classical approach is spline fitting [dB01]. We use a cubic
spline curve to map from an interval J ⊂ R to pose space:

f̃ : J → R
2, f̃ (u) =

k

∑
j=1

B
u
j (u) f j

where Bu
j is the jth B-spline basis function, and f j is the

corresponding control point (see Figure 2). These k cubic
B-splines are defined on a knot vector u containing k+2 non-
decreasing real-valued knots {u j}

k+1
0 and J := [u3,uk−1].

The positions pi of the frames in pose space are approximated
by evaluating f̃ at n values t1 ≤ t2 ≤ ·· · ≤ tn ∈ J .

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

T. J. Cashman & K. Hormann / A continuous representation for mesh sequences with separate time, pose and shape signals

For the sake of obtaining a good spline fit, it may be neces-
sary to use unequally-spaced values ti [PT97]. However, the
n frames are understood to be equally spaced in time, and to
make this link with the original time interval I := [1,n], we
reparametrize f̃ with a monotone function ρ : I → J such
that ρ(i) = ti. We can set ρ to be the monotone interpolant
described by Fritsch and Carlson [FC80], for example. We
then define f = f̃ ◦ρ, i.e.

f : I → R
2, f (t) =

k

∑
j=1

B
u
j (ρ(t)) f j.

2.4. Summary

We now have the complete chain of signals given by (1),
forming the continuous function ψ from the time interval I
to the shape space S. When used to represent an existing
deforming mesh sequence, the function h extracts shape re-
dundancy, g extracts pose redundancy and f extracts time
redundancy. This leads to a representation of each frame zi

as xi in the shape subspace, pi in the pose space, ti ∈ J , and
finally i ∈ I:

I
f

R
2

g
R

m
h

S
∩ ∩ ∩ ∩

{i}n
1 {pi}

n
1 {xi}

n
1 {zi}

n
1

Each instance of our representation ψ has three component
parts: f forms a time signal in the pose space, g gives a pose

signal in the shape subspace, and the linear map h is our
shape signal in the shape space S.

3. Reconstruction from frames

The representation described in Section 2 can be used to cre-
ate deforming mesh sequences from scratch (see Section 4.4),
but it is likely to be most useful when applied to the recon-
struction of an existing deforming mesh sequence specified as
discrete frames in S . Converting a sequence to our representa-
tion makes it possible to apply a variety of editing, smoothing
and resampling operations (see Section 4). First, however, we
must be able to find the parameters of the signals f , g and h

from discrete frame samples {zi}
n
1 ⊂ S . Our ultimate goal is

to minimize
n

∑
i=1

‖zi −ψ(i)‖2 (2)

but the non-linear function g makes it very expensive to
search for this ideal solution directly. Instead we minimize
error in each of the three reconstruction steps separately, as
detailed in this section.

3.1. Constructing h

Our first goal is to find the shape signal parameters {h j}
m
1 ,

and the representation {xi}
n
1 ⊂ R

m of the frames in the shape

subspace, to minimize

n

∑
i=1

‖zi −h(xi)‖
2. (3)

For any h0, the H minimizing (3) is given by the closest
rank-m approximation to the offset frames {zi − h0}

n
1. If

these vectors are entered as the rows of a matrix Y ∈ R
n×d ,

then a singular value decomposition (SVD) gives Y = UDVT

and the closest rank-m approximation is given by the singular
vectors corresponding to the m largest singular values. That is,
with D ordered by singular value, H is defined as the leftmost
m columns of V. Since the singular vectors are orthogonal,
each vector xi is then simply HT (zi −h0). We choose h0 as
the mean 1

n ∑
n
i=1 zi, as the SVD then gives a principal compo-

nent analysis [Jol02] of the initial frames {zi}
n
1. Alexa and

Müller [AM00] pioneer this application of principal compo-
nent analysis to deforming mesh sequences.

3.2. Constructing g

Given the vectors {xi}
n
1, our next task is to find radial basis

function sites {s j}
l
1 and coefficients {g j}

l+2
0 , as well as pose-

space positions {pi}
n
1 for the n frames. In this reconstruction

step the error is

n

∑
i=1

‖xi −g(pi)‖
2. (4)

However, if h uses the construction described in Section 3.1,
then minimizing (4) is equivalent to minimizing

n

∑
i=1

‖zi −h(g(pi))‖
2,

which completely accounts for the contributions of g and h

to the overall error (2).

We choose the radial basis function as φ(r) = r2 logr, to
give g the properties of a thin-plate spline. By using a global
rather than compactly-supported function, we obtain good
properties when g is used for extrapolation (i.e. evaluated far
from the sites {s j}

l
1). Thin-plate splines also minimize the

thin-plate bending energy∫
R

2

(

∂2g

∂p1∂p1

)2

+2

(

∂2g

∂p1∂p2

)2

+

(

∂2g

∂p2∂p2

)2

dp (5)

where p = (p1, p2). Using this definition for φ therefore cre-
ates a pose manifold with guaranteed smoothness.

Assuming we have chosen {pi}
n
1 and {s j}

l
1, we can calcu-

late {g j}
l+2
0 by finding one QR decomposition and solving

a linear system of size n× l [Wah90]. The linear system is
dense, given our choice of φ as a non-local function, but not
too large as we expect to work with short sequences (see Sec-
tion 1), so the number of frames n is limited. As a result these
parameters of g can be found quickly (see Table 1) despite
the density of the linear system.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

T. J. Cashman & K. Hormann / A continuous representation for mesh sequences with separate time, pose and shape signals

p6

p7
p96 p97f (96.25) f (96.5) f (96.75)

Figure 3: A saddle in the pose signal created by a poor

choice of positions {pi}
n
1. We show pi marked in blue for four

frames, and the two parts of the time signal that interpolate

those positions. This layout in pose space forces a surface g

which gives an unnatural transition along the darkened part

of the time signal (sample evaluations ψ(t) are shown with

f (t) marked by red points). We avoid this by incorporating

user constraints into an MDS solution; Figure 5 shows a

representation of this sequence with a better choice for {pi}
n
1.

3.2.1. Choosing pose-space positions

Finding a thin-plate approximation that minimizes (4) de-
pends on choosing pose-space positions {pi}

n
1 at which to

evaluate g. This is not a straightforward task: essentially we
have a sampled curve in a high-dimensional space Rm, which
we want to incorporate into a surface. Furthermore, we want
the positions pi and p j to be close wherever xi and x j are
similar; otherwise g will not fulfil the goal of extracting pose
redundancy. This rules out the trivial solution, for example,
where the frames are positioned evenly along a single line.

The condition on proximity suggests that to find {pi}
n
1, we

should consider minimizing an energy of the form

n−1

∑
i=1

n

∑
j=i+1

(

‖pi −p j‖−‖xi −x j‖
)2

(6)

which compares all pairwise distances in the pose space with
the corresponding distances in the shape subspace. This is
exactly the stress energy minimized by multidimensional
scaling (MDS) [BG05]. However, MDS is inadequate if used
alone, since the pairwise comparison (6) takes no account of
the ordering between the frames; MDS finds positions for a
collection of point samples, not for a (discrete) curve. This
can lead to unwanted saddles in the pose signal: if four or
more poses are similar and are therefore correctly placed
close together by MDS minimizing (6), a surface interpolat-
ing the poses may give unnatural transitions between adjacent
frames (see Figure 3). Reconstruction error is not affected by
this problem, since the discrete frames are well reproduced
by minimizing the least-squares error (4). However, poor
continuous transitions between frames would limit the use-
fulness of the representation to applications like resampling
(Section 4.2).

To work around this limitation, we propose the addition of

user constraints to an MDS solution. This technique places a
human ‘in the loop’, allowing the user to make the semantic
decisions on which parts of the sequence should be judged as
similar for a particular application. Our system allows the user
to specify pose-space positions pi for some values of i, but
finds the remaining positions automatically by minimizing (6)
under the given constraints. The process is fast enough to give
real-time feedback to the user, who can therefore work in
collaboration with MDS to produce the desired configuration
(see accompanying video).

3.2.2. Selecting radial basis function sites

Once the pose-space positions have been set, the last task
before constructing g is to select sites for the radial basis func-
tion approximation. If l = n, a thin-plate spline interpolant

allows us to find a manifold where the error (4) is zero, by set-
ting each site si to the pose-space position pi for i = 1, . . . ,n.
Where there is pose redundancy to extract, we expect to have
l < n and therefore non-zero error, but this property motivates
us to choose {s j}

l
1 as a subset of {pi}

n
1. To do so, we cal-

culate an order in which frame positions are chosen as sites,
given by {σi}

n
1 as a permutation of {1, . . . ,n}. For a given l,

the selected sites are then taken from the first l indices of
the calculated ordering, giving s j = pσ j for j = 1, . . . , l. This
results in a nested sequence of reconstruction spaces as l

changes, where increasing l is guaranteed to reduce (4).

We choose to add sites where the error xi−g(pi) is greatest.
This heuristic leads to the following greedy algorithm for
calculating the required order [Fas07, Ch. 21]:

1. Compute a best-fit plane to the points {xi}
n
1. If an SVD is

used to compute H as described in Section 3.1, then the
spanning vectors of the plane are given by h1 and h2.

2. Set {σ j}
4
1 to be the indices of the four points with the

greatest distance to this best-fit plane.
3. For l = 4 to n−1;

• Calculate g using l sites, as given by {pσ j}
l
1,

• Let σl+1 be the index of the point with the greatest
error xi −g(pi) from the current approximation, ignor-
ing those frames which are already chosen for radial
basis function sites:

σl+1 = argmax
i /∈{σ j}l

1

(xi −g(pi)).

Note that in each step of this algorithm, we construct a
least-squares fit minimizing (4) for all frames, using a space
of radial basis functions centred on a subset of pose-space
positions. This distributes error more evenly across the recon-
structed frames than finding a thin-plate spline interpolant to
the selected subset [DB02].

3.3. Constructing f

To construct the representation (1), our one remaining task is
to find the parameters of f . Each frame is now represented

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

T. J. Cashman & K. Hormann / A continuous representation for mesh sequences with separate time, pose and shape signals

by its position pi in pose space, and this final stage replaces
these discrete points with a continuous spline approximation.
As explained at the start of this section, the error we minimize
here is

n

∑
i=1

‖pi − f (i)‖2 ≡
n

∑
i=1

‖pi − f̃ (ti)‖
2 (7)

as an approximation that leads to small, but not necessarily
minimal, values of the overall error (2). To compute the spline
fit, we must choose parameter values {ti}

n
1, knots {u j}

k+1
0 ,

and control points {f j}
k
1. As with the radial basis function ap-

proximation (Section 3.2), f is linear in the coefficients {f j}
k
1,

and so these can be found by solving an n× k linear sys-
tem [PT97]. However, f is a non-linear function of the pa-
rameter values and knots, and these must be chosen first.

For parametrization, Lee [Lee89] suggests setting the
parameter-space interval ti+1− ti as ‖pi+1−pi‖

α. We choose
α = 1

2 to give the ‘centripetal’ parametrization which usu-
ally yields the best results. Then for a given k, there are a
large variety of algorithms for selecting {u j}

k+1
0 from {ti}

n
1;

Cox et al. [CHK02] provide a good summary of avail-
able methods. We use the algorithm described by Piegl and
Tiller [PT97, Sec. 9.4.1], as this ensures that the Schoenberg-
Whitney [SW53] conditions are always satisfied for any
choice of k. Their method also degenerates to the interpo-
lation configuration ui+1 = ti (i = 1, . . . ,n) if k = n+2: the
setting for k which guarantees that the error (7) is zero.

3.4. Signal fidelity

Apart from the optional user constraints described in Sec-
tion 3.2.1, each of the reconstruction steps described above is
completely automatic, and depends only on a constant which
specifies the signal fidelity. The quality of the shape signal h is
determined by m, and the parameters of the signal are {h j}

m
0 .

The pose signal g is given by the parameters {g j}
l+2
0 and

{s j}
l
1, where quality is set by the constant l, and the accuracy

of the time signal f is controlled by k, with parameters {f j}
k
1,

{ti}
n
1 and {u j}

k+1
0 .

Each of the three signals includes interpolation as a special
case: if k−2= l =m+1= n, then we are guaranteed a perfect
reconstruction where (2) is zero. On the other hand, lower
bounds on these constants are k ≥ 4, l ≥ 3 and m ≥ 0, so there
is scope to store far less data if the resulting reconstruction
error is still acceptable.

By specifying a tolerance for error, it is also possible to
determine k, l and m automatically. These constants reflect
the nature of the dynamic geometry under consideration; for
example, the sequence shown in Figure 5 is more repetitive
than that in Figure 6, with l at 46% of n in the first case and
71% in the second. The complicated time signal in Figure 4
requires a higher value for k than that shown in Figure 1.
Finally the simple range of shapes used in Figure 8 leads to
the smallest value for m/n out of all the given examples.

Figure 4: Our representation reconstructing a billowing flag

in the deformation gradient shape space. The simulated mo-

tion of the flag creates a complicated time signal; the repeti-

tive effect of the wind is evident as consistent circular motion

in the pose space. Sample reconstructions ψ(i) are shown

with links to the corresponding positions f (i). This example

reconstructs 100 frames using k = 98, l = 100 and m = 79.

Time to find (ms)

Fig. S d k l m n f RBF g h

1 R
3V 25293 16 12 7 24 1 1 10 166

4 R
9F+3 51987 98 100 79 100 31 13 1295 7625

5 R
3V 11505 82 46 19 99 26 5 234 1326

7c R
9F+3 151590 16 12 7 24 1 6 57 135

6 R
3V 8712 155 144 42 204 239 39 5626 5127

Table 1: Computation times and constants for examples

in this paper, using an Intel Core i7 processor clocked at

2.67 GHz. Under ‘RBF’ we list the average time to find a

single radial basis function approximation; we also give the

time required to find g by iteratively computing approximants

as described in Section 3.2.2. The data given for Figure 7c

refers to our representation for the galloping horse sequence

with S = R
9F+3, before we replace the shape signal. For

details of the shape spaces S, see Section 5.

4. Applications

The continuous nature of our representation allows a rich set
of editing operations by modifying or replacing one signal
component, while leaving other parts of the representation
intact. This section introduces several possible editing appli-
cations, using the examples that we summarize in Table 1.
Our implementation uses OpenMesh [BSBK02] as a mesh
data structure, and Eigen [GJ∗11] and CHOLMOD [CDHR08]
for dense and sparse linear algebra respectively. CHOLMOD

is used only for shape spaces which involve solving sparse
linear systems (see Section 5); it has no role when using the
vertex-coordinate shape space S = R

3V .

4.1. Time-local editing

As the time signal f uses B-splines, which are locally-
supported, we can modify the time signal curve by editing
the control points {f j}

k
1 with the guarantee that only the lo-

cal region surrounding an edit will be affected. Furthermore
the smoothness of the pose signal, given by minimizing the
thin-plate energy (5), means that small modifications to the

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

T. J. Cashman & K. Hormann / A continuous representation for mesh sequences with separate time, pose and shape signals

(a) Original time signal. (b) New time signal with added
loop shown in red.

(c) Frames from the newly-added loop.

Figure 5: An example of an editing operation which is local

in time. To the time signal shown in (a) we add a loop, to

gain the new time signal shown in (b). This adds frames to

the deforming mesh sequence which blend smoothly with the

existing frames, while leaving unrelated parts of the sequence

unmodified. Here (k,n) = (82,99) before adding the loop,

and (97,118) afterwards, while l = 46 and m = 19.

spline control points result in correspondingly small changes
to the deforming mesh sequence.

Figure 5 shows an example time signal edit to add a new
section to the deforming mesh sequence which joins smoothly
to the existing frames. At all frames i where ti falls outside
of the support of the modified control points’ basis functions,
the edit has no affect and hence the sequence is unmodified.

4.2. Resampling

Besides modifying the time signal curve, it is also possible to
edit the rate of the time signal by leaving the curve unmodi-
fied, and changing only the positions from the curve at which
frames are sampled. This generates a new deforming mesh

sequence {ψ(τi)}
n′

1 by sampling ψ at the positions {τi}
n′

1 ,
where the new sequence has n′ frames, and n′ may be differ-
ent to n.

If the resulting sequence is played at the same rate as the
original, this has the effect of speeding up or slowing down
the sequence. In Figure 6, we show an example which sets the

positions {τi}
n′

1 to produce both fast- and slow-motion effects.
Alternatively, the resampling can be applied uniformly across
an entire deforming mesh sequence by setting τi = hi for
some h ∈ R+, and the resulting sequence could be played at
a rate 1/h, to perform frame rate conversion; an important
process for video [WZHT10] that has not previously been
available for deforming mesh sequences.

4.3. Shape signal editing

To reuse existing mesh sequences, Sumner and Popović intro-
duce deformation transfer [SP04], where the deformation of
a mesh in an existing sequence is transferred to a new model.
Baran et al. [BVGP09] generalize their technique to semantic

deformation transfer, where the user provides a set of exam-
ple matching poses, each one pairing a deformation of the
source mesh with a deformation of the target. We can apply
our representation to the same task by replacing the shape
signal but leaving the pose and time signals unmodified.

The input for this operation is identical to that for Baran
et al. [BVGP09]: we need an existing deforming mesh se-
quence {zi}

n
1 ⊂ S, and a set of examples {(q j,r j)}

m
0 ⊂

S×S′ that show the correspondence between the existing
shape space S and the replacement S′. In general S 6= S′, and
the new shape space may describe a mesh with completely
different connectivity. Like Baran et al., we expect both q0

and r0 to show the meshes in a reference pose.

To represent the existing sequence in terms of the pro-
vided examples, we simply use h0 = q0 and h j = q j −q0

(j = 1, . . . ,m) in place of the construction described in Sec-
tion 3.1. Since the vectors {h j}

m
1 obtained in this way are

not orthogonal, in general, we then need to solve the normal
equation

H
T

HX = H
T

Y
T

to find the least-squares solution for the shape coordi-
nates X = (x1, . . . ,xn). The pose and time signals can be
found from the {xi}

n
1 in the usual way described in Sec-

tions 3.2 and 3.3.

The final step that completes the deformation transfer is
to replace h0 with r0 and h j with r j − r0 for j = 1, . . . ,m.
This gives a new representation ψ′ : I → S′ that maps
to the replacement shape space S′ such that the example
shapes {q j}

m
0 are converted into their corresponding target

shapes {r j}
m
0 ⊂ S′. Figure 7 shows an example transfer of a

galloping sequence from a horse to an elephant using eight
examples (m = 7).

4.4. Dynamic geometry from scratch

Our representation can also use arbitrary time and pose sig-
nals, making it possible to design deforming mesh sequences
simply by editing the control points {f j}

k
1 and pose-space

positions {p j}
l
1. We show an example sequence created in

this way in Figure 8. For this application, there is no need
to use MDS as described in Section 3.2.1, but the pose sig-
nal can otherwise be constructed in the same way, including
the selection of radial basis function sites described in Sec-
tion 3.2.2. The time signal can be entirely user-specified by
combining the control points {f j}

k
1 with uniform knots u j = j

(for j = 0, . . . ,k+ 1) and uniform parameter values ti = hi

(i = 1, . . . ,n and h ∈ R+).

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

T. J. Cashman & K. Hormann / A continuous representation for mesh sequences with separate time, pose and shape signals

(a) Time signal, with positions
{ f (i)}n

1 marked.
(b) After resampling, showing
modified positions { f (τi)}n′

1 .
(c) Example frames ψ(i) (top) before resampling and (bottom) after resampling;
the corresponding positions in pose space f (i) are marked in red in (a) and (b).

Figure 6: An example of non-uniform resampling (Section 4.2) on a reconstructed sequence that shows a cow under elastic

motion. The time signal curve, shown in (a) and (b), has been resampled in (b) to slow down parts of the sequence where the cow

is lifted, and speed up sections where the cow drops to the ground. This leads to the new deforming mesh sequence shown in the

bottom half of (c). This sequence uses k = 155, l = 144, m = 42 and n′ = n = 204.

(a) Original deforming mesh sequence. (b) Deformation transfer using the vertex-
coordinate shape space S = R

3V .
(c) Deformation transfer using the deformation
gradient shape space S = R

9F+3.

Figure 7: An example of deformation transfer [BVGP09]; we transfer the animation shown in (a) to an elephant model, by

replacing the 8 components {h j}
m=7
0 of the shape signal but keeping the time and pose signals intact. This figure shows the

process for two different shape spaces: the result in (c) using the deformation gradient shape space avoids the linear-interpolation

artifacts shown in (b). Notable differences between the two results are highlighted. This example uses k = 16, l = 12 and m = 7.

(a) Time signal f in pose space (b) Frames ψ(i) from the resulting deforming mesh sequence

Figure 8: A deforming mesh sequence created from scratch by positioning facial expressions in pose space. Positions {pi}
9
1

are shown as open circles in (a), accompanied by the corresponding facial expression. The time signal f starts at a neutral

expression, loops three times through a smile, and finishes by moving towards a surprised expression. This leads to the deforming

mesh sequence shown in (b). Note that the four poses which are far from the curve f do not appear in the resulting sequence.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

T. J. Cashman & K. Hormann / A continuous representation for mesh sequences with separate time, pose and shape signals

5. Shape spaces

Our representation is designed to be applicable to a wide
range of shape spaces. However, we do need S to be a Eu-
clidean space, so that mesh shapes can be combined with the
normal Euclidean operators. This allows us to use all the tools
of linear algebra, but it rules out the space Kircher and Gar-
land [KG08] propose, as their mesh representation requires
specialized operators to combine quaternion rotations. The
shape space described by Kilian et al. [KMP07] is also not
a Euclidean space, and therefore not applicable. However, a
wide range of shape spaces do allow the use of Euclidean
operators, including:

• the vertex-coordinate shape space S = R
3V ,

• the deformation gradient [SP04] shape space S = R
9F+3,

which stores 3 rotation and 6 scale/shear parameters for
each of the F faces in the mesh, and a further 3 values to
resolve translational invariance,

• the shape space based on linear rotation-invariant coordi-
nates [LSLCO05], where S =R

3E+6, storing 3 parameters
for each of the E edges in the mesh, and a further 6 values
to resolve translational and rotational invariance,

• the shape space based on storing edge lengths and dihedral
angles used by Winkler et al. [WDAH10] and Fröhlich and
Botsch [FB11], where S = R

2E+6,
• the shape space developed by Baran et al. [BVGP09] using

patch-based linear rotation-invariant coordinates.

The choice of shape space can have a large impact on the
appearance of the time signal, the result of editing operations,
and the amount of data our representation requires. Most of
the examples in this paper have remained with the simplicity
of the vertex-coordinate shape space S = R

3V , showing that
this choice is sufficient for many practical applications. We
are often able to avoid the problems associated with large
interpolations in this space [KG08], since a deforming mesh
sequence is densely sampled in time, and we are typically
interested in evaluating the pose signal g only near a recon-
structed time signal f . Furthermore, since the pose signal
aims to build a meaningful surface of shapes, a linear path in
the pose space may follow typical poses more faithfully than
a linear path in the shape subspace.

However, for some applications, particularly when evaluat-
ing g far from the sites {s j}

l
1, or when specifying a pose sig-

nal with a very large separation between the positions {pi}
n
1,

artifacts can appear using the shape space S = R
3V , mo-

tivating the use of a higher-order shape space instead (see
Figure 7 for an example). The main cost of doing so is that
the reconstruction problems discussed in Section 3 require
the solution of larger linear systems, since the dimension d

of S is then greater than 3V . We also find that the fidelity
constants l and m usually need to be larger for a higher-order
shape space, possibly because of the additional redundancy
that is introduced by these representations.

6. Conclusion

The representation (1) allows deforming mesh sequences
to be modified and reused with a variety of time-coherent
techniques. We can evaluate ψ not only at the integers, but
at any t ∈ I, since ψ is a continuous curve in S which ap-
proximates the given discrete mesh frames. Decomposing the
dynamic data into three separate signals allows the flexibility
of modifying one part while keeping other signals intact.

One key to the editable nature of our representation is
the choice of a 2D pose space, and therefore a pose signal
surface. Future work could consider pose signal volumes, or
even manifolds of higher dimension. However, any gain in ex-
pressiveness would have to be balanced against the increased
difficulty, in higher dimensions, of editing and visualizing a
deforming mesh sequence in pose space.

A significant limitation to our system at present is the need
to incorporate user constraints to find satisfactory pose-space
positions {pi}

n
1. It is always possible to resolve the problem

illustrated in Figure 3, but it is sometimes necessary to add
many constraints, and it may not be clear where they should
be introduced. Unfortunately, addressing this problem is not
as simple as eliminating intersections; occasionally a time
signal which intersects itself is necessary or even desirable,
as long as the continuous transitions between frames remain
reasonable (see Figure 5 for an example). Future work may
be able to detect and react to the regions of negative Gaussian
curvature in the pose signal which are associated with this
defect, leading to a fully automatic reconstruction procedure.

Another limitation we introduced is in the number of
frames that our representation can handle. Although there is
no theoretical limit on duration, long sequences can be slower
to reconstruct and may lead to illegible time signals. How-
ever, our representation can always be used on subsections
of longer sequences; for time-local editing (Section 4.1), this
is sufficient. Future work could extend this idea by recon-
structing a long sequence, possibly with the aid of multi-scale
techniques, but displaying only a limited section of the time
signal. A user could then ‘scrub through’ the sequence until
the region of interest is displayed in the pose space.

Figure 8 shows that we can add additional shapes to the
pose space to use a pose signal in new contexts. It would
therefore be powerful to combine our representation with a
direct manipulation system, allowing the user to create new
shapes with existing techniques, and then add them directly
to the pose space for further time-coherent editing.

One final area for future work is an improved visualization
for a pose signal, without having to ‘explore’ by evaluating
the pose space at different positions. We envisage a user in-
terface which allows zooming and panning in the pose space,
while showing the pose signal evaluated at an adaptive grid
of points. It would also be advantageous to be able to modify
the view on each evaluated shape, by making a standard 3D
trackball interface apply to all the sampled shapes at once.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

T. J. Cashman & K. Hormann / A continuous representation for mesh sequences with separate time, pose and shape signals

Acknowledgements

This work was supported by the SNF under project number
200021-134639. We thank Robert Sumner for the horse, ele-
phant and face meshes (Figures 1, 7 and 8), Matthias Müller
for the cow sequence (Figure 6), and the Blender Foundation
(www.blender.org) for the sequence that appears in Figures 3
and 5 under a Creative Commons Attribution 3.0 License.

References

[AM00] ALEXA M., MÜLLER W.: Representing animations by
principal components. Comput. Graph. Forum 19, 3 (2000), 411–
418. 4

[ARL∗09] ALEXANDER O., ROGERS M., LAMBETH W., CHI-
ANG M., DEBEVEC P.: The Digital Emily project: photoreal fa-
cial modeling and animation. In ACM SIGGRAPH 2009 Courses

(2009), pp. #12:1–15. 2

[ASK∗05] ANGUELOV D., SRINIVASAN P., KOLLER D., THRUN

S., RODGERS J., DAVIS J.: SCAPE: Shape completion and
animation of people. ACM Trans. Graph. 24 (2005), 408–416. 2

[BG05] BORG I., GROENEN P. J. F.: Modern multidimensional

scaling: Theory and applications, second ed. Springer, 2005. 5

[BP07] BARAN I., POPOVIĆ J.: Automatic rigging and animation
of 3D characters. ACM Trans. Graph. 26 (2007), #72:1–8. 2

[BSBK02] BOTSCH M., STEINBERG S., BISCHOFF S., KOBBELT

L.: OpenMesh – a generic and efficient polygon mesh data struc-
ture. In OpenSG Symposium (2002). 6

[BVGP09] BARAN I., VLASIC D., GRINSPUN E., POPOVIĆ J.:
Semantic deformation transfer. ACM Trans. Graph. 28, 3 (2009),
#36:1–6. 2, 7, 8, 9

[CDHR08] CHEN Y., DAVIS T. A., HAGER W. W., RAJAMAN-
ICKAM S.: Algorithm 887: CHOLMOD, supernodal sparse
cholesky factorization and update/downdate. ACM Trans. Math.

Softw. 35 (2008), #22:1–14. 6

[CHK02] COX M., HARRIS P., KENWARD P.: Fixed- and free-
knot univariate least-squares data approximation by polynomial
splines. In Algorithms for Approximation IV (2002), Levesley J.,
Anderson I., Mason J. C., (Eds.), pp. 330–345. 6

[dAST∗08] DE AGUIAR E., STOLL C., THEOBALT C., AHMED

N., SEIDEL H.-P., THRUN S.: Performance capture from sparse
multi-view video. ACM Trans. Graph. 27, 3 (2008), #98:1–10. 1

[dATTS08] DE AGUIAR E., THEOBALT C., THRUN S., SEIDEL

H.-P.: Automatic conversion of mesh animations into skeleton-
based animations. Comput. Graph. Forum 27, 2 (2008), 389–397.
2

[dB01] DE BOOR C.: A Practical Guide to Splines, revised ed.,
vol. 27 of Applied Mathematical Sciences. Springer-Verlag, 2001.
3

[DB02] DONATO G., BELONGIE S.: Approximate thin plate
spline mappings. In Computer Vision – ECCV 2002, Heyden
A., Sparr G., Nielsen M., Johansen P., (Eds.), vol. 2352 of LNCS.
Springer, 2002, pp. 21–31. 5

[Fas07] FASSHAUER G. E.: Meshfree approximation methods with

MATLAB. World Scientific, 2007. 5

[FB11] FRÖHLICH S., BOTSCH M.: Example-driven deformations
based on discrete shells. Comput. Graph. Forum 30, 8 (2011),
2246–2257. 2, 9

[FC80] FRITSCH F. N., CARLSON R. E.: Monotone piecewise
cubic interpolation. SIAM J. Numer. Anal. 17, 2 (1980), 238–246.
4

[FRDC04] FAVREAU L., REVERET L., DEPRAZ C., CANI M.-
P.: Animal gaits from video. In Proceedings of the 2004 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation

(2004), pp. 277–286. 2

[GHF∗07] GOLDENTHAL R., HARMON D., FATTAL R.,
BERCOVIER M., GRINSPUN E.: Efficient simulation of inex-
tensible cloth. ACM Trans. Graph. 26 (2007), #49:1–7. 1

[GJ∗11] GUENNEBAUD G., JACOB B., ET AL.: Eigen version 3.
http://eigen.tuxfamily.org, 2011. 6

[Jol02] JOLLIFFE I. T.: Principal Component Analysis, second ed.
Springer Series in Statistics. Springer, 2002. 4

[JT05] JAMES D. L., TWIGG C. D.: Skinning mesh animations.
ACM Trans. Graph. 24, 3 (2005), 399–407. 2

[KG06] KIRCHER S., GARLAND M.: Editing arbitrarily deform-
ing surface animations. ACM Trans. Graph. 25 (2006), 1098–1107.
1, 2

[KG08] KIRCHER S., GARLAND M.: Free-form motion process-
ing. ACM Trans. Graph. 27, 2 (2008), #12:1–13. 2, 9

[KMP07] KILIAN M., MITRA N. J., POTTMANN H.: Geometric
modeling in shape space. ACM Trans. Graph. 26 (2007), #64:1–8.
2, 9

[KSO10] KAVAN L., SLOAN P.-P., O’SULLIVAN C.: Fast and
efficient skinning of animated meshes. Comput. Graph. Forum

29, 2 (2010), 327–336. 2

[LCF00] LEWIS J. P., CORDNER M., FONG N.: Pose space de-
formation: a unified approach to shape interpolation and skeleton-
driven deformation. In Proceedings of SIGGRAPH 2000 (2000),
Akeley K., (Ed.), pp. 165–172. 1, 2

[Lee89] LEE E. T. Y.: Choosing nodes in parametric curve inter-
polation. Comput.-Aided Des. 21, 6 (1989), 363–370. 6

[LSLCO05] LIPMAN Y., SORKINE O., LEVIN D., COHEN-OR

D.: Linear rotation-invariant coordinates for meshes. ACM Trans.

Graph. 24, 3 (2005), 479–487. 2, 9

[PT97] PIEGL L. A., TILLER W.: The NURBS Book. Springer,
1997. 4, 6

[SP04] SUMNER R. W., POPOVIĆ J.: Deformation transfer for
triangle meshes. ACM Trans. Graph. 23, 3 (2004), 399–405. 2, 7,
9

[SW53] SCHOENBERG I. J., WHITNEY A.: On Pólya frequency
functions. III. The positivity of translation determinants with an
application to the interpolation problem by spline curves. Trans.

Am. Math. Soc. 74, 2 (1953), 246–259. 6

[Wah90] WAHBA G.: Spline models for observational data, vol. 59
of CBMS-NSF Regional Conference series in applied mathematics.
Society for Industrial Mathematics, 1990. 3, 4

[WBLP11] WEISE T., BOUAZIZ S., LI H., PAULY M.: Realtime
performance-based facial animation. ACM Trans. Graph. 30

(2011), #77:1–10. 1

[WDAH10] WINKLER T., DRIESEBERG J., ALEXA M., HOR-
MANN K.: Multi-scale geometry interpolation. Comput. Graph.

Forum 29, 2 (2010), 309–318. 2, 9

[WZHT10] WANG C., ZHANG L., HE Y., TAN Y.: Frame rate
up-conversion using trilateral filtering. IEEE Trans. Circuits Syst.

Video Technol. 20, 6 (2010), 886–893. 7

[XZY∗07] XU W., ZHOU K., YU Y., TAN Q., PENG Q., GUO

B.: Gradient domain editing of deforming mesh sequences. ACM

Trans. Graph. 26 (2007), #84:1–10. 1, 2

[YYPM11] YANG Y.-L., YANG Y.-J., POTTMANN H., MITRA

N. J.: Shape space exploration of constrained meshes. ACM

Trans. Graph. 30 (2011), #124:1–12. 2

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

http://www.blender.org/
http://creativecommons.org/licenses/by/3.0/
http://eigen.tuxfamily.org

