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Abstract. Subdivision surfaces would be useful in a greater number of
applications if an arbitrary-degree, non-uniform scheme existed that was
a generalisation of NURBS. As a step towards building such a scheme,
we investigate non-uniform analogues of the Lane-Riesenfeld ‘refine and
smooth’ subdivision paradigm. We show that the assumptions made in
constructing such an analogue are critical, and conclude that Schaefer’s
global knot insertion algorithm is the most promising route for further
investigation in this area.

1 Background

NURBS have been an effective standard for representation of sculptured surfaces
in manufacture since the late 1970’s. Subdivision surfaces were also introduced
at the end of the 1970’s and have some significant advantages over NURBS. In
particular they do not require a rigidly rectangular control grid. Both are based
on the theory of B-splines and our current quad-grid subdivision surfaces can be
looked on as a generalisation of a subset of NURBS.

The generalisation could be as useful in manufacture as it is in animation,
where subdivision is now the de-facto standard. However, the aspects in which
subdivision is only a subset are regarded as important to manufacture, and any
new standard must be more compatible with the full generality of NURBS than
current subdivision surfaces.

Our target is therefore a subdivision extension of NURBS in all their gener-
ality:

– non-uniform,
– rational, and
– of general degree.

Of these, the second is straightforward. Subdivision control points can be given
weights and the process executed in projective space without any need for further
theory.

Non-uniformity (unequal knot intervals) is not hard for low degree. Some-
thing more ambitious, assigning knot intervals to every edge on the control poly-
hedron, not just to every strip of polyhedron faces, was done by Sederberg et
al. [10] for cubics and quadratics, and the linear case is trivial, but the handling



of general degree is necessary for a subdivision method to be a generalisation of
NURBS.

The work described here is an initial exploration of this target. We first
address the univariate case, which we expect to map readily into tensor product
surfaces. There is no point in making ad hoc rules for extraordinary vertices
without having that firm foundation to build on.

In the uniform case, subdivision schemes for general degree B-splines are
easily constructed and implemented using the Lane-Riesenfeld refine and smooth
paradigm [7]. Instead of computing the new vertices directly by applying large
stencils to the coarse polygon, a low degree refinement is first made locally, and
then a sequence of smoothings by small, local filter operations is applied. The
more smoothing steps, the higher the degree of the limit curve.

In the bivariate case, this approach gives efficiency as well as cleanness of
code. Applying k 2× 2 smoothing filters uses 4k multiplications per coordinate
per new vertex; applying 1

2k 3× 3 filters uses 4 1
2k. Applying a single k× k filter

takes k2 which is significantly more for large k.
The advantage is felt even more keenly when extraordinary vertices are in-

troduced. Designing high-degree stencils for each valency is a non-trivial task,
and designing rules for all possible combinations of extraordinary points within
a large stencil is not a sensible ambition.

Although we are not addressing extraordinary points yet, the knowledge that
we shall be looking at it in the future helps to steer the early work.

We want to formulate the refinement process for general degree
non-uniform B-spline subdivision in terms of a composite of steps
using small stencils. The archetype is the uniform refine and smooth approach.

We know exactly the complete subdivision matrices for general degree and
general knot vectors. Once it has been decided what new knots are to be inserted
(and this is a separate issue which we plan to address systematically), determin-
ing the new polygon is just a particular case of knot insertion. The algorithm
used to insert the new knots may affect our view of the problem but is otherwise
irrelevant, as the subdivision matrix is unique.

The question is how that wide-band matrix can be factorized into the narrow-
band factors which correspond to the small-stencil operations that we need. This
is the question addressed by the remainder of this paper.

1.1 Contents

After establishing some notation we start this exploration in Section 2, by looking
at the matrices for order k and k+2 in the middle of a long polygon with a non-
uniform knot-vector. This approach fails to find a factorisation in the general
case, so we consider the particular case of Bézier end conditions in Section 3.
This sub-problem is particularly important, because current subdivision schemes
make a choice between

– using control points outside the surface (which leads to the edge of the surface
not being particularly easily controlled), or



– using an ad hoc variation of the rules at the edge (which gives good control
of the position of the edge but no control of the first derivative across it, and
zero second derivative, leading to bad curvature plots).

Bézier end conditions would allow good control of both the edge itself and the
tangents across it, and are described elegantly in terms of having a fully mul-
tiple knot at the end. They therefore fall naturally into a non-uniform context.
However in this case, as in Section 2, we fail to find a suitable factorisation of
the relevant subdivision matrices.

We discuss the reasons for this failure in Section 4 and describe a different
approach from Schaefer and Goldman [4] which meets our original goals using
a blossoming approach. In Section 5, we apply this technique to the Bézier end
conditions of Section 3 to give a concrete example of a non-uniform subdivision
matrix expressed as the product of narrow-band factors. Finally, we draw some
conclusions in Section 6.

1.2 Notation

We will write τi for the ith knot of the original knot vector τ , and t2i for the
corresponding knot in the refined knot vector t (τi = t2i). ti at odd values of i
is the knot inserted between knots τ(i−1)/2 and τ(i+1)/2. As for all B-splines, we
require ti ≤ ti+1 for all i.

Let the subdivision matrix of order k (degree k−1) that transforms B-splines
on τ into B-splines on t be Sk. Knot insertion is simply a change of basis [8],
and if Bl,k,γ(x) is the lth B-spline basis function of order k on knot vector γ,
then Sk is the basis transformation matrix that gives the coordinates of each
Bj,k,τ (x) relative to the Bi,k,t(x):

Bj,k,τ (x) =
∑

i

Sk
ijBi,k,t(x) (1)

In application to subdivision, the coefficient that multiplies the jth control point
in contribution to the ith new control point is therefore Sk

ij . (The original de-
scription of the Oslo algorithm [2] uses the notation αjk(i) for Sk

ij .) Varying i
for a given j produces a mask, and varying j for a given i produces a stencil.

2 Factorising Non-Uniform Knot Insertions

Uniform subdivision generalises, in the non-uniform case, to knot insertion, first
published as the ‘Oslo algorithm’ by Cohen et al. [2], and independently as the
Boehm algorithm [1]. There has been little work so far, however, on generalising
Lane and Riesenfeld’s work [7] to non-uniform subdivision by varying smoother
mask coefficients in a similar way. Goldman et al. [5] present a construction
for knots in geometric series, but do not consider the general case. Warren [11]
considers a framework for non-uniform knot sequences, but limits knot vector



refinement to midpoint insertion, and Gregory et al. [6] derive results for a non-
uniform ‘corner cutting’ procedure. Neither of these approaches is based on B-
spline knot insertion, however, which is required for compatibility with NURBS.
In this paper, we consider two generalisations which are based on knot insertion:
our own non-uniform refine and smooth, and Schaefer’s algorithm [4].

2.1 Oslo knot insertion

We can find Sk in several equivalent ways. To begin with, since k = 1 gives a
piecewise constant B-spline, we can see that S1 for our τ and t is the matrix
which duplicates control points (the ‘refine’ step of Lane-Riesenfeld):




. . .
1 0
1 0
0 1
0 1

. . .




(2)

For k > 1, the Oslo algorithm [2] calculates the values that can be non-zero for
a row of Sk using a triangular scheme. The sum of the values in each row of Sk

is always 1, and each row is therefore ‘smeared out’ as k increases — echoing, in
a discrete way, the continuous convolution of B-spline basis functions. There is
a triangle generated by the Oslo algorithm for each row of Sk, with an apex at
each ‘1’ of S1.

2.2 Understanding uniform refine and smooth

We want to formulate the properties of a uniform refine and smooth factorisation
in terms of the knot insertion matrices Sk, and then generalise to a non-uniform
factorisation with similar properties. To do so, we need to look at the following
appealing property of the Lane-Riesenfeld algorithm.

– After d smoothing steps, the points are the control polygon for a uniform
B-spline of degree d which matches the B-spline of the same degree (with
knot intervals doubled) defined on the original polygon.

This property cannot be generalised in terms of constant knot vectors τ and t. To
see this, consider a single knot interval [τi τi+1]. The knot t2i+1 is inserted here
and the relevant part of S1 (for constant basis functions) is ( 1

1 ), duplicating the
control point which corresponds to the original interval. The result of smoothing
these values in any ratio is therefore to return the same original point. Linear
basis functions, however, have a support of two knot intervals, so within [τi τi+1]
there is only one new basis function and the relevant part of S2 is ( 1

2
1
2 ), taking

a mean of adjacent points.
This problem arises because where k is even, control points correspond to

knot values. Where k is odd, they are paired with knot intervals. We therefore



cannot hope to compare Sj with Sk in the non-uniform case if |j − k| is odd.
To do so, we would need to either change τ and t or violate symmetry.

Bearing this in mind, we might list properties of a uniform refine and smooth
factorisation as follows. We take θ = 1 + (k + 1 mod 2), so θ = 1 where k is odd,
and 2 where k is even.

A. For any k, there are smoothing matrices M θ, . . . , Mk−1 such that Sk =
Mk−1Mk−2 . . . M θSθ.

B. Furthermore, for each κ < k such that k−κ is even, Mκ−1 . . . MθSθ = Sκ.
C. Each M is a band matrix of bandwidth 2.
D. Each row of each M performs 1

2 , 1
2 averaging.

No factorisation for non-uniform knot insertion can hold all four of these
properties, so we are looking for a generalisation which maintains a chosen sub-
set. In particular, property A makes the factorisation useful and property C is
important for the benefits of locality discussed in Section 1. In Section 4, we
will consider Schaefer’s generalisation [4] of refine and smooth which holds just
these two of the four. In this section, we consider a non-uniform analogue of the
Lane-Riesenfeld approach which also maintains property B.

2.3 Our generalised refine and smooth

Since our non-uniform refine and smooth will not hold property D, we allow
each row Mk

i of the smoothing matrices to hold a different ratio. These ratios
may differ within the same matrix and between different smoothing matrices
— we only require that the weights in each row still sum to 1. Taking affine
combinations of points is necessary in order to retain invariance under solid-
body (and affine) transformations.

We can also consider the product of two smoothing matrices Mk+1Mk as
a single smoothing matrix which takes a weighted mean of three rows. If the
weights in the ith row of the smoother matrix that gives Sd+2 from Sd are αd

i ,
βd

i and 1− (αd
i + βd

i ), then we require

αd
i S

d
i + βd

i Sd
i+1 + (1− αd

i − βd
i )Sd

i+2 = Sd+2
i

i.e. αd
i (S

d
i − Sd

i+2) + βd
i (Sd

i+1 − Sd
i+2) = Sd+2

i − Sd
i+2

(3)

Or expressed as a system of equations (which must be satisfied for all j),

( αd
i βd

i )
(

Sd
i − Sd

i+2

Sd
i+1 − Sd

i+2

)
= (Sd+2

i − Sd
i+2). (4)

We only want to look at every second d. If k is even, d ∈ {2, 4, . . . , k} and if k is
odd, d ∈ {1, 3, . . . , k}. This means that the ‘refine’ step of our generalisation is
Sθ from property A. If the resulting systems of equations (4), one for each value
of j, has a solution for αd

i and βd
i for every i and relevant d, then we will say

that the knot vector refinement t of τ has a refine and smooth formulation.



2.4 Two stencils to consider

In order to characterise the behaviour of our refine and smooth factorisation,
we now need to establish the values of i we need to consider in the systems (4).
Each system sets up a correspondence between a set of four rows: three in Sd

and another in Sd+2. There is no need to examine two such sets if there is an
isomorphism between the two.

As our τ and t perform binary subdivision, there are only two types of
stencil appearing in each Sk, and there are therefore two differing sets of rows
to consider. At S1, the two groups of three rows, which are both smoothed to
obtain a row of S3, are

1 0
1 0
0 1

and
1 0
0 1
0 1

. (5)

Every other collection of three rows is isomorphic to one of these cases, where
the required mapping involves just a shift and subscript-rewriting. We can obtain
the row entries for both cases (5) using the Oslo algorithm [2] and check every
resulting linear system (4) to a given depth k.

The number of equations to be satisfied in a system (4) depends on the width
of the stencils in the relevant rows. These stencils grow wider with k, so we expect
the systems to become more constrained as k grows. If k is large enough, we may
require additional constraints on τ and t in order to satisfy the systems, as each
smoother has just two degrees of freedom.

2.5 Factorisable knot insertions

We now have a target factorisation which expresses a knot insertion matrix Sk as
the product of a refinement matrix and bk−1

2 c smoothing matrices. To establish
for which knot insertion cases this factorisation exists, we used MATLAB to
analyze the systems (4) in the two cases (5) and find that

– for k ≤ 5, our refine and smooth formulation exists for every possible knot
insertion.

– for k ≥ 6 (degree at least quintic), equations limit the possible configurations
for τ and t.

We can find an equation that relates knots in both τ and t, but the analysis
is more manageable when considering specific configurations for τ . For the rest
of this section we will be considering the case for k = 6, a quintic B-spline, where
we take τ to be uniform, and then a sequence in geometric series. The results
for these specific τ provide some insight into the general behaviour.

Knot insertion on a uniform knot vector. For a uniform knot vector, we
set τi = i. Instead of writing down a different equation for different positions,
we will give a single equation that characterises the constraints for a whole knot
vector. To do so, we write ri = (t2i+1 − τi)/(τi+1 − τi). Uniform τ then gives



ri = t2i+1 − i, and we find that our refine and smooth formulation requires for
every i

0 = 4r3
i − 3r2

i (ri−1 + 1 + ri+1)
+ 2ri(2ri−1 + 1 + ri−1ri+1)− ri−1ri+1 − 2ri−1

(6)

Figure 1 shows a contour plot of ri+1 in terms of ri−1 and ri. For τ and t
to have the format described in Section 1.2, we require 0 ≤ ri+1 ≤ 1. Figure
1 therefore shows the boundary for values of ri−1 and ri which lead to viable
values for ri+1. For a refined knot vector with more than 7 knots3, we must also
consider the equation that constrains ri, ri + 1 and ri + 2, which is identical to
(6) with i+1 for i. In a similar fashion, we can consider the effect of ri−1 and ri

on ri−2. The area of possible (ri−1, ri) values shrinks, the more knots there are
in t.
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Fig. 1: The value of ri+1 to produce a knot insertion into a uniform knot vector with
a refine and smooth formulation, when constrained by ri−1 and ri. The shaded region
gives 0 ≤ ri+1 ≤ 1 and therefore shows the valid values for (ri−1, ri).

We already know, though, that ri = 1
2 for all i is a refine and smooth-

factorisable knot insertion, irrespective of the length of t. This is uniform knot
insertion into a uniform knot vector — exactly Lane-Riesenfeld subdivision [7].
In fact, it is simple to verify from (6) that ri = v for all i is also a refine
3 3 inserted knots and the 4 original uniform knots



and smooth knot insertion that preserves property B, for any 0 ≤ v ≤ 1. We
conjecture that this will be true for a uniform knot vector at any degree.

Knot insertion on a knot vector in geometric series. We now turn to
a knot vector in geometric series with ratio 2, by setting τi = 2i. We can still
completely characterise the constraints on t using an equation in terms of the
ratios ri (now ri = (t2i+1/2i)−1), but the equation to be satisfied is not as neat
as (6):

0 = 4369r3
i − 3r2

i (91ri−1 − 334 + 1456ri+1)
+ ri(22ri−1 + 5− 1008ri+1 + 272ri−1ri+1)− 16ri−1ri+1 − 5ri−1

(7)
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Fig. 2: The value of ri−1 to produce a knot insertion into a geometric series knot vector
with a refine and smooth formulation, when constrained by ri and ri+1

Figure 2 shows the contour plot of ri−1 in terms of ri and ri+1, as this puts far
greater constraints on the possible values of (ri, ri+1) than the value of ri+2 does.
We can see that in the geometric case, the two degrees of freedom in assigning
(ri, ri+1) are nearly reduced to just one, as little deviation is possible away from
the solution ri = ri+1. However, in a surprising similarity with the uniform case,
we can still show that ri = v for all i is a refine and smooth knot insertion, for
any 0 ≤ v ≤ 1, and regardless of the length of t.

This is immediately useful when inserting into a geometric series knot vector,
as we can choose v such that the refined knot vector is also in geometric series



(here, we would have v =
√

2− 1). The refined knot vector can then be mapped
onto the original using just scales and shifts in parameter, and so it is possible to
subdivide the refined knot vector (using refine and smooth) with any 0 ≤ v ≤ 1
as well. This was first shown by Goldman and Warren [5].

3 Bézier End Conditions

These constraints on factorisable knot insertions make our refine and smooth
formulation unusable in practice. We consider the general problem again in Sec-
tion 4, but first we look at the same approach in the light of a different context;
that of Bézier end conditions.

If the first and last knots in an otherwise uniform knot-vector have multi-
plicity of at least the degree of the B-spline, the ends of the curve behave in a
very similar way to those of a Bézier curve. The end control point determines
the position of the end of the curve, the end two determine the first derivative,
the end three the second derivative and so on. In fact if there are no internal
knots, the curve is a Bézier curve. Because this scenario is just a particular case
of the general non-uniform B-spline, all the properties of affine invariance and
containment in the convex hull are retained.

(a) Ad hoc end with zero curvature (b) Truncated polygon

(c) Bézier end-condition

Fig. 3: Cubic limit curves with their control polygons

This nice behaviour should be contrasted with the ways in which subdivision
curves are usually terminated;



– truncation, where the only control points after one refinement are those
which are well-defined by the same rules as are used in the interior of the
curve. The polygon gets shorter at every refinement, and the end of the
limit curve can only be precisely positioned by solving a linear system to
determine where the outer control points should be.

– The usual ad hoc fixup, where control points for which the general rules can-
not be applied because their antecedents do not exist, are given special rules.
In particular in the cubic case, only the end control point after refinement is
undefined, and it is typically positioned at the end point before refinement.
This enables easy positioning of the end of the limit curve, but results in the
second derivative being zero there.

We would like to have a systematic approach which can be used to either
build explicit subdivision matrices for Bézier end conditions, or, hopefully, to be
just a particular case within the refine and smooth paradigm.

3.1 Systematic development

We are looking at setting, for example, τi = 0 for i ≤ 0 and τi = 2i, ti = i for
i ≥ 1. Examples of the resulting Sk are given for k = 2 . . . 5 in Fig. 4, and a
method for computation of these specific Sk is described in [3].

Linear, k = 2

1

2

266664
2
1 1

2
1 1

. . .

377775
Quadratic, k = 3

1

4

2666666664
4
2 2

3 1
1 3

3 1
1 3

. . .

3777777775
Cubic, k = 4

1

16

2666666664
16
8 8

12 4
3 11 2

8 8
2 12 2

. . .

3777777775

Quartic, k = 5

1

48

26666666666664

48
24 24

36 12
9 33 6

20 25 3
4 29 15

15 30 3
3 30 15

. . .

37777777777775
Fig. 4: The knot insertion matrices Sk for k = 2 . . . 5 and Bézier end conditions



In the uniform case (with cyclic data from a closed polygon) we can determine
Sk+1 from Sk merely by multiplying by the circulant smoothing matrix




. . .
1 1

1 1
1 1

. . .




We are interested in seeing whether we can derive Sk+1 from Sk in a similar
manner in the Bézier end condition case. For the reasons discussed in Section
1, we would still like the matrix that multiplies Sk to have a narrow band. In
order to derive this multiplier, we observe three interesting properties from the
examples in Fig. 4:

1. that the top left k×k square of Sk is identical to the top left corner of Sk+1

(remember the global scaling factor on each matrix).
2. that beyond the (k − 1)th column the matrix is regular.
3. that beyond the (2k − 4)th row the matrix is regular.

The interesting questions are

– whether these matrices can be determined systematically other than by car-
rying out the full knot insertion process for each degree.

– whether the refine and smooth paradigm, which is so elegant for the im-
plementation of high degree uniform B-splines as subdivision curves, can be
extended to cover this case.

Now if Sk+1 = MSk we would expect to be able to derive M from the
product Sk+1(Sk)

−1
, but this is not straightforward. Each of the Sks is about

twice as high as it is wide, and therefore inversion is not a well defined process.
In fact M has about twice the number of elements as the number of conditions
we are trying to satisfy, and so it is heavily underdetermined.

We are actually looking for a sparse structure, and just using, for exam-
ple, the Penrose pseudo-inverse does not give the sparsity that would make the
factorisation useful.

Property 1, above, suggests that the top left corner of M should be a unit
matrix, and that the remainder of the first k−1 rows should be zero. Properties 2
and 3 suggest that beyond the (2k−4)th row, the pattern of uniform smoothing
should be present. The question is what happens in between. We look at a couple
of example cases.

Quadratic to Cubic2666666664
16
8 8

12 4

3 11 2
8 8
2 12 2

. . .

3777777775 =

2666666664
4

4
4

−1 2 −1 2 2
2 2

2
. . .

3777777775

2666666664
4
2 2

3 1

1 3
3 1
1 3

. . .

3777777775



Cubic to Quartic26666666666664

48
24 24

36 12
9 33 6

20 25 3
4 29 15

15 30 3
3 30 15

. . .

37777777777775

=
1

8

26666666666664

24
24

24
24

45 −90 65 −20 12 12
9 −18 13 −4 12 12

12 12
12

. . .

37777777777775

26666666666664

16
8 8

12 4
3 11 2

8 8
2 12 2

8 8
2 12 2

. . .

37777777777775

3.2 The need for a different approach

For Bézier end conditions, the matrix M by which we multiply the order k
subdivision matrix to get the order k + 1 subdivision matrix does not appear
to have a derivable narrow band in the region where the two kinds of regularity
meet. These M matrices are therefore performing non-local operations, and so
are not useful in the way described in Section 1.

For the property-B-preserving general case explored in Section 2, the result is
even worse. Although we can enforce local smoothing operations (property C), we
must pay for the privilege on two counts. Firstly, we create knot dependencies;
in the quintic case, positioning two inserted knots determines every other inserted
knot. Secondly, the resulting structure is restricted; not all knot insertions are
factorisable in this way.

We want the position of inserted knots to be a design decision, influenced by
factors such as convergence to uniformity. Instead we have a system where the
knot insertion machinery prescribes the position of inserted knots, and this is
not a viable route for further investigation.

4 Schaefer’s Knot Insertion Algorithm

The work of Goldman and Schaefer [4] throws new light on these results by
showing the impact of retaining property B described in Section 2. In this section,



we describe Schaefer’s knot insertion algorithm, which constructs an analogue of
the Lane-Riesenfeld algorithm for arbitrary knot vectors without suffering from
the restrictions, loss of locality or knot dependencies seen in Sections 2 and 3.
The algorithm achieves this by seeking to maintain only properties A and C of
uniform refine and smooth in the non-uniform context.

Schaefer’s algorithm has a direct blossoming [9] proof and derivation. It is
best illustrated using diagrams of the following format (this example is for a
quadratic spline):

f(α, t2)

f(t1, t2) f(t2, t3)
�
�
��

A
A
AK which we abbreviate as

α t2

t1 t2 t2 t3

�
�
��

A
A
AK

This diagram represents the affine combination of blossoms

f(α, t2) =
t3 − α

t3 − t1
f(t1, t2) +

α− t1
t3 − t1

f(t2, t3) (8)

We recall that B-spline control points are given by blossoms of the form
f(τi, . . . , τi+k−2) for adjacent knots. Within this scheme, linear Lane-Riesenfeld
subdivision is represented by the diagram

. . .
0 0 1 1

. . .
�
�
��

A
A
AK

�
�
��

A
A
AK

�
�
��

A
A
AK

0 1
2 1

Blossoms are repeated at the bottom level of the diagram, as duplicating
control points is the first step in Lane-Riesenfeld refine and smooth. The fol-
lowing diagram subsequently employs two smoothing steps, for quadratic Lane-
Riesenfeld subdivision:

. . .

0 1 0 1 1 2 1 2

. . .

�
�
��

A
A
AK

�
�
��

A
A
AK

�
�
��

A
A
AK

0 1 1 1 1 2
�
�
��

A
A
AK

�
�
��

A
A
AK

1
2 1 1 1 1

2

At the top level of the diagram, blossoms are produced with adjacent knots
in a refined knot vector, with half the spacing of the original knots.

In both the linear and quadratic cases, Lane-Riesenfeld subdivision can be
extended to non-uniform knot vectors simply by substituting the non-uniform
values into the blossom diagrams above. For degree greater than quadratic, how-



ever, it becomes hard to prove properties of Lane-Riesenfeld refine and smooth
with these diagrams. Schaefer’s knot insertion, by contrast, can be readily proved
with blossoming diagrams for arbitrary degree. This is the diagram which rep-
resents Schaefer’s knot insertion for quadratics:

. . .

τ0 τ1 τ0 τ1 τ1 τ2 τ1 τ2

. . .

�
�
��

A
A
AK

�
�
��

A
A
AK

�
�
��

A
A
AK

τ0 τ1 t1 τ1 τ1 τ2

�
�
��

A
A
AK

�
�
��

A
A
AK

t1 τ1 τ1 t3

There are several important properties of Schaefer’s knot insertion factorisa-
tion:

– Knots are inserted “as soon as possible”. The Lane-Riesenfeld algorithm cal-
culates all the required points in the final smoothing step, whereas Schaefer’s
algorithm calculates half the points in the penultimate smoothing, and the
remaining half in the final step.

– Half of the affine combinations in any given row simply select one of the
blossoms from the row below. In this sense, Schaefer’s knot insertion is faster
than Lane-Riesenfeld, as it only performs half the work.

– Schaefer’s knot insertion does not specialise to the Lane-Riesenfeld construc-
tion in the case where knot spacings are uniform. Goldman [4] presents two
algorithms for cubic knot insertion which do have this property, but have
not been extended to general degree.

– The central blossom value in the above diagram could equally have been
τ1 t3, and Schaefer’s algorithm makes an arbitrary choice between these two
asymmetric options.

A final property of Schaefer’s algorithm, which is attractive for the sake of
understanding, is that the diagram representing the cubic algorithm is readily
derived from the quadratic diagram by simply appending blossom arguments.
To make this clear, here is the diagram for the cubic case:
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5 A Factorisation for Bézier End Conditions

We can now apply Schaefer’s algorithm from Section 4 to the Bézier end condi-
tions considered in Section 3. This illustrates that Schaefer’s algorithm provides
a framework for implementing subdivision curves and surfaces, with Bézier end
conditions, using a refine and smooth method. Here we provide the factorisations
for linear, quadratic and cubic curves. Since Schaefer’s algorithm does not reduce
to Lane-Riesenfeld for uniform knots, the smoothing matrices do not compute
arithmetic means in the regular regions.
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Figure 5 shows this factorisation in one direction of a tensor-product appli-
cation of Schaefer’s algorithm. The orthogonal direction uses the factorisation
for uniform subdivision.

(a) Initial mesh (b) Smoothed once

(c) Smoothed twice (d) Refined mesh

Fig. 5: A non-uniform bicubic subdivision step using Schaefer’s algorithm. The left-
hand edge has a Bézier end condition

6 Conclusions

– A refine and smooth factorisation of knot insertion matrices is useful for im-
plementation, and may prove a useful step towards non-uniform subdivision
schemes of general degree.

– The definition of “refine and smooth factorisation” can make a marked dif-
ference to what is possible and what the factorisation looks like.

– Schaefer’s algorithm performs non-uniform knot insertion for any degree, us-
ing a refine and smooth factorisation, and is easily derived using blossoming.
The factorisation may prove useful conceptually as well as in implementa-
tion, and merits further investigation.
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