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Chapter 1

Introduction

1.1 Background

Let G ⊂ SL3(C) be a finite subgroup and X the quotient space C3/G. Nakamura

made a study of G-clusters, the G-invariant subschemes of dimension 0 whose

coordinate ring with the induced G-action is the regular representation Vreg of G.

He introduced the scheme G-Hilb, which parametrises all G-clusters and showed

[Nak00] that, in the case of G abelian, it is a crepant resolution of C3/G. He

conjectured that the same holds for the non-abelian case.

Craw and Reid [CR02] introduced an alternative explicit calculation of G-

Hilb C3 and, in his thesis [Cra01], Craw introduced the concept of G-constellation

as a generalisation of G-cluster. A G-constellation is a G-equivariant Artinian

coherent sheaf whose global sections form the regular representation of G. In

particular, the structure sheaf of any G-cluster is a G-constellation.

G-constellations can be interpreted in terms of representations of the McKay

quiver of G. This allows for the use of an earlier result of King [Kin94] on GIT

construction of moduli spaces of quiver representations to introduce the stability

conditions known as θ-stability on G-constellations and to construct their moduli

spaces Mθ. In a quiver-theoretic context, Kronheimer [Kro89] and Sardo-Infirri

[SI96a], [SI96b] have already considered these moduli spaces and have studied the

chamber structure in the space Π of stability parameters θ, where all values of θ

in the same chamber yield the same Mθ. Bridgeland, King and Reid [BKR01] use

derived category methods to show that G-Hilb is a crepant resolution of X for

any finite G ⊂ SL3(C). Their method can be used to show that, for any chamber
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in Π, Mθ is a crepant resolution. However it yields little information about either

the structure of the chamber space or the geometry of the Mθ.

Craw in his thesis conjectured that every projective crepant resolution of

X can be realised as a moduli space Mθ of θ-stable G-constellations for some

chamber in Π. A recent paper by Craw and Ishii [CI02] proves this for all abelian

G ⊂ SL3(C).

This thesis divides thematically into two major parts. Chapters 2 to 5, treat

the classification of natural families of G-constellations that a given resolution

can parametrise. Chapter 6 works towards establishing the existence of a simple

family of G-constellations on a given resolution.

1.2 Generically natural families

Rather than constructing a resolution as a moduli space of G-constellations, we

take an arbitrary (not necessarily projective or crepant) resolution ofX and study

what families of G-constellations it can parametrise.

Let G be any finite abelian subgroup of GLn(C), X be a quotient scheme

Cn/G and Y be a resolution of X.

Y
π

  @
@@

@@
@@

@ Cn

q

}}||
||

||
||

X

Let R denote the coordinate ring C[x1, . . . , xn] of Cn. A (G,R)-module is a

G-representation V together with a G-equivariant action of R. The categories

of finite length G-equivariant coherent sheaves on Cn and of (G,R)-modules are

equivalent and we choose to work in the latter category. So by G-constellation

we shall usually mean a (G,R)-module, whose underlying G-representation is the

regular representation Vreg. In the most naive sense, a family of G-constellations

parametrised by Y is a locally free sheaf F of OY -modules, equipped with equiv-

ariant G and R actions, whose fibre F|p (the pullback of F to a point scheme

p ↪→ Y ) at any point p of Y is a G-constellation.

In Chapter 2 we develop a criterion, which, out of all the possible families
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of G-constellations, picks out the geometrically natural families, in which the G-

constellation F|p, parametrised by a point p of Y in F , is geometrically related to

p itself. The families satisfying this criterion (Definition 2.4) we call generically

natural families or gnat-families, for short.

For an example of the kind of geometric relation between p and F|p which

we might want, consider the support of a G-constellation F|p, viewed as a G-

equivariant finite length sheaf on Cn. The support is a finite union of G-orbits.

We show (Lemma 2.6) that, in any gnat-family F , the set-theoretic support

of a G-constellation F|p, parametrised by a point p ∈ Y , is precisely the orbit

q−1(π(p)) in C3. In particular, any free orbit Z of G is a G-cluster and by

dimension considerations its structure sheaf OZ is the only G-constellation whose

support is the support of Z. On the other hand, if U ⊂ X is any open set such

that G acts freely on q−1(U), then q∗(OCn)|U is a natural family of G-clusters

parametrised by U . We show (Lemma 2.6) that restricted to π−1(U) any gnat-

family is isomorphic (up to tensoring up by a G-invariant line-bundle) to the

natural family π∗(q∗(OCn)).

It turns out that the naturality criterion we develop can be reduced to merely

asking for F to agree with the natural family π∗(q∗(OCn)) generically, i.e. for their

stalks at the generic point of Y to be isomorphic as G, R and K(Y ) modules.

Hence the name gnat-family. We then show (Proposition 2.5) that indeed any

family F which satisfies this requirement on its stalk at the generic point of Y

has all the desired properties of geometrical naturality: the support of the G-

constellation F|p parametrised by p ∈ Y is indeed q−1(π(p)) and F agrees with

π∗q∗OCn wherever G acts freely. Moreover, F can be G, R and OY equivariantly

embedded into the generic stalk of π∗q∗OCn : the constant sheaf K(Cn) on Y .

Now for abelian G, any family of G-constellations is a direct sum of invertible

G-eigensheaves. Therefore any gnat-family F splits into a direct sum of invertible

OY -submodules of K(Cn).

In Chapter 3 we extend the construction of Cartier divisors on Y , as global

sections of K∗(Y )/O∗
Y , by defining a G-Cartier divisor to be a global section of

K∗
G(Cn)/O∗

Y , where K∗
G(Cn) is the group of all nonzero G-homogeneous rational

functions on Cn. And just in a same way that a Cartier divisor corresponds

to an invertible sub-OY -module of K(Y ), a G-Cartier divisor corresponds to an

invertible sub-OY -module of K(Cn).

7



To make a link with Weil divisors, we extend a valuation at a prime divisor

from K(Y ) to K∗
G(Cn) and show this is a natural notion. We then define G-Weil

divisors (Definition 3.5) as a subset of Q-Weil divisors on Y , in such a way as to

have the correspondence between G-Weil and G-Cartier divisors in place when

Y is smooth.

In Chapter 4 (Propositions 4.2 and 4.3) we take a detour to translate some

of the concepts introduced in Chapter 3 into the language of toric geometry

used to describe toric resolutions of X. Toric resolutions make for good explicit

calculations on Y and in Example 4.1 we introduce Y on which all of the examples

in Chapters 4 and 5 are calculated: a single toric flop of G-Hilb, where G is the

cyclic subgroup of GL3(C) of order 8 traditionally denoted 1
8
(1, 2, 5).

In Chapter 5 we return to gnat-families. Let F be any gnat-family, χ any

character of G and Fχ a corresponding eigensheaf. Inclusion into K(Cn) as a

(G,R)-submodule of its generic stalk induces an inclusion of Fχ into K(Cn) and

hence defines a G-Cartier divisor and consequently a G-Weil divisor Dχ.

Conversely, given a set {Dχ}χ∈G∨ , where G∨ is a character group Hom(G,C∗)

and eachDχ is a χ-Weil divisor, we could ask when isOY -submodule
⊕

χ∈G∨ L(−Dχ)

of K(Cn) a gnat-family. We show in Proposition 5.5 that this is equivalent to the

condition that for any G-homogeneous f ∈ R, the Weil divisor

Dχ + (f)−Dχρ(f)

is effective, where ρ(f) ∈ G∨ is the homogeneous weight of f and (f) the principal

G-Weil divisor of f . This condition can be thought of as demanding that the

action of R on
⊕
L(−Dχ) by multiplication in K(Cn) is everywhere regular on Y .

It suffices to check the effectiveness of the divisor above with f = xi for each of the

basic monomials xi, so we establish a 1-to-1 correspondence between isomorphism

classes of gnat-families and sets {Dχ}χ∈G∨ of G-Weil divisors satisfying a finite

number of inequalities.

It is usual in moduli problems to consider families up to equivalence, namely

twisting by a line bundle. We show that any equivalence class of gnat-families

contains a unique family with Dχ0 = 0 in the corresponding divisor set, where χ0

is the trivial character. We say that a gnat-family is normalisedif it satisfiesDχ0 =

0. We then define maximal shift divisors {Mχ}χ∈G∨ (Definition 5.18), show
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that Fmax = ⊕(−Mχ) is a normalised gnat-family (Lemma 5.19) and then show

(Proposition 5.20) that Fmax provides a bound on all normalised gnat-families.

Specifically, for any normalised gnat-family, we prove that the corresponding G-

Weil divisor set {Dχ} satisfies

Mχ ≥ Dχ ≥ −Mχ−1

In particular, this implies that the number of equivalence classes is finite,

since the result proved in Corollary 3.14 implies that the only nonzero summands

of Mχ are the exceptional divisors and the birational transforms in Y of images

in X of coordinate strata xi = 0 of X.

Thus we obtain the following classification theorem (Theorem 5.30):

Theorem (Classification). Let G be a finite abelian subgroup of GLn(C), X the

quotient of Cn by the action of G and Y a resolution of X. Then every gnat-

family on Y , up to isomorphism, is of the form
⊕

χ∈G∨ L(−Dχ), where each Dχ

is a χ-Weil divisor and the set {Dχ} satisfies the inequalities

Dχ + (f)−Dχρ(f) ≥ 0 ∀ χ ∈ G∨, G-homogeneous f ∈ R

Here ρ(f) ∈ G∨ is the homogeneous weight of f . Conversely for any such set

{Dχ},
⊕
L(−Dχ) is a gnat-family.

Moreover, each equivalence class of gnat-families has precisely one family with

Dχ0 = 0. The divisor set {Dχ} corresponding to such a family satisfies the

inequalities

Mχ ≥ Dχ ≥ −Mχ−1

where {Mχ} is a fixed divisor set depending only on G and Y . In particular, the

number of equivalence classes of families is finite.

1.3 Orthonormal Families of G-Constellations

In Chapter 6, we turn our attention to the case G ⊂ SL3(C) and Y a crepant

resolution of X. In case when gnat-family F is orthonormal(i.e. orthogonal
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and simple, see Definition 6.1), we explain in 6.1 that a minor modification of

the machinery of [BKR01] allows to establish a derived category equivalence

D(Y )
∼−→ DG(C3)

of bounded derived categories of coherent sheaves on Y and G-equivariant coher-

ent sheaves on C3.

Craw and Ishii proved in [CI02] that every projective crepant resolution of

X is realised as a moduli space Mθ of θ-stable G-constellations. It is easy to

show that, for any θ, the tautological family of θ-stable G-constellations on Mθ

is orthonormal. Thus for any projective crepant resolution Y of X, one of the

gnat-families on Y is orthonormal. We ask (Question 6.2) that the same is also

true for nonprojective crepant resolutions of X.

As a first step towards answering Question 6.2, we study simplicity of gnat-

families on a given crepant resolution Y of X.

First, for any G-constellation V , we define (Definition 6.3) a subgraph ΓV of

the McKay quiver of G with the following property: V is simple if and only if

ΓV is connected. This was first introduced by Craw and Ishii in [CI02], Section

10.2. Then, in Sections 6.2 and 6.3, we prove that for any gnat-family F ΓF|p
stays constant as p ∈ Y varies along any given orbit of the torus T , the quotient

by G of the maximal torus of SL3(C) containing G. Thus, we define ΓF ,σ to be

ΓFp for any p on Sσ, the orbit of T which corresponds to a cone σ in the toric

fan of Y .

Therefore to show that a given F is simple it suffices to show that Γσ is

connected for every orbit Sσ of T in Y . Note that for the open orbit S0 this is

trivial, as the restriction of F to S0 is a family of G-clusters, and the structure

sheaf of any G-cluster is generated as an R-module by its χ0-eigensheaf and is

hence simple.

In Section 6.4, we summarise the embedding of the McKay quiver of G into a

real 2-torus TG first introduced by Reid in [Rei97]. We shall rely heavily on the

topological properties of TG, so in Section 6.5, we describe how the McKay quiver

of G provides a CW-complex structure T on TG. Then in Sections 6.6 and 6.8

we explain how various numerical data defining the family F can be described in

terms of chains and cochains in chain complex CT• of the CW complex T , and set
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up the necessary formalities to do homology and cohomology calculations on TG.

In Section 6.7, we prove (Corollary 6.35) that for any F and any codimension

1 orbit Sσ in the fan of Y , the graph ΓF ,σ is connected. Thus any gnat-family F
is simple along all codimension 1 orbits. Moreover, in Proposition 6.40 we prove

that graph ΓF ,σ uniquely determines the codimension 1 orbit Sσ.

In Section 6.9, we show (Corollary 6.62) that if ΓF ,σ is disconnected for some

codimension 2 orbit Sσ, then F can be modified to produce another gnat-family

F ′, such that ΓF ′,σ is connected. Finally, we demonstrate in Corollary 6.64 that

for the gnat-family Fmax =
⊕
L(−Mχ) produced by maximal shift divisors Mχ

and for any codimension 2 orbit Sσ graph ΓFmax,σ is connected. Thus, for any

Y there exists at least one gnat-family which is simple along all codimension 2

orbits.

In Section 6.10, we prove the main theorem of Chapter 6:

Theorem (Theorem 6.83). Let G be a finite abelian subgroup of SL3(C). Let Y be

any crepant toric resolution of X = C3/G. Let F =
⊕
L(−Dχ) be a gnat-family

on Y . Let σ = 〈ei, ej, ek〉 be any three-dimensional cone in the fan of Y .

Then there exists an algorithm which modifies F until it produces a new gnat-

family F ′ which is simple restricted to Aσ.

Finally, in Section 6.12 we give a concrete example, for the group

G = 1
6
(1, 1, 4) ⊕ 1

2
(1, 0, 1), of a non-projective crepant resolution Y and a

gnat-family which is (globally) simple on Y .
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Chapter 2

Generically natural families

2.1 G-Constellations and Families

Let G be a finite abelian group (possibly containing quasi-reflections) and let

Vgiv be an n-dimensional faithful representation of G. We identify the symmetric

algebra S(Vgiv
∨) with the coordinate ring R of Cn via a choice of such an isomor-

phism that the induced action of G on Cn is diagonal. By the dual action of G

on R we shall mean the left action given by

g · f(v) = f(g−1 · v) for all v ∈ Cn. (2.1)

Corresponding to the inclusion RG ⊂ R of the subring of G-invariant functions

we have the quotient map q : Cn → X, where X = Spec RG is the quotient

space. This space is generally singular. So we are typically interested in taking

resolutions π : Y → X of it.

Y
π

  @
@@

@@
@@

@ Cn

q

}}||
||

||
||

X

We aim to study ways in which Y can parametrise families of G-constellations.

Definition 2.1 ([CI02]). A G-constellation is a G-equivariant coherent sheaf

F on Cn such that H0(F) is isomorphic as a C[G]-module to the regular repre-

sentation Vreg.
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Of course as F is coherent, it is uniquely determined by the module H0(F)

via the associated sheaf •̃ construction ([Har77], p.110). The actions of G and R

on F are entirely determined by their induced actions on H0(F). We shall adopt

this more algebraic point of view, and consider the following class of objects:

Definition 2.2. A (G,R)-module is a C[G]-module V together with an equiv-

ariant R-action, that is

g · (f · v) = (g · f) · (g · v) (2.2)

must hold for all v ∈ V, g ∈ G and all f ∈ R.

A morphism of (G,R)-modules is a G and R equivariant linear map of the

underlying vector spaces.

The functors •̃ and H0(•) provide an equivalence between the categories of

finite length coherent G-equivariant sheaves on Cn and of (G,R)-modules, thus

we can can use both concepts interchangeably.

Any R-action on V is defined by an element of HomC(R ⊗C V, V ). As R =

S(Vgiv
∨) it is sufficient to consider restrictions to HomC(Vgiv

∨ ⊗ V, V ). The con-

dition (2.2) is precisely equivalent to asking for this homomorphism to be G-

equivariant.

Conversely, α ∈ HomG(Vgiv
∨ ⊗ V, V ) defines an R-action on V if and only if

it satisfies

α(v1 ⊗ α(v2 ⊗ v)) = α(v2 ⊗ α(v1 ⊗ v)) (2.3)

Thus we see that there exists a one-to-one correspondence between all the

(G,R)-modules with an underlying C[G]-module V and the elements of ZR,G ⊆
HomG(Vgiv

∨ ⊗ V, V ) satisfying the commutator conditions (2.3).

Further, it can be seen that theR-structures of two isomorphic (G,R)-modules

on V differ by conjugation by an element of AutG(V ). Therefore we have a

one-to-one correspondence between isomorphism classes of (G,R)-modules with

underlying C[G]-module V and the orbits of AutG(V ) in ZR,G.

Definition 2.3. A family of (G,R)-modules parametrised by a scheme S

is a locally free sheaf F of OS-modules with G and R acting by OS-linear endo-
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morphisms, so that

g · (f · s) = (g · f) · (g · s) (2.4)

for all g ∈ G, f ∈ R and any local section s of F .

We shall say that two families F and F ′ are equivalent if there exists an

invertible sheaf L on S such that F is (G,R)-equivariantly isomorphic to F ′⊗L.

We shall call F a family of G-constellations if its fibre F|p at any point

p ∈ Y is a G-constellation, in a sense that, as a (G,R)-module the underlying

C[G]-module is the regular representation. To obtain, from such an F , a family of

G-constellations in the sense of sheaves on Cn, we may apply the •̃ construction

relative to S, yielding a coherent OS×Cn-module UF , which is flat over S because

F is a locally free OS module. For any point p ∈ Y , the restriction of UF to

{p}×Cn is a G-equivariant coherent sheaf on Cn which is precisely the associated

sheaf of the (G,R)-module F|p.

2.2 Naturality criterion

Any sheaf F with a G-action must split into G-eigensheaves, which are locally free

if F is. In particular, we see that for an abelian G any family of G-constellations

must split as ⊕
χ∈G∨

Lχ

where G acts on each invertible sheaf Lχ by the character χ ∈ G∨. Recall that

G∨ is the character group Hom(G,C∗).

Any free G-orbit Z ⊂ Cn is a G-cluster, its coordinate ring H0(OZ) a G-

constellation. Considering H0(OZ) as the fibre of q∗OCn at x = q(Z) ∈ X, we

see that over any U ⊂ X such that G acts freely on q−1(U), we have a natural

family of G-constellations (q∗OCn)|U . Consequently, we have a natural family

(π∗q∗OCn)|q−1(U) of G-constellations on π−1(U) ⊂ Y .

The generic stalk of π∗q∗OCn is K(Y )⊗K(X) K(Cn) where the K(X) acts on

K(Y ) via the homomorphism πgen : K(X)
∼−→ K(Y ) induced by the morphism

π. We now proceed to single out a class of families of G-constellations on Y ,

which agree with the natural family π∗q∗OCn generically. Note that although
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π∗q∗OCn is not a family of G-constellations on the whole of Y , it is a family of

G-constellations on an open set of Y and hence this notion is well-defined.

Definition 2.4. Let π : Y → X = Cn/G be a birational morphism. Let pY de-

note the generic point of Y . A generically natural family (or gnat-family

for short) across Y is a family of G-constellations parametrised by Y for

which there exists a G, R and K(Y )-equivariant isomorphism

F|pY

∼−→ (π∗q∗OCn)pY
(2.5)

We now show that any family which agrees with the natural one generically

possesses several other important naturality properties.

Proposition 2.5. Let π : Y → X be a birational morphism and let F be a family

of G-constellations on Y . Then the following are equivalent:

1. F is a gnat-family.

2. F can be G, R and OY -equivariantly embedded into K(Cn), viewed as a

constant sheaf of OY and (G,R)-modules on Y . The action of OY on

K(Cn) is determined by the isomorphism K(X) ' K(Y ) induced by the

birational morphism π.

3. For any open U ⊆ Y , s ∈ F(U) and f ∈ RG we have

f · s = fs (2.6)

where on the left-hand side f acts as an element of R and on the right-hand

side as a section of OY , via the inclusion π−1OX ↪→ OY .

4. For any open U ⊂ X such that G acts freely on q−1U ,

F|π−1U ' π∗q∗OCn|π−1U ⊗ L (2.7)

for some invertible sheaf L on π−1U .

Before tackling this proposition, we prove a useful lemma, which provides a

nice geometrical interpretation of the condition (2.6).
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Lemma 2.6. Let F be a family of G-constellations on Y satisfying (2.6). Then

for any p ∈ Y we have a scheme-theoretic inclusion

SuppF|p ⊆ q−1π(p) (2.8)

where SuppF|p is the support of the corresponding G-equivariant coherent sheaf

on Cn.

Moreover, set-theoretically we have equality. Further, if G acts freely on

q−1(p), we have

F|p ' (π∗q∗OCn)|p

as G-constellations.

Proof. Given an arbitrary G-constellation V , the support of V as a G-equivariant

coherent sheaf on Cn is the vanishing set of the ideal AnnR V ⊂ R. On the other

hand, q−1π(p) is the vanishing of the ideal in R generated by mπp ∈ RG. So

scheme-theoretically (2.8) is equivalent to

AnnRG k(πp) ⊂ AnnRF ⊗OY
k(p)

which follows immediately from (2.6).

To show the set-theoretic equality, we observe from (2.2) that the ideal AnnRFp

is G-invariant, and so, set-theoretically SuppF|p is a union of G-orbits in Cn. But

(2.8) now implies that it is contained in a single orbit: the closed points of q−1π(p).

Therefore we have equality.

For the last bit, we observe that F|p is a finite length sheaf on Cn and so splits

as a direct sum ⊕
x∈SuppF|p

(F|p)|x

of its fibres at each closed point in its support. But as G acts freely on q−1π(p),

the size of the orbit is |G|. Since this is also the dimension of F|p, each (F|p)|x
must be 1-dimensional and hence

F|p =
⊕

x∈q−1π(p)

(OCn)|x ' (π∗q∗OCn)|p

16



Proof of Proposition 2.5. 4⇒ 1 is obtained by considering the restriction of the

isomorphism (2.7) to stalks at pY .

1 ⇔ 2: consider the sheaf F ⊗OY
K(Y ). On any open U where F is a free

OY -module, F ⊗OY
K(Y ) is the constant sheaf FpY

for which we have the G, R

and K(Y )-equivariant isomorphism (2.5) to the constant sheaf K(Cn). A sheaf

constant on an open cover must be constant globally as Y is irreducible. Now

the natural map F ↪→ F ⊗K(Y ) becomes the required embedding.

For 2 ⇒ 3 it is sufficient to prove that (2.6) holds for constant sheaf K(Cn).

On the LHS of (2.6) the action of RG is induced by inclusion RG ↪→ R→ K(Cn).

On the RHS, we first embed RG into K(Y ) by

RG ↪→ K(X)
πgen−−→ K(Y )

and then consider K(Cn) to be K(Y )-module via

K(Y )
π−1
gen−−→ K(X) ↪→ K(Cn)

Thus the actions of RG on both sides of (2.6) are both simply the multiplication

in K(Cn).

So we are left with proving 3⇒ 4.

We begin with a local version: if p ∈ π−1(U) ⊂ Y , then Fp ' (π∗q∗OCn)p.

That is the stalks at p are (G,R)-equivariantly isomorphic.

Now (π∗q∗OCn)p (which we can write as R⊗RG OY,p) is a free OY,p-module of

rank |G|. This is becauseG acting freely on q−1π(p) implies that the quotient map

q is flat and |G|-to-one at π(p). Fp is also a free OY,p-module of rank |G|, because

F is a family of G-constellations. Therefore we can consider the determinant of

any (G,R)-equivariant OY,p-morphism between the two, and it would suffice to

find a morphism whose determinant is invertible.

Consider the map θ : (π∗q∗OCn)p → Fp defined by

m⊗ f → m.(fs0) m ∈ R, f ∈ OY,p (2.9)

where s0 is a fixed choice of any OY,p-generator of the χ0-eigenspace of Fp.

This map is a well-defined OY,p-module map, that is, it descends from the

set-theoretic product R ×OY,p to the tensor product, precisely because both Fp
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and R ⊗ OY,p satisfy (2.6). It is G-equivariant because 1 7→ s0 ensures that χ0-

eigenspace maps to χ0-eigenspace and (2.2) forces the rest. Finally not only θ is

defined to be R-action equivariant, but the reader can verify that it is the unique

element of Hom(G,R)(R ⊗OY,p,Fp) which maps 1 to s0. Note that in particular,

this shows that

Hom(G,R)(R⊗OY,p,Fp) ' (Fp)χ0 ' OY,p (†)

θ is a (G,R)-equivariant morphism. It descends to the (G,R)-equivariant mor-

phism

θ : (π∗q∗OCn)|p → F|p

on fibres. Similarly to (†),

Hom(G,R)((π
∗q∗OCn)|p,Fp) ' C;

i.e. all (G,R)-equivariant morphisms between the two are scalar multiples of each

other. Since by Lemma 2.6, the two fibres are (G,R)-equivariantly isomorphic,

we have that unless θ is a zero map, it is an isomorphism. But it maps [1] to

[s0], and the latter can not be 0 by the choice of s0. So det θ 6= 0 implying that

det θ ∈ O∗
Y,p, as required.

The isomorphisms on stalks give isomorphisms θi : R ⊗RG OUi
→ F|Ui

on an

open cover {Ui} of U , as both sheaves are locally free and of finite rank. Then

on each intersection Ui ∩Uj, θi ◦ θ−1
j is a (G,R)-automorphism of R⊗RG OUi∩Uj

.

Any such, by an argument identical to (†), is a multiplication by an element of

O∗
Ui∩Uj

,which concludes the proof.

From now on, we shall concern ourselves only with those families of G-

constellations which are generically natural.
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Chapter 3

Line bundles and G-Cartier

divisors

3.1 Valuations of G-homogeneous functions

As we deal with families of G-constellations which are subsheaves of K(Cn),

it would be useful to have a language similar to that of the Cartier divisors

to describe the invertible sub-OY -modules of K(Cn) with nontrivial G-action.

In this section we extend the familiar construction of Cartier divisors using the

larger group of nonzero G-homogeneous rational functions, which we shall denote

by K∗
G(Cn), instead of the group of nonzero invariant rational functions K∗(Y ).

Definition 3.1. We shall say that a rational function f ∈ K(Cn) isG-homogeneous

of weight χ ∈ G∨ if such that

g · f = χ(g−1)f for all g ∈ G (3.1)

We denote by Kχ(Cn) the subset of K(Cn) of G-homogeneous elements of

a specific weight χ and by the KG(Cn) the subset of K(Cn)) of all the G-

homogeneous elements. We shall use Rχ and RG to mean R ∩ Kχ(Cn) and

R ∩KG(Cn) respectively.

The choice of a sign in this definition is motivated as follows: we want a

function p ∈ R to be G-homogeneous of weight χ ∈ G∨ if p(g · v) = χ(g)p(v) for

any g ∈ G and v ∈ Cn. E.g. the usual concept of a homogeneous polynomial,
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whose degree, an integer number, is precisely its weight as a character of C∗ acting

diagonally on Cn. In view of (2.1), this means we must have χ(g−1) instead of

χ(g) in (3.1).

Now consider K∗
G(Cn), the invertible elements of KG(Cn). Using the fact

that K(Y ) = K(X) = K(Cn)G, we have a short exact sequence of multiplicative

groups:

1→ K∗(Y )→ K∗
G(Cn)→ G∨ → 1 (3.2)

What makes this enlargement of K∗(Y ) useful is that we can still define a valu-

ation of a G-homogeneous rational function at a prime Weil divisor.

Definition 3.2. Let D ⊂ Y be a prime Weil divisor on Y . Given any f ∈
K∗

G(Cn), we choose any n ∈ Z such that fn is invariant, i.e. fn ∈ K(Y ). For

instance, n = |G|. Then we define

vD(f) =
1

n
vD(fn) ∈ Q (3.3)

where vD(fn) is the ordinary valuation of fn in the local ring OD,Y of the generic

point of D. This is well defined since for any g ∈ K(Y ), we have vD(gk) = kvD(g).

In what follows, we write

{q} = q − [q]

for the fractional part of q ∈ Q. Generally, the valuations defined above are

Q-valued. However, if f and g in K∗
G(Cn) are both χ-homogeneous, then f/g is

G-invariant and hence for any Weil divisor D on Y , vD(f)−vD(g) ∈ Z. Therefore

the fractional part of vD(f) is independent of the choice of f in K∗
χ(Cn).

Definition 3.3. For any prime divisor P on Y , we define v(P, χ) to be the

number {vP (f)} ∈ Q ∩ [0, 1), where f is any element of K∗
χ(Cn).

3.2 G-Cartier and G-Weil divisors

We can now replicate, almost word-for-word, the definitions in [Har77], pp. 140–

141.
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Definition 3.4. A G-Cartier divisor on Y is a global section of the sheaf of

multiplicative groups K∗
G(Cn)/O∗

Y , i.e. the quotient of the constant sheaf K∗
G(Cn)

on Y by the sheaf O∗
Y of invertible regular functions.

As usual, such a section can be described by a choice of an open cover {Ui} of

Y and functions {fi} ⊆ K∗
G(Cn) such that fi/fj ∈ Γ(Ui ∩Uj,O∗

Y ). Observe that,

as their ratios are invariant, the fi must all be homogeneous of the same weight

χ ∈ G∨. In this case, we say that the divisor is χ-Cartier.

As with ordinary Cartier divisors, a G-Cartier divisor is principal if it lies

in the image of the natural map K∗
G(Cn) → K∗

G(Cn)/O∗
Y and two divisors are

linearly equivalent if their difference is principal.

However when defining the corresponding enlargement of the group of Weil

divisors, we have to be a little bit careful.

Definition 3.5. A χ-Weil divisor on Y is a finite sum
∑
qiDi (where qi ∈ Q)

of prime Weil divisors on Y such that

qi − v(Di, χ) ∈ Z (3.4)

for all i.

We shall further use the term G-Weil divisor to refer to all χ-divisors for

any χ ∈ G∨.

Definition 3.6. For any f ∈ K∗
G(Cn), we define the principal G-Weil divisor

of f to be

div(f) =
∑

vP (f)P

with the sum taken over all prime Weil divisors P on Y . This sum is finite as

f |G| is a regular function on Y and hence only has non-zero valuations at finitely

many prime divisors.

Given any χ, χ′ ∈ G∨, we can see that, for any prime divisor D,

v(D,χ) + v(D,χ′)− v(D,χχ′) ∈ Z

as it is equal to the valuation atD of an invariant function. Hence G-Weil divisors
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form an additive group. We define two G-Weil divisors to be linearly equivalent

if their difference is principal and a divisor
∑
qiDi to be effective if all qi ≥ 0.

Recall ([Har77], Proposition 6.11) that there is an injective homomorphism

from the group of Cartier divisors to the group of Weil divisors which is an

isomorphism when Y is smooth. The definition extends naturally to an injective

homomorphism from the group of G-Cartier divisors to the group of G-Weil

divisors, but some care needs to be taken to show that it is surjective when Y is

smooth.

Definition 3.7. Define a map φ from the group of G-Cartier divisors to the

group of G-Weil divisors on Y by

{(fi, Ui)} 7→
∑

kDD

where the sum is taken over all prime Weil divisors D on Y and kD = vD(fi) for

any fi such that Ui ∩ D is not empty. Once again the sum is finite, as each fi

has nonzero valuation only on finitely many prime Weil divisors.

Proposition 3.8. Let φ be the injective homomorphism defined above. If Y is

smooth, then φ is an isomorphism.

Proof. We need surjectivity. So suppose we have a χ-Weil divisor D on Y . Take

any f ∈ K∗
χ(Cn). Then D − (f) is an ordinary Weil divisor and as Y is smooth,

it has a Cartier divisor {(Ui, gi)} corresponding to it as before. Then {(Ui, gif)}
is the χ-Cartier divisor which φ maps to D.

The point of introducing G-Cartier divisors is that they correspond to in-

vertible sheaves which carry a G-action in the same way that ordinary Cartier

divisors correspond to the ordinary invertible sheaves.

Indeed considerD, the χ-Cartier divisor on Y specified by a collection {(Ui, fi)}
where Ui form an open cover of Y and fi ∈ K∗

χ(Cn). We define an invertible sheaf

L(D) on Y as the sub-OY -module of K(Cn) generated by f−1
i on Ui. Observe

that we have an action of G on L(D), restricted from the one on K(Cn), and it

acts on every section by the character χ.

Proposition 3.9. The map D → L(D) gives an isomorphism between the group

G-Cl of G-Cartier divisors up to linear equivalence and the group G-Pic of in-

vertible G-sheaves on Y .
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Proof. A standard argument from [Har77], Corollary 6.15, shows that it is an

injective homomorphism. To show that it is an isomorphism, we need to be able

to embed any invertible G-sheaf L where G acts by some χ ∈ G∨ as a sub-OY -

module into K(Cn).

Given such L, we consider the sheaf L⊗OY
K(Y ). On every open set Ui where

L is trivial, it is G-equivariantly isomorphic to the constant sheaf Kχ(Cn). On

an irreducible scheme a sheaf constant on an open cover is constant itself, so as

Y is irreducible we have L ⊗OY
K(Y ) ' Kχ(Cn) and a particular choice of this

isomorphism gives the necessary embedding as

L → L⊗OY
K(Y ) ' Kχ(Cn) ⊂ K(Cn)

3.3 Ramification of the quotient map

A curious thing about G-divisors and valuations of G-homogeneous functions is

the fact that on the quotient space X every prime Weil divisor is a principal

divisor of some G-homogeneous function. In particular, every G-Weil divisor is

G-Cartier.

Proposition 3.10. Let P be a prime Weil divisor on X. Then there exists an

f ∈ R∗
G such that P = div f , that is

vD(f) =

1, when D = P

0, when D 6= P

for any prime divisor D on Y .

Proof. Let IP ⊂ RG be the prime ideal of height 1 corresponding to P . Consider

the ring extension RG ⊆ R. By a classical result of Emmy Noether ([Ben94],

Theorem 1.3.1), this extension is integral. This then implies ([Mat86], Theorem

9.3) that there exists a prime ideal I ′ of height 1 in R lying over IP , that is

IP = I ′ ∩RG and that every other prime ideal lying over IP is conjugate to I ′ by

an element of G. As R is an UFD, every prime ideal of height one is principal

and so there exists some y′ ∈ R such that IP = (y′) ∩RG.
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So take g0 = 1, g1, . . . , gk ∈ G to be such that the principal ideals (y′), (g1 ·y′),
. . . , (gk · y′) are all the distinct prime ideals lying over IP . Then we claim that

y =
∏
gi · y′ is a G-homogeneous function and that IP = (y) ∩ RG. Indeed,

(h · y) =
⋂

((hgi) · y′). The ideals ((hgi) · y′) are all distinct prime ideals lying

over IP and therefore

(h · y) =
⋂

((hgi) · y′) =
⋂

(gi · y′) = (y)

which implies h · y ∈ C∗y. For the second claim, observe that IP = gi · IP =

(gi · y′) ∩RG for all i. Consequently IP = (
⋂

(gi · y′)) ∩RG = (y) ∩RG.

Thus we have IP = (y) ∩ RG. Note that (y) is the vanishing ideal of the

preimage of P in Cn. Now let k be the ramification index of the valuation ring ex-

tension RG
IP
⊂ R(y). Then for any w ∈ K(Cn)G we have vP (w) = 1

k
v(y)(w), which

immediately extends to the Q-valued valuation vP (w) of any G-homogeneous

w ∈ K∗
G(Cn). In particular, we see that vP (y) = 1

k
. Now take any other prime

divisor D on Y . We have ID = (u)∩RG for some prime u ∈ R. If now vD(y) 6= 0,

then as y is regular we have y ∈ (u) and so gi · y′ ∈ (u) for some i. Then

(u) = (gi · y) and D = P .

Now taking f = yk finishes the proof.

In the course of the proof of Proposition 3.10, we see that the valuations of

G-homogeneous functions are actually noninteger only at ramification divisors of

q. We now contemplate along which actual divisors the ramification can occur.

Proposition 3.11. There are only finitely many prime divisors P on X with

ramification index greater than 1. More precisely, if we write the ideal of each

such P as (y)∩RG for y ∈ R∗
G as in Proposition 3.10, then we will have at most

one y of weight χ for each character χ ∈ G∨.

Explicitly, the ramification can only occur along the images of coordinate

hyper-planes (x1), . . . , (xn) of Cn and in the case of G ⊂ SLn(C) ramification

never occurs at all.

Proof. For each character χ ∈ G∨ fix a G-homogeneous function fχ ∈ R of weight

χ. We further demand that it is minimal such, in a sense that no element of RG

other than 1 divides it. We shall now show that ramification could only occur
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along one of the (fχ) ∩ RG and only when fχ is the unique function satisfying

these conditions.

To see it, take any prime divisor P on X. Write IP = (y) ∩ RG for y ∈ R∗
G

as in Proposition 3.10. Unless fχ ∈ (y), v(y)(fχ) = 0 and hence v(y)(
y
fχ

) = 1 and

so there is no ramification along P . But if fχ ∈ (y) then minimality condition

forces fχ = y.

Explicitly, when G is abelian we know that the character map ρ : Zn → G∨

is surjective (see Section 4.1, (4.2)). Given a character χ ∈ G, there exists m ∈ Zn

such that xm =
∏
xmi

i is G-homogeneous of weight χ. Then above implies that

ramification can only occur along (y) ∩RG if y is monomial. But recalling proof

of Proposition 3.10, y =
∏
gi.y

′ where y′ is prime. This implies y′ must be one

of the basic monomials xi.

In the case G ⊂ SLn(C), we know that x1 . . . xn is invariant. As we also have

v(xi)(x1 . . . xn) = 1, there is also no ramification along any of (xi) ∩RG.

Propositions 3.10 and 3.11 have an immediate corollary in terms of the num-

bers v(P, χ), introduced in the Definition 3.3, on X.

Corollary 3.12. For any P , a prime Weil divisor on X which is not a rami-

fication divisor of q, and χ ∈ G∨, there exists a monomial m ∈ Rχ such that

vP (m) = 0. Consequently

v(P, χ) = 0

Proof. Unless P = (xi)∩RG, one can take m to be any monomial in R of weight

χ. If P = (xi)∩RG, then, unless there is ramification at P , there exists a p ∈ RG

whose valuation at (xi) in Cn is 1. Note that we can take p to be monomial by

considering its monomial summands. Then p
xi
∈ Rχ−1 and vP ( p

xi
) = 0, so we can

take m = p
xi

|G|−1.

Let us look at some concrete examples of the ramification occurring and not

occurring.

Example 3.13. First consider G = 1
3
(1, 2), the group of 3rd roots of unity
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embedded into SL2(C) by

ξ 7→

(
ξ1

ξ2

)
If we write χk for the character of G given by ξ 7→ ξk, then x is of weight χ1 and

y of weight χ2.

Let P be the image in X of the hyper-plane x = 0. It is a prime Weil divisor

(but not a Cartier one) given by (x3, xy) = (x)∩RG. v(x)(xy) = 1, so there is no

ramification. And consequently, vP (x) = v(x)(x) = 1 as x3 = (xy)3y−3.

Now take G = 1
4
(1, 2), the group of 4th roots of unity embedded into SL2(C)

by

ξ 7→

(
ξ1

ξ2

)
Then the divisor P is given by (x4, x2y). So we see that index of ramification is

v(x)(x
2y) = 2 and correspondingly vP (x) = 1

2
v(x)(x) = 1

2
.

Corollary 3.14. Let π : Y → X be a resolution and P a prime Weil divisor on

Y , which is neither exceptional nor a proper transform of a ramification divisor

of q in X. Then for any χ ∈ G∨ there exists m ∈ Rχ such that vP (m) = 0,

implying

v(P, χ) = 0

Proof. This is a straightforward consequence of Corollary 3.12. Consider P ′ =

π(P ), the image of P in X. Unless P is exceptional, P ′ is a prime Weil divisor

on X. Its generic point lies in the open set on which the resolution map is

an isomorphism, which implies that for any f ∈ K(Cn), vP (f) = vP ′(f). Now

Corollary 3.12 gives the result.
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Chapter 4

Toric Picture

4.1 Basics

In this section we give a brief exposition of the necessary toric background and

then translate some of the results of Chapter 3 into the toric language. A more

thorough exposition of toric geometry in general can be found in [Dan78] and of

toric geometry as related to quotient singularities in [IR96].

The group G is abelian, so consider the maximal torus (C∗)n ⊂ GLn(C)

containing G. We have an exact sequence of abelian groups:

0 // G // (C∗)n // T // 0 (4.1)

where T is the quotient torus which acts on the quotient space X.

By applying Hom(•,C∗) to (4.1) we obtain an exact sequence

0 //M // Zn
ρ // G∨ // 0 (4.2)

where Zn is thought of as the lattice of exponents of Laurent monomials. Thus

given m = (k1, . . . , kn) ∈ Zn we write xm for xk1
1 . . . xkn

n . M is the sublattice in

Zn of (exponents of) G-invariant Laurent monomials.

Note that each Laurent monomial is a G-homogeneous function and ρ is pre-

cisely the weight map, that is xm(g.v) = ρ(m)(g) xm(v) for any v ∈ Cn.
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Applying Hom(•,Z) to (4.2) we obtain

0 // (Zn)∨ // L // Ext1(G∨,Z) // 0

where we write (Zn)∨ for the dual lattice of Zn, L for the dual of M and note

that Hom(G∨,Z) = 0 as G∨ is finite and Ext1(Zn,Z) = 0 as Zn is free.

Thus we see that L/(Zn)∨ ' Ext1(G∨,Z). Taking an injective resolution of Z

0→ Z→ Q→ Q/Z→ 0

we see that Ext1(G∨,Z) ' Hom(G∨,Q/Z) as Hom(G∨,Q) = 0. Now a choice

of a map Q/Z → C∗ which is equivalent to a simultaneous choice of a primitive

m-th root of unity for all m ∈ N, would give us

L/(Zn)∨ ' Hom(G∨,C∗) = G

allowing us to identify points in L/(Zn)∨ with elements of G.

Tautologically, we have a Z-valued pairing between M and L. This pairing

extends naturally to a Q-valued pairing between Zn and L. For the purposes of

the exposition to follow, it will be convenient to think of elements of L as functions

on the monomial lattices M ↪→ Zn. Henceforth, given l ∈ L and m ∈ Zn, we

write l(m) to denote the pairing above.

For any cone τ ⊂ Zn ⊗ R, τ ∩M and τ ∩ Zn are abelian semigroups. We

write C[τ ∩M ] and C[τ ∩Zn] for the C-algebras generated by the corresponding

Laurent monomials. Whenever we omit the lattice, writing C[τ ], it should be

assumed that the lattice is M .

Let L+ be the dual of the cone M+ of regular Laurent monomials in M

(similarly, we use Zn
+ and (Zn)∨+). The fan of X in L consists of a single three-

dimensional cone L+ and all its subfaces. The fan of any toric resolution of X is

given by a subdivision of L+ into basic cones.

Fix such a toric resolution Y . Write F for the set of basic cones which make

up the fan of Y . We denote by Aσ the toric variety Spec C[σ∨] corresponding

to the cone σ in L ⊗ R. Then Y is constructed in toric geometry by gluing

together {Aσ}σ∈F: Aσ1 and Aσ2 are glued along Aσ1∩σ2 = Spec C[(σ1 ∩ σ2)
∨].

Thus {Aσ}σ∈F is an open affine cover of Y .
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Now write E ⊂ L for the 1-skeleton of the fan of Y . In toric geometry, each

element of E corresponds either to an exceptional divisor on Y or the proper

transform of one of the coordinate hyper-planes in X. For ei ∈ E, write Ei for

the divisor on Y corresponding to it.

It is often important to know whether the resolution is crepant or not. The

discrepancy of each Ei depends only on ei and not on the choice of Y . If the

coordinates of the element ei of E are (k1, . . . , kn) ∈ L ⊂ Qn, then ([IR96], 1.4

and [Rei87], Prop. 4.8 for technicalities) the discrepancy of the divisor Ei is

(
∑
ki) − 1, so the crepant divisors correspond to the elements of L which lie in

the junior simplex:

∆ = {(k1, . . . , kn) ∈ L⊗ R | ki > 0 and
∑

ki = 1}

Note that if a basic cone contains e ∈ ∆∩L, then e must be one of its generators.

So, for any resolution, ∆ ∩ L is a subset of E and the crepant ones are precisely

those for which this inclusion is an equality.

Example 4.1. Let the group G be 1
8
(1, 2, 5), the group of 8th roots of unity

embedded into SL3(C) by

ξ 7→
(

ξ1

ξ2

ξ5

)
We shall write χk for the character of G given by ξ 7→ ξk. So x has weight χ1, y

weight χ2 and z weight χ5.

The lattice L is generated in (Z3)∨ ⊗ Q by elements of (Z3)∨ and 1
8
(1, 2, 5).

The cone L+, the positive octant, is the fan of X. A crepant resolution of Y

is given by a triangulation of the junior simplex ∆ into basic triangles. For the

subsequent examples, we choose the following triangulation:
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So E = ∆ ∩ L = {e1, . . . , e7}.
And the basic cones of the fan F of Y are

F =

{
〈e1, e2, e7〉 , 〈e7, e2, e5〉 , 〈e4, e2, e5〉 , 〈e4, e3, e2〉 ,

〈e3, e4, e6〉 , 〈e4, e6, e5〉 , 〈e6, e5, e7〉 , 〈e1, e6, e7〉
}

This is the setup for one example discussed on several subsequent occasions

throughout Chapters 4 and 5.

4.2 Valuations

We now establish two simple results which translate the notions defined in the

Chapter 3 into toric language.

Proposition 4.2. Let Y be a toric resolution of X, F its fan and E the 1-skeleton

of F. For any ei ∈ E and m ∈ Zn,

vEi
(xm) = ei(m) ∈ Q (4.3)
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Proof. Take any basic cone σ ∈ F such that ei ∈ σ. Without loss of generality

i = 1 and σ = 〈e1, . . . , en〉. Let ě1, . . . , ěn be the dual basis in M .

For any m ∈ Zn, |G|m ∈M . Using the dual basis,

|G|m =
n∑

j=1

|G|ej(m) ěj

therefore

x|G|m = (xě1)|G|e1(m) . . . (xěn)|G|en(m)

The restriction of the exceptional divisor E1 to Aσ is given by the principal

Weil divisor div xě1 . Thus the local ring of E1 is the coordinate ring of Aσ localised

at the ideal (xě1), and so the valuation of x|G|m ∈ OY is |G|e1(m). By definition,

vE1(x
m) = 1

|G|vE1(x
|G|m) = e1(m).

The second result establishes which compatibility conditions a set of mono-

mials {xmσ}σ∈F must satisfy for it to define a G-Cartier divisor. When the condi-

tions are satisfied, we further establish the form which the corresponding G-Weil

divisor must take.

Proposition 4.3. A set {xmσ}σ∈F ⊂ C[Zn] of Laurent monomials defines a G-

Cartier divisor {(Aσ, x
mσ)}σ∈F on Y if and only if for any ei ∈ E

ei(mσ) = ei(mτ ) for all σ, τ 3 ei (4.4)

When (4.4) holds, denote by qi the value of ei(mσ) for any σ 3 ei. Then,

under the isomorphism φ from Proposition 3.8, {(Aσ, x
mσ)}σ∈F corresponds to

the G-Weil divisor ∑
ei∈E

qiEi

Proof. Observe that if σ, τ ∈ E are such that ei belongs to both, then the generic

point pEi
of Ei lies in Aσ ∩ Aτ . If {(Aσ, x

mσ)} is a G-Cartier divisor, then

xmσ/xmτ ∈ O∗(Aσ ∩ Aτ ), so we have vEi
(xmσ/xmτ ) = 0 and hence

ei(mσ) = vEi
(xmσ) = vEi

(xmτ ) = ei(mτ )

Conversely suppose we have ei(mσ) = ei(mτ ) for all ei ∈ σ ∩ τ . Then mσ −
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mτ ∈ (σ ∩ τ)⊥, and hence xmσ/xmτ is invertible in C[(σ ∩ τ)∨] = OY (Aσ ∩Aτ ) as

required.

For the last part, recall that φ({(Aσ, x
mσ)}) is defined as the sum

∑
nDD over

all prime divisors on Y where nD = vD(xmσ) for any σ such that D ∩ Aσ 6= ∅.
So it suffices to prove that, for all σ ∈ F, the restrictions of the principal divisor

(xmσ) and
∑

i∈E qiEi to Aσ are identical.

Without loss of generality, we can take σ = 〈e1, . . . , en〉. Then OAσ =

C[t1, . . . , tn] where ti = xěi . We have xmσ =
∏

ei∈σ t
qi

i and recall (proof of Propo-

sition 4.2) that Ei|Aσ = (ti). Therefore

(xmσ)|Aσ =
∑
ei∈σ

qi (ti) = (
∑
ei∈σ

qi Ei)|Aσ

and the result follows.

Remarks. 1. Observe that the ‘only if’ part of the proof is completely general

and doesn’t rely on the toric technology. It is the standard argument used

to show that the morphism φ taking Cartier divisors to Weil divisors is

well-defined.

On the other hand the ‘if’ argument is toric-specific and relies heavily on

the fact that the invertible functions on Aσ∩Aτ are precisely the monomials

in (σ ∩ τ)∨.

2. Note that, in particular, we have proved that for any m ∈ Zn, the sum∑
i∈E

v(Ei, x
m)Ei

is a valid G-Weil divisor on Y . Recalling the definition of G-Weil divisors,

this provides an independent proof that for any prime divisor D which is

not Ei for some i ∈ E, we have

v(D,χ) = 0

for all χ ∈ G∨, since v(D,χ) is defined as the fractional part of the valuation

of any homogeneous rational function of weight χ on D.
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Example 4.4. To illustrate the above, in the context of the Example 4.1, we

calculate explicitly the χ6-Cartier divisor corresponding to the χ6-Weil divisor

D =
7

4
E4 +

1

2
E5 −

1

4
E7

Consider the cone σ = 〈e4, e5, e6〉. Calculating the dual basis which generates

the abelian semigroup σ̌ ∩M , we get

ě4 = (−2, 0, 2), ě5 = (1, 2,−1), ě6 = (2,−1, 0)

So Aσ = Spec C[ z2

x2 ,
xy2

z
, x2

y
] and the restrictions of E4, E5 and E6 to Aσ

are given by ( z2

x2 ), (xy2

x2 ) and (x2

y
) respectively. To specify D on Aσ we need

f ∈ Kχ6(C3) such that vE4(f) = 7
4
, vE5(f) = 1

2
and vE6(f) = 0, so we take

(
z2

x2

)7/4(
xy2

z

)1/2(
x2

y

)0

=
z3y

x3

to be f .

Repeating the same calculations for the remaining cones in the fan F we get

the χ6-Cartier divisor given by

and we can indeed see that, as all the monomials representing the divisor have

weight χ6, their ratios are all invariant and the sub-OY module of K(Cn) they

generate is an invertible sheaf on Y with the natural action of G by χ2.
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4.3 v(Ei, χ) and Ext1(G∨,Z)

Consider again Hom(•,Z) of (4.2):

0 // (Zn)∨ // L // Ext1(G∨,Z) // 0

Since (4.2) is a projective resolution of G∨, then, by definition, Ext1(G∨,Z)

is H1 of Hom(•,Z) applied to it. Thus we have a canonical identification of

elements of Ext1(G∨,Z) with L/Zn, i.e. with the elements of L in the unit cube.

On the other hand, we saw in section 4.1 that H1 of Hom(G∨, •) applied

to an injective resolution of Z is Hom(G∨,Q/Z), and therefore the standard

isomorphism identifies Hom(G∨,Q/Z) with Ext1(G∨,Z), which we shall denote

by

θExt : Ext1(G∨,Z)→ Hom(G∨,Q/Z)

For a given point ei ∈ L, we could ask which map G∨ → Q/Z does θExt

identify the corresponding element of Ext1(G∨,Z) with. To establish this, we

first recall the construction of θExt: we take an injective resolution

I : 0→ Z→ Q→ Q/Z→ 0

of Z and a projective resolution

P : 0→M → Zn → G∨ → 0

of G∨ and form Tot(Hom(P, I)), the total chain complex of the double chain

complex Hom(P, I). We then have maps

Hom(G∨, I)→ Tot(Hom(P, I))← Hom(P,Z)
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as follows

0 // 0 //

��

Hom(G∨,Q/Z)

��

// 0

��

// 0

0 // Hom(Zn,Q) // Hom(Zn,Q/Z)⊕ Hom(M,Q) // Hom(M,Q/Z) // 0

0 // (Zn)∨

OO

// L //

OO

0 //

OO

0

and for general homological algebra reasons we know these maps to be quasi-

isomorphisms, inducing isomorphisms on the cohomology groups. In particular,

θExt : L/(Zn)∨ → Hom(G∨,Q/Z).

Explicitly, for any α ∈ L, class [α] ∈ L/(Zn)∨ maps to class [0 ⊕ α1] in

H1(Tot(Hom(P, I)), where α1 is the image of α in Hom(M,Q). Since Hom(•,Q)

is exact, α1 pulls back to some α2 ∈ Hom(Zn,Q). Let now α3 be the image of α2

in Hom(Zn,Q/Z) and observe that [−α3⊕0] = [0⊕α1], since α3⊕α1 is an image

of α2 in Hom(Zn,Q/Z)⊕Hom(M,Q). And now, since Hom(•,Q/Z) is exact and

image of −α3 in Hom(M,Q/Z) vanishes, −α3, and hence [−α3 ⊕ 0], pulls back

to some α4 ∈ Hom(G∨,Q/Z).

Let now α = ei for some ei ∈ E. Recall Definition 3.3 and consider the induced

map v(Ei, •) ∈ Hom(G∨,Q/Z) which for any χ ∈ G∨ gives a fractional part of a

valuation of any G-homogeneous monomial of weight χ at Ei. Now observe that

the above calculation of θExt gives θExt([ei]) to be precisely −v(Ei, •).
Indeed, if we set α = ei, then the pullback α2 to Hom(Zn,Q) is precisely

the map m 7→ ei(m), which, by Proposition 4.2, is the valuation map vEi
, which

gives the rational valuation of a given G-homogeneous monomial at exceptional

divisor Ei. Taking just the fractional part of vEi
gives us α3 in Hom(Zn,Q/Z).

The image of α3 in Hom(M,Q/Z) vanishing corresponds to the fact that the

valuation map is integer-valued at invariant monomials, and in Definition 3.3 we

use that to define v(Ei, •) to be precisely the pullback of α3 to Hom(G∨,Q/Z),

i.e. −θExt(ei).
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4.4 Representations of the McKay Quiver

We now introduce a useful way to visualise the mechanics of a family of G-

constellations over a particular toric affine piece of Y . Suppose we have a family

F of G-constellations on Y and a cone σ in the fan F. In this section, we take a

close look at the structure of F restricted to the corresponding affine piece Aσ.

Over Aσ the sheaf F is trivialised and we have

F(Aσ) ' C[σ∨]⊗C Vreg '
⊕

χ

Fχ

where each Fχ is isomorphic to C[σ∨] and G acts on it by χ. The whole structure

of F as a family of G-constellations on Aσ is contained in the way that R acts on

the Fχ. An effective method to visualise the mechanics of this is to consider the

representations of the McKay quiver of G. We briefly summarise the necessary

background. For a more detailed exposition of the following material see [Kin94].

Definition 4.5. A quiver consists of a vertex set Q0, an arrow set Q1 and two

maps h : Q1 → Q0 and t : Q1 → Q0 giving the head hq ∈ Q0 and the tail tq ∈ Q0

of each arrow q ∈ Q1.

Definition 4.6. Let G be a finite subgroup of GL(Vgiv). Then the McKay quiver

of G is the quiver with the vertex set Q0 labelled by the irreducible represen-

tations ρ of G and the arrow set Q1 which has precisely dim HomG(ρi, ρj ⊗ Vgiv)

arrows going from the vertex ρi to the vertex ρj.

Example 4.7. 1. In our case, G is abelian and Vgiv = Cn. So Vgiv
∨ decom-

poses into irreducible representations as
⊕

Cxi, where the xi are the basic

monomials. If we write Uχ for the representation corresponding to χ ∈ G∨,

we have

HomG(Uχi
, Uχj

⊗ Cn) =
⊕

xk | χiρ−1(xk)=χj

HomG(xk ⊗ Uχi
, Uχj

) (4.5)

where by xk ⊗ Uχi
, we denote the space Cxk ⊗C Uχi

. Each of the spaces

HomG(xk ⊗ Uχi
, Uχj

) is one-dimensional and so has one arrow from χi to

χj corresponding to it. Thus the quiver consists of |G| vertices labelled

by characters χ ∈ G∨ and out of each vertex χ emerge n arrows, each
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corresponding to one of the one-dimensional spaces HomG(xk⊗Uχ, Uχρ(xk)).

We write (χ, xk) ∈ Q1 to denote such an arrow.

2. For a concrete example, the reader can verify that the McKay quiver for

G = 1
8
(1, 2, 5) (see Example 4.1) looks like:

A good reason for contemplating the McKay quiver of G is that it is possible

to establish a 1-to-1 correspondence between a subset of its representations and

(G,R)-modules.

Definition 4.8. A representation of a quiver is a graded vector space
⊕

i∈Q0
Vi

and a collection {αq : Vtq → Vhq}q∈Q1 of linear maps indexed by the arrow set of

the quiver. A morphism from (
⊕

Vi, {αq}) to (⊕V ′
i , {α′q}) is a collection of linear

maps {θi : Vi → V ′
i }i∈Q0 forming commutative squares with the maps αq and α′q.

Given a G-representation V , it is traditional, when G is a general finite sub-

group of GLn, to consider representations of the McKay quiver on a graded

vector space
⊕

Vρ where Vρ = HomG(ρ, V ). It is then possible ([SI96b]) to es-

tablish a 1-to-1 correspondence between such representations and elements of

HomG(Vgiv
∨ ⊗ V, V ). And, in the light of the remarks after the Definition 2.2,

there is a 1-to-1 correspondence between all the (G,R)-module structures on V

and the elements of HomG(Vgiv
∨ ⊗ V, V ) which satisfy the commutator relations

(2.3).
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However, in the case when G is abelian, a considerable shortcut can be taken

by considering the representations directly onto graded vector space
⊕

Vχ, where

Vχ is the χ-eigenspace of V . We again have the correspondence between repre-

sentations of McKay quiver on
⊕

Vχ and elements of HomG(Vgiv
∨ ⊗ V, V ) and

consequently the correspondence with G-constellations. Explicitly, if we have a

(G,R)-structure on V , then the map V → V defined by the action of each ba-

sic monomial xi is G-equivariant, and so splits into maps Vχ → Vχ/ρ(xi). Each

such map gives precisely the map αχ,xi
∈ Hom(Vχ, Vχ/ρ(xi)) in the corresponding

representation of the quiver.

In the case V = Vreg, if we make an explicit choice of a basis vector eχ for each

Vχ, this gives us bases for all HomG(xi ⊗ Vχ, Vχ/ρ(xi)). Then every representation

of the McKay quiver on ⊕Vχ gains a unique map ξ : Q1 → C associated with it,

defined by

αχ,xi
(eχ) = ξ(χ, xi)eχ/ρ(xi)

Considering a family of G-constellations F parametrised by an affine piece

Aσ of Y , we have, as outlined in the beginning of the section,

F(Aσ) ' C[σ∨]⊗C Vreg

We then write the χ-eigenspace decomposition F(Aσ) =
⊕

Fχ, and all the corre-

spondences above work just as well with C[σ∨]-modules as they did with complex

vector spaces.

This technology presents us with a compact way to write down the R-module

structure on F|Aσ . After a choice of bases, a representation of the McKay quiver

becomes a map ξ : Q1 → C[σ∨] readily pictured as a McKay quiver of G with

ξ(χ, xi) written above each arrow (χ, xi) ∈ Q1. In this way it is also easy to

calculate explicitly the G-constellation in F parametrised by any point of Aσ.

If a point p ∈ Aσ is defined by a map evp : C[σ∨] → C, then the corresponding

quiver representation is given by the map ξp = evp ◦ ξ : Q1 → C.

Finally, let us consider the gnat-families (see Definition 2.4). If F is one such,

then there exists an embedding ι : F → K(Cn). Its image ι(F) splits into χ-

eigenspaces, which are invertible sheaves, so we can take a set {fχ} ∈ K(Cn),

where each fχ is homogeneous of weight χ and a generator of the χ−1-eigenspace
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of F over Aσ. The R-module structure comes for free with the inclusion of ι(F)

into K(Cn) and the corresponding quiver representation is given by the map

ξ : Q1 → C[σ∨] defined by

(χ−1, xi) 7→
xifχ

fρ(xi)χ

(4.6)

with respect to the choice of generators fχ.

Example 4.9. Let us work through an actual example. Let G = 1
8
(1, 2, 5) and

σ = 〈e4, e5, e6〉. Recall from the Example 4.4 that the calculation of the dual basis

in M gives us the local coordinates on Aσ = Spec C[σ∨] as C[σ∨] = C[ z2

x2 ,
xy2

z
, x2

y
].

Consider F =
⊕

χi∈G∨ OAσfi ⊂ K(Cn) where

f0 = 1 f1 = x f2 = y

f3 = xy f4 =
z

x
f5 = z

f6 =
yz

x
f7 = yz

Now for any choice of the fi, as long as each fi ∈ K∗
χi

(Cn), the generic stalk

⊕K(Y )fi is the whole of K(Cn). The latter has a natural structure of a G-

constellation, since by the Normal Basis Theorem from Galois theory ([Gar86],

Theorem 19.6) we have K(Cn) = K(Y )⊗ Vreg. Therefore it has a corresponding

quiver representation. Let ξ′ : Q1 → K(Y ) be the map specifying it with respect

to the {fi} as the choice of eigenspace bases.

We claim that F is closed under R-action in K(Cn) and hence defines a family

of G-constellations parametrised by Aσ. We verify this statement in the course of

calculating the map ξ′, by showin that it restricts to a map Q1 → C[σ∨], which

defines the quiver representation corresponding to our family.

Consider the arrow (χ0, x). As described above, in the corresponding quiver

representation the mapK(Y )f0 → K(Y )f1 is given by multiplication by x. Hence

we get

f0 7→ 1 f1

and so we label this arrow by

1 =

(
z2

x2

)0(
xy2

z

)0(
x2

y

)0
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Similarly the arrow (χ5, z) corresponds to the map f3 7→ xyz f0 and so we label

it by

xyz =

(
z2

x2

)1(
xy2

z

)1(
x2

y

)1

Repeating this for all the arrows of the quiver we obtain:

In the diagram on the right we have written all the functions marking the

arrows in terms of positive powers of the local coordinates α, β, γ on Aσ. This

demonstrates that we indeed have a map

ξ : Q1 → C[σ∨] = C
[
z2

x2
,
xy2

z
,
x2

y

]
so F is, as claimed, a family ofG-constellations parametrised byAσ = Spec [α, β, γ].

The G-constellations parametrised by each point of Aσ are readily calculated by

assigning specific values to α, β and γ in the diagram on the right.
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Chapter 5

Reductors

5.1 Reductor Pieces

As in Chapter 4.4, let Y be a toric resolution, σ ∈ F a cone in its fan and F a

gnat-family on Y . By Proposition 2.5, there exists an embedding ι : F ↪→ K(Cn).

If we have a basis {fχ | fχ ∈ Kχ(Cn)} such that

ι(F)(Aσ) =
⊕

C[σ∨]fχ

then we must have

xifχ

fρ(xi)χ

∈ C[σ∨] (5.1)

for all basic monomials xi and χ ∈ G∨.

But observe that, conversely, for any set {fχ | fχ ∈ Kχ(Cn)} for which (5.1)

holds, the C[σ∨]-submodule of K(Cn) generated by fχ is closed under the natural

action of R on K(Cn) by multiplication. It is certainly closed under the G-

action, so it is a (G,R)-submodule of K(Cn) and a family of G-constellations

parametrised by Aσ.

This observation motivates the rest of this section. But first we make a useful

definition

Definition 5.1. A reductor piece for a basic cone σ ⊂ L of the fan F

of the toric resolution Y is a set {fχ | fχ ∈ Kχ(Cn)} such that for any basic

monomial xi and any χ ∈ G∨ we have (5.1).
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Thus, if we wanted to explicitly construct a family of G-constellations

parametrised by Y , we could do it by producing a reductor piece for each cone σ

in the fan F. Every such would give a family of G-constellations parametrised by

open affine piece Aσ. However, we would need these families to ‘glue together’,

i.e. the restrictions to Aσ ∩ Aσ′ of the families generated on Aσ and Aσ′ must

be isomorphic for any two cones σ, σ′ ∈ F. The general way to guarantee this is

independent of the toric technology altogether, taking us back to G-Weil divisors

and to where Chapter 3 left off.

5.2 Reductor Sets

From now on Y is once again an arbitrary, not necessarily toric, resolution of

X = Cn/G.

Let F be a gnat-family. By Proposition 2.5, there exists an embedding ι : F ↪→
K(Cn). Then F splits into G-eigensheaves as

⊕
Fχ and, as described in Chapter

3, each Fχ defines a linear equivalence class of χ-divisors embedding it intoK(Cn),

and ι(Fχ) pinpoints a specific element of that class. Hence ι(F) =
⊕

χ L(−Dχ)

for some unique set of G-divisors {Dχ}χ∈G∨ . Note that it is important here that

L(−Dχ) is not merely an abstract line bundle corresponding to −Dχ, but is by

definition a specific sub-OY -module of K(Cn).

Thus, in each isomorphism class of gnat-families there is at least one subsheaf

of the constant sheaf K(Cn) on Y , which is of the form
⊕
L(−Dχ), where each

Dχ is a χ-divisor on Y .

Lemma 5.2. Let F =
⊕
L(−Dχ) and F ′ =

⊕
L(−D′

χ) be two gnat-families

on Y . Then they are (G,R)-equivariantly isomorphic if and only if there exists

g ∈ K(Y ) such that

D′
χ −Dχ = div g (5.2)

for all χ ∈ G∨.

Proof. The ‘if’ part is immediate. Observe that we have a natural isomorphism

L(A) ⊗ L(B) → L(A + B) given by multiplication in K(Cn). Applying this to

−Dχ − (g) = −D′
χ yields isomorphism F → F ′ given by s 7→ s/g.

42



For the ‘only if’ part, let φ : ⊕L(−Dχ)→ ⊕L(−D′
χ) be a (G,R)-equivariant

isomorphism. Then it restricts to φχ : L(−Dχ)
∼−→ L(−D′

χ) for all χ ∈ G∨. Then

φχ induces a map L(0)
∼−→ L(−D′

χ + Dχ), so let gχ ∈ K(Cn)G be an image of

1 under this map. Then D′
χ − Dχ = (gχ) and φχ is given by s 7→ gχs for any

s ∈ L(−Dχ).

It remains to show that all the gχ are equal. Fix any χ ∈ G∨ and consider

any G-homogeneous m ∈ R of weight χ. Take any s ∈ L(−Dχ0) ⊂ K(Cn). Then

ms ∈ L(−Dχ) and by R-equivariance of φ

φ(ms) = mφ(s) = gχ0ms (5.3)

and hence gχ = gχ0 for all χ ∈ G∨.

Corollary 5.3. Let F = ⊕L(−Dχ) and F ′ = ⊕L(−D′
χ) be two gnat-families on

Y . Then they are equivalent if and only if there exists a χ0-divisor N such that

D′
χ −Dχ = N (5.4)

for all χ ∈ G∨.

Proof. Once again, the ‘if’ direction is immediate: an isomorphism F⊗L(−N)→
F ′ is given by multiplication in K(Cn).

Conversely, if the families are equivalent then let N be an invertible sheaf on

Y such that F ′ ' F ⊗N . Choose any Weil divisor N ′ such that N = L(−N ′).

Then apply Lemma 5.2 to the isomorphic families ⊕L(−Dχ −N ′) and L(−D′
χ)

to obtain g ∈ K(Cn) such that D′
χ − Dχ − N ′ = (g) for all χ ∈ G∨. Setting

N = N ′ + (g) finishes the proof.

Corollary 5.4. In every equivalence class of gnat-families there exists a unique

family F of the form ⊕L(−Dχ) with Dχ0 = 0.

Proof. Given an arbitrary gnat-family F we can find an isomorphic family of

the form ⊕L(−Dχ). Then setting D′
χ = Dχ − Dχ0 we obtain an equivalent

family L(−D′
χ) with the required properties. Finally, Corollary 5.3 shows the

uniqueness.

In the view of all of the above, we make following definitions:
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Definition 5.5. Let {Dχ}χ∈G∨ be a set of G-Weil divisors on Y . We call it a

prereductor set if each Dχ is a χ-Weil divisor. We shall call it a reductor

set if ⊕L(−Dχ) with the inclusion map into K(Cn) is a gnat-family. We shall

say the reductor set is normalised if Dχ0 = 0.

5.3 Reductor Condition

We have seen that a gnat-family can be specified (up to an isomorphism) by

a set of G-Weil divisors on Y which gives its embedding into K(Cn). Here we

investigate the converse: for which prereductor sets {Dχ} is ⊕L(−Dχ) a family

of G-constellations?

We observe that ⊕L(−Dχ) is always a sub-OY -module of K(Cn) closed under

the G-action. However, for a general choice of divisors Dχ, there is no guarantee

that the ⊕L(−Dχ) will be closed under the R-action on K(Cn).

Here and below we write RG for R ∩ K∗
G(Cn), the G-homogeneous regular

polynomials, and Rχ for R∩K∗
χ(Cn), the G-homogeneous regular polynomials of

weight χ ∈ G∨.

Proposition 5.6 (Reductor Condition). Let {Dχ} be a prereductor set. Then it

is a reductor set if and only if, for any f ∈ RG, the divisor

Dχ + (f)−Dχρ(f) ≥ 0 (5.5)

i.e. it is effective.

Remarks:

1. It is, of course, sufficient to check (5.5) only for f being one of the basic

monomials x1, . . . , xn. This leaves us with a finite number of inequalities to

check. Note also that the principal divisor (xj) is easy to compute in toric

case. It follows immediately from Proposition 4.3 that it is
∑

ei∈E ei(xj)Ei.

Observe that ei(xj) is simply the jth coordinate of ei in L.

2. Numerically, if we write each Dχ as
∑
qχ,PP , each inequality (5.5) becomes

a set of inequalities

qχ,P + vP (f)− qχρ(f),P ≥ 0 (5.6)
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for all prime divisors P on Y . The important thing to notice here is that

the subsets of inequalities for each prime divisor P are all independent of

one another. We can speak of {Dχ} satisfying or not satisfying the reductor

condition at a given prime divisor P . Moreover, we can construct reductor

sets {Dχ} by independently choosing for each prime divisor P any of the

sets of numbers {qχ,P}χ∈G∨ which satisfy (5.6).

Proof. Take an open cover Ui on which all L(−Dχ) are trivialised and write gχ,i

for the generator of L(−Dχ) on Ui. {Dχ} being a reductor set is equivalent to

⊕L(−Dχ) being closed under R-action on K(Cn). As R is a direct sum of its

G-homogeneous parts, it is sufficient to check the closure under the action of just

the homogeneous functions. So on each Ui, we want

fgχ,i ∈ OY (Ui)gχρ(f),i

to hold for all f ∈ RG, χ ∈ G∨.

On the other hand, with the notation above, G-Cartier divisor Dχ + (f) −
Dχρ(f) is given on Ui by

fgχ,i

gχρ(f),i
and it being effective is equivalent to

fgχ,i

gχρ(f),i

∈ OY (Ui)

for all Ui’s.

The result now follows.

We now translate the reductor condition (5.5) into toric language and investi-

gate what it implies for the reductor pieces of the family on the open toric charts

Aσ of a toric resolution Y .

Example 5.7. Let G and Y be as in previous examples. Let {Dχ} be a prere-
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ductor set where each Dχ =
∑
qχ,iEi is given as follows

Dχ0 = 0 Dχ1 =
1

8
E4 +

2

8
E5 +

4

8
E6 +

5

8
E7

Dχ2 =
2

8
E4 +

4

8
E5 +

2

8
E7 Dχ3 =

3

8
E4 +

6

8
E5 +

4

8
E6 +

7

8
E7

Dχ4 =
4

8
E4 +

4

8
E7 Dχ5 =

5

8
E4 +

2

8
E5 +

4

8
E6 +

1

8
E7

Dχ6 =
6

8
E4 +

4

8
E5 +

6

8
E7 Dχ7 =

7

8
E4 +

6

8
E5 +

4

8
E6 +

3

8
E7

In the view of Proposition 4.2, the reductor condition (5.5) is equivalent to

qχ,i + ei(m)− qχρ(m),i ≥ 0 (5.7)

for all χ ∈ G∨, ei ∈ E and m ∈ Zn
+.

The careful reader could now verify that (5.7) holds for m = (1, 0, 0), (0, 1, 0)

and (0, 0, 1) and hence {Dχ} is a reductor set and ⊕L(−Dχ) is a family of G-

constellations.

We now recall the reductor pieces introduced in Definition 5.1. Let us calculate

the reductor piece {xpχ} specified by the generators of L(−Dχ) on the affine piece

A〈e5,e6,e7〉. This is the same calculation of a generator of a G-Weil divisor on a

given open toric chart that we saw in Example 4.4, e.g.

pχ1 = qχ1,5 ě5 + qχ1,6 ě6 + qχ1,7 ě7

and so

xpχ7 =

(
y2z

x

)2/8(
z2

y

)4/8(
x2

z2

)5/8

= x

Repeating this for each χ ∈ G∨, we obtain {xpχ} = {1, x, y, xy, x
z
, z, xy

z
, yz},

the reductor piece pictured below as a diagram in the monomial lattice Zn:
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The inequalities (5.7) now translate into the following form

ei(pχ +m− pχρ(m)) > 0 (i = 5, 6, 7)

that is

xpχxm

xpχρ(m)
∈ C[σ∨] (5.8)

for every m ∈ Zn
+. This agrees with the discussion in Section 5.1, where it is pre-

cisely the condition for
⊕
OAσx

pχ to be a family of G-constellations parametrised

by Aσ.

The reader may find the diagrams set in the monomial lattice Zn convenient

for checking if a given monomial set {xpχ} satisfies the reductor equations in the

form (5.8). One merely needs to check that when adding (1, 0, 0), (0, 1, 0) or

(0, 0, 1) to any pχ, the vector reducing the result to pχ′ (for appropriate χ′) lies

within the cone σ∨.
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5.4 Existence and symmetries

So far we have seen no indication that, over an arbitrary resolution Y of X, there

exist any gnat-families.

Proposition 5.8 (Canonical family). Let Y be a resolution of X = Cn/G and

define the set {Dχ}χ∈G∨ of G-Weil divisors by Dχ =
∑
v(P, χ)P , where P runs

over all prime Weil divisors on Y and v(P, χ) are the fractional numbers intro-

duced in Definition 3.3. Then the set {Dχ}χ∈G∨ satisfies the reductor condition.

We call the family F =
⊕
L(−Dχ) the canonical gnat-family on Y .

Remark: ForDχ =
∑
v(P, χ)P to be a G-Weil divisor we need, in particular,

for it to be a finite sum. This is implied by Corollary 3.12.

Proof. We need to show that for any χ ∈ G∨, any G-homogeneous f ∈ RG and

any prime divisor P on Y we have

v(P, χ) + vP (f)− v(P, χρ(f)) ≥ 0

First observe that the above expression must be integer valued. Also v(P, χ) ≥
0 and −v(P, χρ(f)) > −1 by definition, while vP (f) ≥ 0 since fn is regular on

all of Y . So we must have

v(P, χ) + vP (f)− v(P, χρ(f)) > −1

and the result follows.

Corollary 5.9. Let Y be a toric resolution of X. Then the canonical gnat-family

on Y is given by {Dχ} where

Dχ =
∑
i∈E

v(Ei, χ)Ei

Moreover, on any affine open piece Aσ, we have

F(Aσ) = C[σ ∩ Zn] (5.9)
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Proof. The first statement follows trivially from the definition of the canonical

family and the fact that v(P, χ) = 0 whenever P is not one of the divisors Ei

(Corollary 3.14).

For the second statement, without loss of generality let σ = 〈e1, . . . , en〉.
Write F(Aσ) = ⊕C[σ∨ ∩M ]xpχ , where xpχ are the generators of L(−Dχ)(Aσ).

Proposition 4.3 implies that for each pχ we have ei(pχ) = v(Ei, χ) for all i ∈
1, . . . , n. But all the numbers v(Ei, χ) are positive by definition, which implies

that each pχ lies in σ∨ and so F(Aσ) ⊆ C[σ∨ ∩ Zn]. Conversely, given any

m ∈ σ∨ ∩ Zn

ei(m− pρ(m)) = ei(m)− v(ρ(m), Ei) ≥ 0

as v(Ei), ρ(m) is precisely the fractional part of vEi
(m) = ei(m). Therefore

m− pρ(m) ∈ σ∨ ∩M and so we have the inclusion in the other direction.

Geometrically, one could easily convince oneself of the truth of this statement

by picturing the cone σ∨ = {v ∈ Rn | ei(v) ≥ 0} in Zn⊗R and observing that the

set {pχ} of the exponents of the reductor piece of F on Aσ consists precisely of all

the elements of Zn lying within the topmost area U of σ∨ given by 1 > ei(v) ≥ 0.

σ∨ ∩ Zn is then precisely (U ∩ Zn) + (σ∨ ∩M). We can also see why reductor

condition holds: as the cone Rn
+ lies within the cone σ∨, pχ+m lies within σ∨∩Zn

for any xm ∈ R.

Example 5.10. The reductor set {Dχ} given in Example 5.7 specifies the canon-

ical family on Y . Indeed, observe that all the numbers qχ,i are between 0 and 1.

Equation (3.4) in Definition 3.5 of a G-Weil divisor implies they must be v(Ei, χ).

Generally, to calculate the canonical family in a toric case, one needs to choose

a monomial mχ of weight χ for each χ ∈ G. Then, for each ei ∈ E, one calcu-

lates the rational number ei(mχ) and takes its fractional part, which is precisely

v(Ei, χ). The G-Weil divisors Dχ =
∑

i v(Ei, χ)Ei are then the reductor set for

the canonical family.

For instance, the numbers for the canonical family in Example 5.7 were ob-

tained as follows: take the character χ3 ∈ G∨ and then take x3, a monomial of

weight χ3. Calculating e5(3, 0, 0) = 1
8
(2 ∗ 3 + 4 ∗ 0 + 2 ∗ 0) = 6

8
, we obtain the

coefficient of E5 in Dχ3 . Similarly e7(3, 0, 0) = 15
8

and its fractional part 7
8

is the

coefficient of E7 in Dχ3 .
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Having established that a set of gnat-families on any resolution Y is always

non-empty, we now consider symmetries which this set must possess.

Proposition 5.11 (Character Shift). Let {Dχ} be a reductor set. Then for any

λ-Weil divisor N , the set {Dχ +N} also satisfies the reductor condition.

Moreover, up to equivalence of families, the resulting gnat-family F ′ =
⊕
L(−Dχ−

N) depends only on λ and not on the choice of N . The unique normalised reduc-

tor set {D′
χ} specifying F ′ is given by

D′
χλ = Dχ −Dλ−1 (5.10)

Proof. The new set of divisors obviously satisfies the reductor condition:

(Dχ +N) + (m)− (Dχρ(m) +N) ≥ 0

is immediately equivalent to the statement that {Dχ} satisfy the reductor condi-

tion.

For the second claim, observe that the divisor in the trivial character class is

now (Dλ−1 +N). Normalising by it we obtain

Dχ +N −Dλ−1 −N

in the character class χ+ λ, which establishes the claim.

Definition 5.12. Given a normalised reductor set {Dχ}, we call normalised

reductor set {Dχ −Dλ−1} the λ-shift of {Dχ}.

Example 5.13. On the level of reductor pieces {xpχ}, λ-shift leaves the geomet-

rical configuration of pχ in the lattice Zn the same, but permutes them and shifts

the origin to the new location of pχ0 .

For example, consider the case of the reductor piece calculated in Example

5.7. After a χ4-shift it becomes:
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Proposition 5.14 (Reflection). Let {Dχ} be a reductor set. Then the set {−Dχ}
also satisfies the reductor condition.

Proof. We need to show that

−Dχ−1 + (m)− (−Dχ−1ρ(m)−1) ≥ 0

Rearranging we get

Dχ−1ρ(m)−1 + (m)−Dχ−1ρ(m)−1ρ(m) ≥ 0

which is one of the reductor equations the original set {Dχ} must satisfy.

Definition 5.15. Given a reductor set {Dχ}, we call the reductor set {−Dχ}
the reflection of {Dχ}.

Example 5.16. On the level of reductor pieces {xpχ}, the reflection is precisely

the reflection of pχ about the origin in the lattice Zn.

For example, consider the case of the reductor piece calculated in Example

5.7. After a reflection it becomes:
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5.5 Maximal Shifts

We now examine the individual line bundles L(−Dχ) in a gnat-family and show

that the reductor condition imposes a restriction on how far apart from each

other they can be.

Lemma 5.17. Let {Dχ} be a reductor set. Write each Dχ as
∑
qχ,PP , where P

ranges over all the prime Weil divisors on Y . Then for any χ1, χ2 ∈ G∨ and for

any prime Weil divisor P , we necessarily have

min
f∈Rχ1/χ2

vP (f), ≥ qχ1,P − qχ2,P ≥ − min
f∈Rχ2/χ1

vP (f) (5.11)

where Rχ is the set of all the χ-homogeneous functions in R.

Proof. Both inequalities follow directly from the reductor condition (5.5): the

right inequality by setting χ = χ1 ∈ G∨, ρ(f) = χ2

χ1
and letting f vary within

Rρ(f); the left inequality by setting χ = χ2 and ρ(f) = χ1

χ2
.

This suggests the following definition:

Definition 5.18. For each character χ ∈ G∨, the maximal shift χ-divisor

Mχ is defined to be

Mχ =
∑

P

(min
f∈Rχ

vP (f))P (5.12)

where P ranges over all prime Weil divisors on Y .

Observe that the fact that the sum in (5.12) is finite follows directly from

Corollary 3.14.

Lemma 5.19. The G-Weil divisor set {Mχ} is a normalised reductor set.

Proof. To show that the set {Mχ} satisfies the reductor condition, we need to

show that for every f ∈ RG and any prime divisor P on Y

vP (mχ) + vP (f)− vP (mχρ(f)) ≥ 0

where mχ and mχρ(f) are chosen to achieve the minimality in (5.12).
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Observe that mχf is also a G-homogeneous element of R, therefore by the

minimality of vP (mχρ(f)) we have

vP (mχf) ≥ vP (mχρ(f))

as required.

To establish that Mχ0 = 0, we observe that vP (1) = 0 for any prime Weil

divisor P on Y and vP (f) ≥ 0 for any G-homogeneous f ∈ R.

Observe that with Lemma 5.19 we have established another gnat-family which

always exists on any resolution Y . While in some cases it coincides with the

canonical family, the reader will see in Example 5.21 a case when the canonical

family and the maximal shift family differ.

Putting together Lemmas 5.17 and 5.19 gives a result which shows that that

the reductor set {Mχ} and its reflection {−Mχ} provide bounds on the set of all

normalised reductor sets on Y .

Proposition 5.20 (Maximal Shifts). Let {Dχ} be a normalised reductor set.

Then for any χ ∈ G∨

Mχ ≥ Dχ ≥ −Mχ−1 (5.13)

Moreover both the bounds are achieved.

Proof. To establish that (5.13) holds, set χ2 = χ0 in Lemma 5.17. Lemma 5.19

shows that bounds are achieved.

Example 5.21. Let us calculate the maximal shift divisor set {Mχ} for the setup

introduced in Example 4.1.

By the definition Mχ =
∑
mχ,PP where mχ,P = minf∈Rχ vP (f). By Corollary

3.14, the numbers mχ,P are only nonzero for divisors corresponding to elements

of the 1-skeleton E. Therefore for each ei ∈ E, we need to find mχ,Ei
= min ei(p)

where p ranges over elements of Zn
+ such that ρ(p) = χ.

It is only necessary to consider a finite number of choices for p to establish

each mχ,P . Observe that it suffices to take those with 0 ≤ pi ≤ |G|, as p′ = p −
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(0, . . . , 0, |G|, 0, . . . , 0) is again element of Zn with ρ(p′) = ρ(p) and ei(p
′) ≤ ei(p)

for all ei ∈ E.

For example, taking e5 = 1
8
(2, 4, 2) and considering all such p we see that:

mχ0,E5 = vE5(1) = e5(0, 0, 0) = 0 mχ1,E5 = vE5(x) = e5(1, 0, 0) =
2

8

mχ2,E5 = vE5(x
2) = e5(2, 0, 0) =

4

8
mχ3,E5 = vE5(x

3) = e5(3, 0, 0) =
6

8

mχ4,E5 = vE5(x
4) = e5(4, 0, 0) = 1 mχ5,E5 = vE5(z) = e5(0, 0, 1) =

2

8

mχ6,E5 = vE5(zx) = e5(1, 0, 1) =
4

8
mχ7,E5 = vE5(zx

2) = e5(2, 0, 1) =
6

8

Observe that in case of χ4 we have mP,χ 6= vP,χ. So the maximal shift family for

this Y differs from the canonical family.

If we repeat this calculation for all elements of E, to obtain all numbers mei,χ,

we obtain:

Mχ0 = 0, Mχ1 =
1

8
E4 +

2

8
E5 +

4

8
E6 +

5

8
E7

Mχ2 =
2

8
E4 +

4

8
E5 +

2

8
E7 Mχ3 =

3

8
E4 +

6

8
E5 +

4

8
E6 +

7

8
E7

Mχ4 =
4

8
E4 + E5 +

4

8
E7 Mχ5 =

5

8
E4 +

2

8
E5 +

4

8
E6 +

1

8
E7

Mχ6 =
6

8
E4 +

4

8
E5 +

6

8
E7 Mχ7 =

7

8
E4 +

6

8
E5 +

4

8
E6 +

3

8
E7

Compare it to the reductor set of the canonical family given in Example 5.7.

If we now want to calculate all the normalised reductor sets (and hence all

the normalised gnat-families), we simply need to check each of the finite number

of prereductor sets between {Mχ} and its reflection {−Mχ} and pick out those

which satisfy the reductor condition (5.5).

Recall now the remark after Proposition 5.6 about checking reductor condition

independently at each prime divisor in Y . Here it means that for any reductor

set {
∑

i qχ,iEi}χ∈G∨ , the numbers {qχ,i}χ∈G∨ satisfy or fail the reductor condition

inequalities independently for each ei ∈ E. This can be seen from the fact that

each of the inequalities (5.7) features numbers qχ,i all for the same i.

In particular it means that to list all the possible normalised reductor sets

on Y , it is sufficient to list for each ei ∈ E all the sets {qχ,i}χ∈G∨ satisfying the
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inequalities (5.7). Then all the normalised reductor sets on Y are given by all

the possible choices of one of these sets {qχ,i}χ∈G∨ for each ei ∈ E. Note that

the choice for each ei is independent of all others. For our particular Y , we give

these lists below.

e1, e2, e3 :
1

8

(
χ0 χ1 χ2 χ3 χ4 χ5 χ6 χ7

0 0 0 0 0 0 0 0

)

e4 :
1

8



χ0 χ1 χ2 χ3 χ4 χ5 χ6 χ7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 −1

0 1 2 3 4 5 −2 −1

0 1 2 3 4 −3 −2 −1

0 1 2 3 −4 −3 −2 −1

0 1 2 −5 −4 −3 −2 −1

0 1 −6 −5 −4 −3 −2 −1

0 −7 −6 −5 −4 −3 −2 −1



e5 :
1

8



χ0 χ1 χ2 χ3 χ4 χ5 χ6 χ7

0 2 4 6 8 2 4 6

0 2 4 6 0 2 4 6

0 2 4 −2 0 2 4 6

0 2 4 6 0 2 4 −2

0 2 4 −2 0 2 4 −2

0 2 −4 −2 0 2 4 −2

0 2 4 −2 0 2 −4 −2

0 2 −4 −2 0 2 −4 −2

0 −6 −4 −2 0 2 −4 −2

0 2 −4 −2 0 −6 −4 −2

0 −6 −4 −2 0 −6 −4 −2

0 −6 −4 −2 −8 −6 −4 −2



55



e6 :
1

8

 χ0 χ1 χ2 χ3 χ4 χ5 χ6 χ7

0 4 0 4 0 4 0 4

0 −4 0 −4 0 −4 0 −4



e7 :
1

8



χ0 χ1 χ2 χ3 χ4 χ5 χ6 χ7

0 5 2 7 4 1 6 3

0 5 2 −1 4 1 6 3

0 5 2 −1 4 1 −2 3

0 −3 2 −1 4 1 −2 3

0 −3 2 −1 −4 1 −2 3

0 −3 2 −1 −4 1 −2 −5

0 −3 −6 −1 −4 −7 −2 −5


For one particular resolution Y , the family provided by the maximal shift

divisors is already well known.

Proposition 5.22. Let Y = G-Hilb Cn, the moduli space of G-clusters in Cn. If

Y is smooth, then
⊕
L(−Mχ) is the universal family F of G-clusters parametrised

by Y , up to the usual equivalence of families.

Proof. Firstly F is a gnat-family, as over any set U ⊂ X such that G acts freely

on q−1(U) we have π∗F|U ' q∗OCn|U . Hence write F as ⊕L(−Dχ) for some

reductor set {Dχ}. Take an open cover {Ui} of Y and consider the generators

{fχ,i} of Dχ on each Ui. Working up to equivalence, we can consider {Dχ} to be

normalised and so fχ0,i = 1 for all Ui.

Now any G-cluster Z is given by some invariant ideal I ⊂ R and so the

corresponding G-constellation H0(OZ) is given by R/I. In particular note that

R/I is generated by R-action on the generator of χ0-eigenspace. Therefore any

fχ,i is generated from fχ0,i = 1 by R-action, which means that all fχ,i lie in R.

But this means that for any prime Weil divisor P on Y we have

vP (fχ,i) ≥ min
f∈Rχ

vP (f)

and therefore Dχ ≥Mχ. Now Corollary 5.20 forces the equality.
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5.6 Mark Haiman’s Families

It has been pointed out to us by Mark Haiman, who discovered it in the course

of researching into the existence of families of θ-stable G-constellations over pro-

jective crepant resolutions Y of X in the case G ⊂ SLn(C), that over every such

resolution there exist the following two families of G-constellations:

Proposition 5.23 (Mark Haiman). Let G be a finite abelian subgroup of SLn(C)

and Y a crepant resolution of X = Cn/G.

Take the fibre product Y ⊗X Cn and take its normalisation Y ′. Then the

pushdown to Y of OY ′ is a (first) family of G-constellations parametrised by Y .

On the other hand, let Y1 ⊂ Y be the union of all the codimension 0 and 1

orbits of the torus T in Y . Observe that Y1 is independent of the choice of Y

since Y is crepant. Moreover, since Y1 has codimension 1 in Y , any line bundle,

and hence any family of G-constellations parametrised by Y1 extends uniquely to

the whole of Y .

Therefore Y1 parametrises a unique family F1 of G-clusters. It is the restric-

tion of the universal family of G-clusters over G-Hilb, and it is unique because the

universal family of G-clusters is unique. And now, for arbitrary Y , unique exten-

sion of F1 from Y1 to Y defines a (second) family of G-constellations parametrised

Y .

We now demonstrate that Haiman’s first family is the canonical gnat-family

defined in Proposition 5.8.

Let σ ⊂ L⊗ R be a basic cone.

Lemma 5.24. Define a homomorphism α : C[σ∨∩M ]⊗RGR→ K(Cn) by a⊗b 7→
ab.

Then the kernel of α is the nilradical of C[σ∨ ∩M ]⊗RG R.

Proof. K(Cn) is a field, hence nil C[σ∨ ∩M ]⊗RG R ⊆ kerα.

Now take p =
∑
ai ⊗ bi ∈ kerα. Regroup the monomials in bi according to

their character, writing p =
∑
pχ, with pχ =

∑
aj ⊗ bj for each χ ∈ G∨, where

we only sum over those j for which ρ(bj) = χ.

As K(Cn) = K(Cn)G⊗Vreg and α is G-equivariant, α(pχ) = 0 for all χ ∈ G∨.

It thus suffices to prove each pχ is nilpotent.
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Consider p
|G|
χ = (

∑
aj ⊗ bj)|G|. Expand it into

∑
ck ⊗ dk and note that each

dk is a product of |G| elements bj and hence lies in RG. So

p|G|χ = (
∑

ckdk)⊗ 1 = 0

since
∑
ckdk = α(p

|G|
χ ) = 0.

Lemma 5.25. The image of α in K(Cn) is C[σ∨ ∩M + Zn
+] where σ∨ ∩M + Zn

+

is considered as an abelian semigroup in Zn.

Proof. Any p ∈ C[σ∨]⊗RGR can be written as
∑
λix

mi⊗xni where mi ∈ σ∨∩M ,

ni ∈ Z+ and λi ∈ C. Then

α(p) =
∑

λix
mi+ni ∈ C[σ∨ ∩M + Zn

+]

Conversely, any polynomial of the form
∑
λix

mi+ni , with mi ∈ σ∨ ∩ M ,

ni ∈ Z+ and λi ∈ C, is the image of
∑
λix

mi ⊗ xni under α.

Corollary 5.26. Let Y be a toric resolution of X and σ a cone in its fan. Then

the reduced fibre product Aσ ⊗X Cn is Spec C[σ∨ ∩M + Zn
+].

Proposition 5.27. C[σ∨ ∩ Zn] is the integral closure of C[σ∨ + Zn
+].

Proof. Both rings are integral domains which share a field of fractions and we

have the following chain of extensions

C[σ∨ + Zn
+] ⊆ C[σ∨ ∩ Zn] ⊆ K(Cn) (5.14)

Step 1 We claim that C[σ ∩ Zn] lies within the integral closure of C[σ∨ + Zn
+] in

K(Cn). Indeed, take any m ∈ σ∨ ∩ Zn. Then |G|m is G-invariant and so

|G|m ∈ σ∨ ∩M . Hence (xm)|G| ∈ C[σ∨ ∩M + Zn
+].

Step 2 We claim that C[σ∨] is an integrally closed domain. This follows from the

general fact that every toric affine variety is normal. We recall the proof:

let ei ∈ L be the generators of σ in L. Then C[σ∨ ∩ Zn] = ∩iC[〈ei〉∨ ∩ Zn].

And each C[〈ei〉∨ ∩Zn] is isomorphic to C[x1, x2, x
−1
2 , . . . , xn, x

−1
n ], which is

normal.
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Corollary 5.28. Over any toric resolution Y of X, the canonical gnat-family F
is isomorphic to the the pushdown F ′ to Y of the structure sheaf of the normali-

sation of the reduced fibre product Y ×X Cn.

Proof. Take a cone σ in the fan of Y . Then it follows from Corollary 5.26 and

Proposition 5.27 that F ′(Aσ) ' C[σ∨ ∩ Zn]. On the other hand, Corollary 5.9

states that F(Aσ) = C[σ∨ ∩ Zn]. Therefore F and F ′ are equivalent families.

Moreover, as the invariant part of either is OY , they are isomorphic.

We now prove that Haiman’s second family is the maximal shift gnat-family

across Y . This follows immediately from Proposition 5.22 and the following

lemma:

Lemma 5.29. Let Y and Y ′ be two toric resolutions of X with common set

1-skeleton E. Let F and F ′ be gnat-families on Y and Y ′, respectively. If

F|Y1 ' F ′|Y1, then there exists a set of numbers {qχ,i}χ∈G∨,ei∈E such that F =

⊕L(−
∑
qχ,iEi) and F = ⊕L(−

∑
qχ,iE

′
i), where Ei and E ′

i are the exceptional

divisors corresponding to ei ∈ E in Y and Y ′, respectively.

Proof. This follows from the fact that Ei|Y1 = E ′
i|Y1 for any ei ∈ E. Indeed, the

Ei are irreducible, so they contain a unique codimension 1 orbit of torus, which

is, by the definition of Y1, precisely Ei|Y1 .

5.7 Summary

Finally, we combine the results achieved thus far into a classification theorem.

Theorem 5.30 (Classification). Let G be a finite abelian subgroup of GLn(C),

X the quotient of Cn by the action of G and Y a resolution of X. Then every

gnat-family on Y , up to isomorphism, is of the form
⊕

χ∈G∨ L(−Dχ), where each

Dχ is a χ-Weil divisor and the set {Dχ} satisfies the inequalities

Dχ + (f)−Dχρ(f) ≥ 0 ∀ χ ∈ G∨, G-homogeneous f ∈ R

Here ρ(f) ∈ G∨ is the homogeneous weight of f . Conversely for any such set

{Dχ},
⊕
L(−Dχ) is a gnat-family.

59



Moreover, each equivalence class of gnat-families has precisely one family with

Dχ0 = 0. The divisor set {Dχ} corresponding to such a family satisfies the

inequalities

Mχ ≥ Dχ ≥ −Mχ−1

where {Mχ} is a fixed divisor set depending only on G and Y . In particular, the

number of equivalence classes of families is finite.

Proof. Proposition 5.6 establishes the correspondence of isomorphism classes of

gnat-families and reductor sets. Corollary 5.4 lifts the correspondence to the

level of equivalence classes and normalised reductor sets. Corollary 5.20 gives the

bounds on the set of all normalised reductor sets, and as each Mχ is a finite sum

by Corollary 3.14, this set is finite.
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Chapter 6

Towards orthonormal families for

G ⊂ SL3(C)

6.1 Motivation

Let us consider the case that G is a finite abelian subgroup of SL3(C). Bridgeland,

King and Reid [BKR01] prove that Y = G-Hilb C3 is a smooth, crepant resolution

of C3/G in the process of establishing an equivalence of categories between the

bounded derived categories D(Y ) of coherent sheaves on Y and and DG(C3) of

G-equivariant coherent sheaves on Cn.

We now give an outline of the method [BKR01] uses to establish the equiva-

lence of derived categories, as it would apply in our situation, where we assume

from the start that Y is a crepant resolution of C3/G. For further details and

for the explanation of the derived category terminology see [BKR01], [Bri99],

[BO95].

Given a crepant resolution Y of C3/G, consider the following commutative

square:

Y × C3

πY

{{wwwwwwwww πC3

##H
HHHHHHHH

Y
π

##H
HH

HH
HH

HH
H C3

q

zzuuu
uuu

uuu
u

X
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Given any gnat-family F on Y , we consider the universal G-constellation UF
on Y × C3, introduced in Section 2.1. For any p ∈ Y we have

(πC3)∗(UF |p×C3) = ˜(F|p)

Recall that the fibre F|p is the (G,R)-module obtained by taking the pullback

of F over the point-scheme inclusion p ↪→ Y . We write ˜(F|p) for the associated

sheaf on C3.

We define the Fourier–Mukai transform functor D(Y )→ DG(C3) by

Φ(−) : RπC3,∗(UF ⊗ π∗Y(−⊗ χ0))

We then proceed to prove that Φ is an equivalence of categories. At the

heart of the proof is the following criterion, established by Bridgeland [Bri99],

for an exact functor between two triangulated categories to be a equivalence of

categories.

Theorem ([Bri99], Theorems 2.3). Let A and B be triangulated categories and

F : A → B an exact functor with right and left adjoints. Let Ω be a spanning

class for A. Then F is fully faithful if and only for all elements ω1, ω2 of Ω and

for all integers i, the homomorphism

F : Homi
A(ω1, ω2)→ Homi

B(Fω1, Fω2) (6.1)

is an isomorphism.

Theorem ([Bri99], Theorem 3.3). Let A and B be triangulated categories, with

B indecomposable and not every object in A isomorphic to 0. Let F : A→ B be

a fully faithful functor. Then F is an equivalence of categories if and only if F

has a left adjoint G and a right adjoint H such that ,

Hb ' 0⇒ Gb ' 0 for any object b ∈ B (6.2)

The indecomposability of DG(C3) is a consequence of the fact that G acts

faithfully on C3 ([BKR01], Lemma 4.2).

Since the canonical classes of C3 and Y are trivial, Grothendieck duality can
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be applied to show that

Ψ(−) : [RπY(U∨F
L
⊗ π∗C3(−))[3]]G

is both left and right adjoint to Φ. This also takes care of (6.2).

It remains to prove (6.1). A spanning class is a subclass Ω of objects of a

triangulated category A such that for any object a ∈ A

Homi
A(a, ω) = 0 ∀ ω ∈ Ω ∀i ∈ Z⇒ a ' 0

and

Homi
A(ω, a) = 0 ∀ ω ∈ Ω ∀i ∈ Z⇒ a ' 0

In our case, because Y is nonsingular, we can take Ω to be {Oy | y ∈ Y }.
It remains to establish that Φ is fully faithful. Observe that for any y ∈ Y ,

ΦOy = ˜(F|y). We need

Φ : Exti
Y (Oy1 ,Oy2)→ G- Exti

C3( ˜(F|y1),
˜(F|y2)) (6.3)

to be an isomorphism for all i and all y1, y2 ∈ Y .

It is well known what the groups on left-hand side of (6.3) look like:

Exti
Y (Oy1 ,Oy2) =


0, if y1 6= y2,∧i TY,y1 for y1 = y2, i ∈ 0, . . . , 3,

0 for y1 = y2, i /∈ 0, . . . , 3

(6.4)

where TY,y1 is the tangent space at y1 in Y .

We now see that for (6.3) to be isomorphisms, it is necessary for F to have

the following two properties:

Definition 6.1. A family F of G-constellations parametrised by Y is simple if

for any y ∈ Y , F|y is a simple (G,R)-module, i.e.

HomG,R(F|y,F|y) = C (6.5)
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It is orthogonal if for any y1, y2 distinct points of Y , we have:

HomG,R(F|y1 ,F|y2) = 0 (6.6)

It is orthonormal if it is both orthogonal and simple.

When Y is G−Hilb(C3), the family of all G-clusters is an orthonormal family

because for any G-cluster Z, H0(OZ) is generated by 1 as a (G,R) module, so any

nonzero homomorphism between two G-clusters is necessarily an isomorphism,

fully determined by the image of 1 ∈ H0(OZ). And by G-equivariance, 1 has to

map to the χ0-eigenspace of H0(OZ), which is isomorphic to C.

We now indicate why we expect that it is not only necessary, but also sufficient

for F to be an orthonormal family in order for Φ to be fully faithful, and hence

an equivalence of categories.

We first deal with the case y1 6= y2: here we need to show that the groups on

the right hand side of (6.3) vanish. Let Q be the object of D(Y ×Y ) which gives

the functor ΨΦ: Y → Y as a Fourier–Mukai transform ([Muk81], Proposition

1.3). We have

Homi
D(Y×Y )(Q,Oy1,y2) = Homi

DY
(ΦΨOy1 ,Oy2) = G- Exti

C3( ˜(F|y1),
˜(F|y2))

Suppose now π(y1) 6= π(y2). Lemma 2.6 implies that supports of F|y1 and

F|y2 are disjoint and so G- Exti
C3(F̃|y1 , F̃|y2) vanishes for all i. Also, this proves

that the support of Q lies within Y ×X Y .

When y1 6= y2, (6.6) together with Serre duality on C3 implies that the groups

on the right hand side in (6.3) vanish for i 6= 1, 2. Also, this shows that the

restriction of Q to Y ×X Y \∆ has homological dimension of 1, where ∆ is the

diagonal,

To show that the groups on the right hand side in (6.3) also vanish for i =

1, 2, we apply the intersection theorem from commutative algebra (for detailed

argument see [BKR01], Section 6, Steps 3-4) which implies that, for non-zero

objects of the derived category of a scheme, their homological dimension is greater

or equal to the codimension of their support. Since the codimension of Y ×X Y

in Y × Y is ≥ 2, Q restricted to Y × Y \∆ must be zero, which is equivalent to

G- Exti
C3(F̃|y1 , F̃|y2) vanishing for all i when y1 6= y2.
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It remains to deal with the case y1 = y2. For this we would like to apply an

analogue of the following theorem of Bondal and Orlov ([BO95], Theorem 1.1 or

[Bri99], Theorem 5.1)

Theorem. Let M and X be smooth algebraic varieties and E ∈ D(M × X).

Then the Fourier–Mukai transform ΦE : D(M) → D(X) is a full and faithful

functor if and only if

1. Homi
X(Φ(Ot1),Φ(Ot2)) = 0 for every i when t1 6= t2.

2. Homi
X(Φ(Ot1),Φ(Ot1)) = 0 for i /∈ [0, dimM ] when t1 = t2.

3. Hom0
X(Φ(Ot1),Φ(Ot1)) = C when t1 = t2.

for any pair of points t1, t2 in M .

We expect that there should hold a G-equivariant version of this theorem,

with a finite group G acting on X, and hence M ×X, and with E ∈ DG(M ×X)

and ΦE : D(M)− > DG(X). If so, then we may complete the argument as

follows:

1. We have already shown that G- Exti
C3(F̃|y1 , F̃|y2) vanishes when y1 6= y2

2. When y1 = y2 but i 6= 0, . . . , 3, then G- Exti
C3(F̃|y1 , F̃|y1) vanishes by di-

mension considerations.

3. The statement that G- HomC3(F̃|y1 , F̃|y2) = C whenever y1 = y2 is precisely

the requirement that F is a simple family.

Thus Φ is fully faithful and hence an equivalence of categories. In other words,

the theorem tells us that the remaining (the case of y1 = y2 and i = 1, 2, 3)

isomorphisms in (6.3) follow once all the others are known.

Thus what we expect is that for any crepant resolution Y of C3/G the Fourier–

Mukai transform using a gnat-family F gives an equivalence of categories if and

only if F is orthonormal.

Craw and Ishii proved in [CI02] that every projective crepant resolution Y

of C3/G can be realised as a moduli space Mθ of θ-stable G-constellations. It

is straightforward to show that a homomorphism between any pair of θ-stable

65



G-constellations is either 0 or an isomorphism. This implies that the tautologi-

cal family on Mθ, which parametrises all θ-stable G-constellations is necessarily

orthonormal. Therefore any projective crepant resolution has an orthonormal

gnat-family on it. In this case, because Y is realised as a moduli space, it is

possible to adapt the argument of [BKR01] and show that there is an associated

derived equivalence Φ: D(Y )→ DG(C3). Thus the remains a following question:

Question 6.2. Let G be a finite abelian subgroup of SL3(C). Let Y be any crepant

resolution of C3/G. Does there exists an orthonormal gnat-family across Y and

there is an equivalence of derived categories

D(Y )
∼−→ DG(C3)?

As a step towards answering this question, we investigate the problem of

finding simple gnat families on crepant resolutions.

6.2 Simplicity of G-constellations

Now let Y → X be a toric resolution of X = C3/G, given by fan F with set E

of the generators of the cones, and let F be gnat-family on Y. We are interested

in studying the simplicity of G-constellations in F . Recall the correspondence

between G-constellations and representations of McKay quiver of G into Vreg

introduced in 4.4. The following definition was first introduced in [CI02], section

10.2:

Definition 6.3. Let V be a G-constellation and let {αq}q∈Q1 , where Q1 is the ar-

row set of the McKay quiver, be the corresponding quiver representation. Define

ΓV to be the graph whose vertex set is the vertex set Q0 of the McKay quiver of

G and whose edges are those arrows q ∈ Q1, forgetting the orientation, for which

αq is not a zero map.

Proposition 6.4.

HomG,R(V, V ) = ⊕ΓV,i
C (6.7)

where ΓV,i are the connected components of ΓV .
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Proof. We can write HomG,R(V, V ) as

{α ∈ HomG(V, V ) | m.α(v) = α(m.v) ∀m ∈ R, v ∈ V } (6.8)

We have HomG(V, V ) = ⊕χ∈G∨ HomG(Vχ, Vχ) = ⊕χ∈G∨C. Rewrite (6.8) as

{(αχ) ∈ ⊕χ∈G∨C | m.(αχv) = αχρ(m)m.v ∀m ∈ R,χ ∈ G∨, v ∈ Vχ} (6.9)

Observe that for any m ∈ R, χ ∈ G∨ and v ∈ Vχ \ {0}, we have m.v = 0 if and

only if χ and χρ(m) are in different connected components of ΓV . And m.v 6= 0

implies αχ = αχρ(m) in (6.9). Therefore:

HomG,R(V, V ) ={(αχ) ∈ ⊕χ∈G∨C | αχ = αχ′ if ∃ ΓV,i 3 χ, χ′}

=⊕ΓV,i
C

Corollary 6.5. A G-constellation is simple if and only if ΓV is connected.

Now consider gnat-family F = ⊕L(−Dχ). Recall that its χ-eigensheaf Fχ is

L(−Dχ−1), since G acts on a monomial of weight χ by a character χ−1.

In a corresponding representation of the McKay quiver, the arrow (χ, j) ∈ Q1

is represented by action of xj on Fχ, which we can think of as a global section β

of OY -module

HomG,OY
(xj ⊗Fχ,Fχρ−1(xj)) (6.10)

defined by xj ⊗ s 7→ xj.s for any section s of Fχ. By xj ⊗ Fχ we mean, similar

to Section 4.4, the sheaf OY xj ⊗OY
Fχ and note that OY xj, the free rank 1

sub-OY -module of K(C3), is precisely L(−(xj)).

Now consider OY -module

L(Dχ−1 + (xj)−Dχ−1ρ(xj)) (6.11)

Divisor Dχ−1 + (xj) − Dχ−1ρ(xj) is an effective Weil divisor (Reductor condition

5.5) and so (6.11) has a global section β′ given by 1 ∈ K(C3), which vanishes

precisely on Dχ−1 + (xj)−Dχ−1ρ(xj).
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There exists a canonical isomorphism from (6.10) to (6.11), observe that it

maps β to β′.

Definition 6.6. Given a gnat-family F = ⊕L(−Dχ) and an arrow q = (χ, j) ∈
Q1 of the McKay quiver, define BF ,q, the divisor of zeroes of q in F to be

an (effective) divisor

BF ,q = Dχ−1 + (xj)−Dχ−1ρ(xj) (6.12)

If a prime Weil divisor P belongs to BF ,q we shall say that in F, q vanishes

along P .

Proposition 6.7. Let F be a gnat-family, p be any point in Y and q ∈ Q1 be an

arrow of the McKay quiver. Then q /∈ ΓF|p if and only if p ∈ BF ,q.

Proof. Follows from the discussion prior to definition 6.6. The map αq in the

representation of McKay quiver into F|p is a zero map if and only if the image of

global section β in HomG,OY
(xj⊗Fχ,Fχρ(xj))|p is zero. Which happens if and only

if image of 1 ∈ K(C3) in L(BF ,q)|p is zero, and that is equivalent to p ∈ BF ,q.

Proposition 6.8. Let F be a gnat-family. Let F ′ be an equivalent family. Then

for all p ∈ Y , we have:

ΓF|p = ΓF ′|p

Proof. Let F = ⊕L(−Dχ) then Corollary 5.3 implies that F ′ = ⊕L(−Dχ + N)

for some Weil divisor N on Y . This implies BF ,q = BF ′,q for each q ∈ Q1, and

now the claim follows from Proposition 6.7.

Proposition 6.8 implies, in particular, that when studying the simplicity of

gnat-families it is sufficient to restrict ourselves to the normalised ones. Recall

now that if ⊕F(−Dχ) is a normalised gnat-family, then Proposition 5.20 and

Corollary 3.14 together imply that each Dχ is of form
∑
qχ,iEi. So we have the

following lemma:

Lemma 6.9. Let F = ⊕L(−
∑
qχ,iEi) be a normalised gnat-family. Then for

any (χ, a) ∈ Q1, an arrow in the McKay quiver, we have

BF ,(χ,a) =
∑
ei∈E

(qχ−1,i + ei(xa)− qχ−1ρ(xa),i)Ei (6.13)
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Proof. Follows from (6.12) and the fact that (xa) =
∑

P vP (xa) =
∑

ei∈E ei(xa),

using Corollary 3.14 and Proposition 4.2.

6.3 Orbits of T in Y

Let us recall some more of the toric magic. The orbits of quotient torus T in

Y are in one-to one correspondence with interiors of cones in fan Σ of Y : any

orbit S of T in Y defines the cone σ∨ in M of the Laurent monomials, which are

regular on S. The points in the interior of the dual cone σ in L are precisely

the points f ∈ L, for which the limit point of the corresponding one-parameter

subgroup of T , as embedded into its own open orbit in Y , exists and lies on S.

We shall write Sσ for the orbit corresponding to the interior of cone σ ∈ Σ.

Explicitly: for any basic cone σ′ ∈ F, on the affine piece Aσ′ , orbit Sσ is given

by

{p ∈ Aσ′ | ei ∈ σ ⇔ ěi(p) = 0}

for the local coordinates ěi, which are the basis dual to the generators ei of σ′.

On the other hand, for any cone σ ∈ Σ we have the affine subvariety of Y ,

which consists precisely of those orbits Sσ′ of T for which σ ⊆ σ′. We shall denote

it by Eσ. It is closed, because, in any affine piece Aµ, it is given by the vanishing

of the ideal in C[µ∨ ∩M ] generated by those Laurent monomials xm, for which

m lies in the interior of σ∨.

Explicitly: for any basic cone σ′ ∈ F, on the affine piece Aσ′ , Eσ ∩Aσ′ is given

by

{p ∈ Aσ′ | ei ∈ σ ⇒ ěi(p) = 0}

for the local coordinates ěi.

With this notation, the divisors Ei on Y are precisely E<ei>.

Proposition 6.9 shows that the vanishing of any map in the representation of

the McKay quiver lies along the exceptional divisors or the pullbacks of coordinate

hyper-planes in Y . This allows for the following result:

Proposition 6.10. Let p, p′ ∈ Y be two points lying on the same orbit of the

quotient torus T . Then ΓFp = ΓFp′
.

Proof. Since each Ei is a union of orbits of T , we have p ∈ Ei if and only if

p′ ∈ Ei for all ei ∈ E. Now Lemma 6.9 now implies that p ∈ BF ,q if and only
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if p′ ∈ BF ,q, for any arrow q ∈ Q1 of the McKay quiver. Proposition 6.7 now

implies the claim.

Definition 6.11. Let σ be a cone in the fan of Y . Define ΓF ,σ to be ΓF ,p for any

p ∈ Sσ.

Proposition 6.12. Let σ be a cone in the fan of Y and q be an arrow in the

McKay quiver of G. Then q ∈ ΓF ,σ if and only if Bq|Aσ = 0.

Proof. Observe that

Aσ =
⋃

σ′⊆σ

Sσ′

Therefore, for any ei ∈ E, Aσ ∩Ei = 0 is equivalent to ei /∈ σ, which is equivalent

to Sσ∩Ei = ∅. Therefore Bq|Aσ = 0 is equivalent Sσ∩Bq = ∅ and now Proposition

6.7 implies the claim.

Observe that there exist just the one 0-dimensional cone in Σ - the zero cone.

The corresponding orbit, S0, is the unique open orbit and T acts faithfully on it.

S0 consists of points p ∈ Y such that p /∈ Ei for all ei ∈ E.

Corollary 6.13. For any gnat-family F , ΓF ,0 is the full McKay quiver of G. In

particular, it is connected.

Proof. If p /∈ Ei for all ei ∈ E, then p /∈ BF ,q for all q ∈ Q1, the arrows of McKay

quiver. Hence, by Proposition 6.12, every q ∈ Q1 contributes an edge to ΓF ,0.

We see now that to study the simplicity of G-constellations in a gnat-family

F we need to study the graph ΓF ,σ for each of the finite number of the orbits of

T in Y .

6.4 Embedding of the McKay quiver into a real

2-torus

The fact that G ⊆ SL3(C) allows us to embed its McKay quiver in a two dimen-

sional real torus. Following is the construction introduced by Craw and Ishii in

[CI02]. Recall the following exact sequence, which we introduced in Section 4.1:
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0→M → Z3 ρ−→ G∨ → 0 (6.14)

Note that as G ⊆ SL3(C) we have (1, 1, 1) ∈ M , i.e. x1x2x3 is an invariant

monomial. Take H = Z3/Z(1, 1, 1) and M ′ = M/Z(1, 1, 1). Then (6.14) induces

0→M ′ → H → G∨ → 0 (6.15)

For every Laurent monomial p =
∏
xmi

i for some (mi) ∈ Z3 we shall write [p] for

the class of (mi) in H, e.g. [x1x
2
2] for the class of (1, 2, 0).

Definition 6.14. The universal cover U of the McKay quiver of G is the quiver

whose vertex set are the elements of H and whose arrow set is

{(h, h+ [xi]) | h ∈ H, i ∈ 1, 2, 3}

The McKay quiver of G is a quotient of U by the action of M ′ in the following

sense: we identify the class of a vertex h in the quotient with vertex ρ(h)−1 of the

McKay quiver (recall that G acts by character χ−1 on the monomial of weight

χ), and identify the class of an arrow (h, h + [xi]) with arrow (ρ(h)−1, i) of the

McKay quiver.

We have a natural ‘embedding’ of U into H ⊗R, where the arrow (h, h+ [xi])

is identified with the line segment {h + λ[xi] | λ ∈ (0, 1)}. Observe that H ⊗ R,

with the natural (weak) topology, is a topological vector space isomorphic to R2.

Definition 6.15. Write C(h, σ) for a cycle in U formed by the arrows

{(h, h+ [xσ(1)]), (h+ [xσ(1)], h+ [xσ(1)] + [xσ(2)]), (h+ [xσ(1)] + [xσ(2)], h)}
(6.16)

for some h ∈ H and σ ∈ S3.

For illustrative purposes, we fix a specific isomorphism:

φH : H ⊗ R→ R2 :

[x1] 7→ (
√

3
2
,−1

2
)

[x3] 7→ (0, 1)
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and observe that the image of U under φH is a tessellation of R2 into regular

triangles with boundaries C(h;σ):

Consider now quotient TG = H⊗R/M ′. It is a two dimensional real torus and

observe that U/M ′, the McKay quiver of G tessellates this torus into triangles,

whose boundaries are the images of the C(h, σ).

Definition 6.16. Write C(χ;σ) for a cycle in the McKay quiver formed by the

arrows

{(χ, σ(1)), (χρ([xσ(1)])
−1, σ(2)), (χρ([xσ(1)xσ(2)])

−1, σ(3))} (6.17)

for some χ ∈ G∨ and σ ∈ S3.

Then C(χ;σ) is the image in the McKay quiver of all C(h, σ) in U such that

ρ(h) = χ−1. We see there are altogether 2|G| distinct cycles C(χ, σ): considering

C(χ, 123) and C(χ, 132), for χ ranging across G∨, counts them all. Hence the

McKay quiver tessellates TG into 2|G| regular triangles.

We shall usually depict TG on the diagrams by drawing a fundamental domain,

i.e. a region of H ⊗ R which maps 1-to-1 to TG on the interior. In our case this

would be a fragment of U consisting of 2|G| triangles C(h, σ), each of which maps

to distinct C(χ, σ).

Example 6.17. Most of the examples in this chapter will be given with G being

the group 1
18

(1, 5, 12). i.e. the group of 18th roots of unity embedded into SL3(C)

by

ξ 7→
(

ξ1

ξ5

ξ12

)
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So the tessellation of TG by the McKay quiver of G looks like:

where we denote by i the vertex χi of the McKay quiver in order not to clutter

the diagram.

The resolution Y , which we shall use in subsequent examples, is the one whose

fan triangulates junior simplex ∆ as follows:
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where

e1 =
1

18
(18, 0, 0) e6 =

1

18
(3, 15, 0) e11 =

1

18
(9, 9, 0)

e2 =
1

18
(0, 18, 0) e7 =

1

18
(4, 2, 12) e12 =

1

18
(11, 1, 6)

e3 =
1

18
(0, 0, 18) e8 =

1

18
(5, 7, 6) e13 =

1

18
(12, 6, 0)

e4 =
1

18
(1, 5, 12) e9 =

1

18
(6, 12, 0) e14 =

1

18
(15, 3, 0)

e5 =
1

18
(2, 10, 6) e10 =

1

18
(8, 4, 6)

The family we shall normally consider will be the maximal shift family Fmax =

⊕L(−Mχ). Maximal shift divisors Mχ =
∑
mχ,iEi for these G and Y , can be

calculated, as in Example 5.21, to be:
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E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14

χ0 0 0 0 0 0 0 0 0 0 0 0

χ1
1
18

2
18

3
18

4
18

5
18

6
18

8
18

9
18

11
18

12
18

15
18

χ2
2
18

4
18

6
18

8
18

10
18

12
18

16
18

1 4
18

1 6
18

12
18

χ3
3
18

6
18

9
18

12
18

15
18

1 1 6
18

1 9
18

15
18

1 9
18

χ4
4
18

8
18

12
18

16
18

1 2
18

1 6
18

14
18

1 8
18

12
18

9
18

χ5
5
18

10
18

15
18

2
18

7
18

12
18

4
18

9
18

1
18

6
18

3
18

χ6
6
18

12
18

0 6
18

12
18

0 12
18

0 12
18

0 0

χ7
7
18

14
18

3
18

10
18

17
18

6
18

1 2
18

9
18

5
18

12
18

15
18

χ8
8
18

16
18

6
18

14
18

1 4
18

12
18

110
18

1 16
18

1 6
18

12
18

χ9
9
18

1 9
18

1 1 9
18

1 1 9
18

9
18

1 9
18

χ10
10
18

1 2
18

12
18

4
18

14
18

1 6
18

8
18

1 2
18

12
18

6
18

χ11
11
18

1 4
18

15
18

8
18

1 1
18

12
18

16
18

9
18

13
18

6
18

3
18

χ12
12
18

6
18

0 12
18

6
18

0 6
18

0 6
18

0 0

χ13
13
18

8
18

3
18

16
18

11
18

6
18

14
18

9
18

17
18

12
18

15
18

χ14
14
18

10
18

6
18

1 2
18

16
18

12
18

1 4
18

1 10
18

1 6
18

12
18

χ15
15
18

12
18

9
18

6
18

1 3
18

1 12
18

1 9
18

3
18

1 9
18

χ16
16
18

14
18

12
18

10
18

1 8
18

1 6
18

1 2
18

1 14
18

12
18

6
18

χ17
17
18

16
18

15
18

14
18

13
18

12
18

10
18

9
18

7
18

6
18

3
18
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6.5 Cell Complexes

To describe the structures arising in the subgraphs Γσ, introduced in Definitions

6.11 and 6.3, we shall need the language of cell complexes: both abstract set-

theoretical ones and the topological CW-complexes. This section gathers together

the formal definitions involved and constructs abstract cell complexes, which

mimic topologies of universal cover quiver U , as embedded into plane H⊗R, and

of the McKay quiver of G, as embedded into torus TG.

Definition 6.18. An abstract cell complex is a triple (A, <, dim), where A
is a set of objects called cells, ‘<’ is an irreflexive, anti-symmetric and transitive

relation on the elements ofA called bounding relation, and ‘dim’ is a mapA →
N, called the dimension function, satisfying a1 < a2 ⇒ dim(a1) < dim(a2).

Given a ∈ A, the boundary of a is a set {a′ ∈ A | a′ < a}.

The complex is called n-dimensional if n = maxa∈A dim(a). We say that a is

an m-cell if dim(a) = m, writing Am for the collection of all m-cells.

Definition 6.19. We define the relation ‘a is connected to b’ on cells of an

abstract cell complex A, to be the unique equivalence relation extending the

relation a < b.

Given a subset B of cells of A, we call the equivalence classes on B, under

the relation of being connected, the connected components of B. We say that

B is connected if it has it has only one connected component.

Definition 6.20. We define a 2-dimensional cell complex (U , <, dim) as follows.

The set U0 of 0-cells is H, the vertices of the quiver U . The set of U1 of 1-cells is

the set of the arrows (h, i) of the quiver U . The set of 2-cells is the set of abstract

objects

{T (h, σ) | h ∈ H;σ ∈ S3}

in which we identify T (h, σ) and T (h′, σ′) if C(h, σ) = C(h′, σ′) are the same

cycle in U . We call T (h, σ) a U-triangle. Finally we set U = ∪Ui.

We define the bounding relation < as the unique irreflexive, anti-symmetric

and transitive relation on U satisfying for every q ∈ U1 the following conditions:

1. hq < q
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2. tq < q

3. q < T (h, σ) if and only if q ∈ C(h, σ)

In similar way, we define a 2-dimensional cell complex T , only with McKay quiver

of G instead of U . Observe that we have quotient map U → T , with fibre at

every cell being a coset of M ′.

Observe that now we can consider the graph ΓV , defined in Definition 6.3, as

a 1-dimensional subcomplex of cell complex T , with the edges and vertices of ΓV

being the 1-cells and 0-cells in T .

Compared to a topological CW-complex (see, for example, [Hat01], the Ap-

pendix), an abstract cell complex lacks the information on exactly how the cells

are attached to each other. On an algebraic level, in a CW-complex X, this

information is reflected in the boundary maps δ of the chain complex of singular

homology groups

. . .
δ−→ Hk(Xk, Xk−1)

δ−→ Hk−1(Xk−1, Xk−2)→ . . . (6.18)

where Xk is the k-skeleton of X, see ([Hat01], Section 2.2, p. 137). The idea

is that Hk(Xk, Xk−1) is a free abelian group, which splits as a direct sum of

one Hn(Sn) = Z for each k-cell in X. For each k-cell a, a choice of a map ea,

homeomorphic on interiors, from the standard k-simplex ∆k into a defines a class

[ea] in Hk(Xk, Xk−1), which is a generator of the Z-component of Hk(Xk, Xk−1),

corresponding to a . It is important that there is no intrinsic such choice - as it is

equivalent to choosing an orientation on the cell a. Now, given a map ea, we can

use the gluing map from the boundary δa into Xk−1 to produce a map from each

face of ∆k into Xk−1. These let us construct the cycle δ∆k in Hk−1(Xk−1) and

the image of this cycle in Hk−1(Xk−1, Xk−2) is exactly the image of [ea] under the

complex boundary map δ. For each (k− 1)-cell b, the projection of δ[ea] onto the

Z-component of Hk−1(Xk−1, Xk−2) counts, for each time b occurs in the boundary

of a, the orientation on b induced from the orientation given on a given by ea.

Definition 6.21. Given an abstract cell complex A, an associated chain

complex CA• is a collection of free abelian groups CA
k = ⊕a∈Ak

Zea and boundary

maps

. . .
δ−→ CA

k
δ−→ CA

k−1
δ−→ . . .
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satisfying following conditions:

1. δ2 = 0

2. Let a be a k-cell and let δ(ea) =
∑

b∈Ak−1
λbeb. Then, for any (k− 1)-cell b,

λb 6= 0 implies b < a.

Similar to CW-complexes, we consider elements ea and −ea as corresponding

to the two possible choice of ”orientation” on cell c. We can then think of the

differential maps δ as abstract versions of gluing maps of a CW-complex, in

that they tell us us how a choice of ”orientation” on a cell induces a choice of

”orientation” on the cells in its boundary.

Therefore we shall say that a k-cell b ∈ Ak belongs to a k-chain n =
∑

a∈Ak
λaea

in CA• if the coefficient λb of eb in n is non-zero. By multiplicity of b in n we

shall mean the absolute value of λb. Finally, we define the orientation of b in

n to be +eb, if λb is positive, and −eb, if λb is negative.

Given a k-chain n =
∑

a∈Ak
λaea in CA• , we say that a chain n′ =

∑
a∈Ak

λ′aea

is a subchain of n if for every k-cell b we have

0 ≤ λ′b ≤ λb or λb ≤ λ′b ≤ 0 (6.19)

In other words, cells, which lie in n′, must also lie in n and have in n the same

orientation and greater or equal multiplicity.

Given a chain n ∈ CA• , we define a support ñ of n in A to be subcomplex of

A defined by saying that cell a lies in ñ if and only if a lies in n or there exists b,

such that b lies in n and a < b.

We say that a chain n is connected if and only if its support ñ is connected.

We say that two chains n and n′ are disjoint, if and only if their supports are

disjoint.

We now proceed to define an associate chain complex for the cell complex U
(and, respectively, for T ) constructed in Definition 6.20. We make our choices,

based on wanting ea to correspond, for 1-cells, to the orientation of the respective

arrow in the quiver U and, for 2-cells, to the ‘anti-clockwise’ orientation of the

respective triangular domain in R2, under the embedding φH .

Definition 6.22. Let T (h, σ) be an element of U2. We say that it is a ‘plus’

(respectively ’minus’) triangle, if ε(σ), the sign of σ as a permutation in S3, is +1
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(respectively −1).

And similarly for the cycles C(h, σ) in the quiver U .

Example 6.23. If we consider the quiver U as embedding into R2 by φ, then

the cycles C(h, σ) get labelled as follows:

Definition 6.24. For the complex U from Definition 6.20 we define an associated

chain complex CU
• by setting the boundary maps to be:

1. δ : CU
1 → CU

0 maps

eq 7→ ehq − etq (6.20)

for each q ∈ U1,

2. δ : CU
2 → CU

1 maps

eT (h,σ) 7→ ε(σ)
∑

q∈C(h,σ)

eq (6.21)

for each T (h, σ) ∈ U2.

In the same way, we define chain complex CT
• associated with cell complex T .

We can now naturally define a geometrical realisation of a pair (A, CA• )

to be a topological space X, with a CW-structure, equipped with:

1. A 1-to-1 correspondence α between k-cells of A and k-cells of X, which

induces equivalence between relations < on A and ‘lie in the boundary of’

on X.
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2. A chain isomorphism α′

. . . // CA
k

δ //

α′∼
��

CA
k−1

//

α′∼
��

. . .

. . . // Hk(Xk, Xk−1)
δ // Hk−1(Xk−1, Xk−2) // . . .

which for each k-cell a ∈ Ak takes ea ∈ CA• to one of the two generators of

the Z-component of Hk(Xk, Xk−1), corresponding to α(a).

The embedding φH of H ⊗ R in R2 and the induced embedding of U into

R2 as a regular triangular lattice, allows us to define the following geometrical

realisations of (U , CU
• ) and (T , CT

• ):

Definition 6.25. Define φU to be a CW-complex on R2, whose set of 0-cells

consists of the images φh of all vertices of U under φ, whose set of 1-cells consists

of an open segment φ(h, i) = {h + λxi | λ ∈ (0, 1)} for each arrow (h, i) of U ,

whose set of 2-cells consists of a 2-cell φT (χ, σ), for each 2-cell T (σ, χ) in U ,

which we define to be open triangular domain enclosed by the cells φa, where a

ranges over all cells in δT (χ, σ). The gluing maps of this complex are simply the

identity maps in R2.

And similarly for the CW-complex φT on torus TG.

A theorem in algebraic topology([Hat01], Theorem 2.35) tells us that, for a

CW-complex X, homology groups of cellular chain complex (6.18) are canonically

isomorphic to singular homology groups of X. Hence giving a geometrical reali-

sation of a pair (A, CA• ) as a CW-structure on a space X gives an isomorphism

from H•(X,Z) to H•(A,Z). In particular, this implies that H•(U ,Z) computes

the homology of R2 and H•(T ,Z) computes the homology of the torus TG.

Given an abstract n-dimensional cell complex pair (A, CA• ) we define dual

pair to consist of:

1. Chain complex A∨, whose set of i-cells consists of cell a∨ for every (n− i)-
cell a in A and whose boundary relation is the inversion of the boundary

relation on A.

2. The associated chain complex, which we identify with the cochain complex

Hom(CA• ,Z) via identifying generator ea∨ with the co-chain e∨a .
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Below we describe a CW-structure on R2 (and, respectively, for the quotient

torus TG), which is a geometrical realisation of dual U∨ of complex U (resp. dual

T ∨ of T ) described in Definition 6.25.

Definition 6.26. Define φU∨ to be a CW-structure on R2 who 0-cells φT (h, σ)∨

are the centres of the triangles φT (h, σ); whose 1-cells φ(h, i)∨ are the open

intervals connecting the centres of the two triangles φT (h, σ), for which (h, i) ∈
C(h, σ); whose 2-cells h∨ are the hexagonal-shaped domains enclosed by the 1-

cells φq∨, where q are those arrows of U for which either hq = h or tq = h.

Similarly, we define φT ∨ on TG.

Below we give a picture of the fragment of CW -complex φU∨, where we

additionally depict the choices of orientations on its 1-cells and its 2-cells which

induce chain isomorphism α′, required to make it a geometrical realisation of

(A∨,Hom(CA• ,Z)):

Finally, observe that since R2 is a topological universal cover of TG, and so lift

of any path is unique up to a choice of lift of a basepoint, there is a natural 1-to-1

correspondence between elements of H1(TG,Z) and translations in the fibre of the

quotient map R2 → TG, that is, in the lattice M ′. This establishes the following

two isomorphisms, which we shall later make a use of:

H1(T ,Z)
∼−→M ′ = M/Z(1, 1, 1) (6.22)

(M ′)∨ = L ∩ (1, 1, 1)⊥
∼−→ H1(T ,Z) (6.23)
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Observe that L ∩ (1, 1, 1)⊥, which we shall denote by L′, is the lattice which

contains differences between any two vectors in the junior simplex ∆ ⊂ L, in

particular, for any 〈ei, ej〉, a cone in the fan Σ of Y , it contains ei − ej, the side

of a corresponding basic triangle in the triangulation of ∆.

6.6 Edge-paths

In this section we describe formalities of the language of edge-paths, which we

shall require in latter sections to describe 1-cochains in Hom(CT1 ,Z), whose sup-

ports in T ∨ have topological structure of a continuous image of [0, 1].

An edge-path (see [Spa66], Section 3.6) in a simplicial or CW-complex is

defined as a sequence of oriented 1-cells, such that for each cell, but the last one,

its end is the origin of the next cell in the sequence.

We have a notion of an oriented 1-cell already: for any cell c in an abstract

cell complex A, associated chain complex CA• contains elements ec and −ec (see

Definition 6.21), which in a geometrical realization of A get identified with the

two possible choices of orientations on c.

Definition 6.27. An oriented cell in A is a pair (a, oa), where a is a cell of

A and oa is one of the elements +ea or −ea of CA• .

The complexes U and T , and their duals U∨ and T ∨, all have geometrical

realisations as CW-complexes. Based on that, we can make sense of a notion of

an origin, and an end, of an oriented 1-cell:

Definition 6.28. Let (q, oq) be an oriented 1-cell in one of the complexes U , T ,

U∨ or T ∨.

Then a 0-cell p is an origin of (q, oq) if the coefficient of ep in δoq is −1 and

an end of (q, oq), if the coefficient of ep in δoq is +1.

Observe that equation (6.20) in Definition 6.24 implies that an oriented 1-

cell in U , T , U∨ or T ∨ always has just the one origin and just the one end, as

desired. Moreover, (6.20) implies that, in U (resp. T ), the origin and the end

of an oriented 1-cell (q,+eq) are precisely the tail and the head of an underlying

arrow q of the universal cover quiver U (resp. McKay quiver of G).
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Definition 6.29. A formal edgepath in one of the complexes U , T , U∨ or T ∨

is an ordered sequence

(q1, oq1), . . . , (qk, oqk
)

of oriented 1-cells, such that, for any i ∈ {1, . . . , k − 1}, the end of (qi, oqi
) is the

origin of (qi+1, oqi+1
).

We say that a formal edge-path (q1, oq1), . . . , (qk, oqk
) is closed, if the end of

(qk, oqk
) coincides with the origin of (q1, oq1), and that it is open, otherwise.

We say that a formal edge-path (q1, oq1), . . . , (qk, oqk
) is

non self-intersecting if no 0-cell is an origin of more than (qi, oqi
) or an end

of more than one (qi, oqi
).

Definition 6.30. Let A be one of the complexes U , T , U∨, T ∨. We say that a

chain n in CA1 is an open (resp. closed) edge-path, if n is an image of an open

(resp. closed) formal edge-path in A under the map:

(q1, oq1), . . . , (qk, oqk
) 7→

∑
i∈{1,...,k}

oqk
(6.24)

If n is a cochain in Hom(CA1 ,Z), we consider it as a 1-chain in a chain complex

of dual complex A∨ and make the same definition.

If n ∈ CA
1 is an edgepath, and (q1, oq1), . . . , (qk, oqk

) a choice of its pre-image

under (6.24), then observe that:

δ(n) = ec1 − ec2 (6.25)

where c1 is the origin of q1, while c2 is the end of qk.

Definition 6.31. Let A be one of complexes U , T , U∨, T ∨. Let n ∈ CA1 be an

edgepath and c be a 0-cell in the support of n.

Then we say that c is the startpoint of n if the coefficient of ec in δn is −1,

that c is the endpoint of n if the coefficient is +1, and that c is an internal

point of n if the coefficient is 0.

Thus, as (6.25) demonstrates, an open edgepath has a well-defined startpoint

and a well-defined endpoint, while in a closed edgepath all 0-cells are internal.

We conclude the section with two technical lemmas:
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Lemma 6.32. Let A be one of the complexes U , T , U∨, T ∨. Let n be a chain

in CA1 such that:

1. n is connected

2. Maximum multiplicity of any 1-cell in n is 1.

3. No 0-cell in the support of n has more than two 1-cells of n attached to it.

4. Any 0-cell in the support of n, which has two 1-cells attached to it, doesn’t

lie in δn.

Then n is a non self-intersecting edge-path.

Proof. We construct pre-image of n under (6.24) by the following algorithm: we

start with a formal edge-path, which consists of an arbitrarily chosen 1-cell in n

together with the orientation it has in n. Suppose, at some step of the algorithm,

we have already defined a formal edge-path:

(q1, oq1), . . . , (qk, oqk
) (6.26)

where each qk is a distinct 1-cell of n and oqk
is its orientation in n. Observe that,

by assumption 2, coefficient of each eqk
in n is precisely its coefficient in oqk

. So,

if (6.26) contains every 1-cell in n, then its image under (6.24) is precisely n.

Let p0 denote the origin of (q1, oq1) and pk+1 denote the end of (q1, oq1).

If p0 has another 1-cell q0 of n, distinct from q1, attached to it, let oq0 be

orientation of q0 in n. By assumption 3, q0 and q1 are the only cells of n attached

to p0, therefore e∨p0
(δ(oq0 + oq1)) = e∨p0

(δn). By assumption 4, e∨p0
(δn) is zero,

therefore e∨p0
(δoq0) = −e∨p0

(δoq1). Therefore, p0 is an end of (q0, oq0), and we can

enlarge (6.26) to (q0, oq0), (q1, oq1), . . . , (qk, oqk
).

In the same fashion, if pk+1 has another 1-cell qk+1 of n attached to it, we

enlarge (6.26) to (q1, oq1), . . . , (qk, oqk
), (qk+1, oqk+1

), where oqk+1
is the orientation

of qk+1 in n.

Finally, if q1 is the only 1-cell of n attached to p0, and qk the only 1-cell of

n attached to pk+1, then by assumption 3, no other 1-cell of n can be connected

to q1, . . . , qk. Since n is assumed to be connected, we conclude that q1, . . . , qk are

all the 1-cells in n, and therefore n is the image of the formal edge-path (6.26)

under the map (6.24).
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Lemma 6.33. Let A be one of the complexes T or T ∨. Let n ∈ CA1 be a closed,

connected, non self-intersecting edge-path. Then its homology class [n] is either

0 or primitive, i.e. not a proper multiple of any other element of H1(A).

Proof. To prove the lemma we pass to the homology on torus TG, a geometrical

realization of both T and T ∨, and demonstrate the claim of the lemma for a

singular homology class of a loop n′ : [0, 1] → TG, defined by any formal edge-

path, whose image under (6.24) is n.

Let N denote an open neighbourhood which retracts onto the image of n′ in

TG. And consider the long exact sequence for relative homology:

· · · → H1(N)→ H1(TG)→ H1(TG, N)→ . . . (6.27)

Now observe that n′ factors through n′′ : [0, 1]→ N , that the homology class

[n′′] ∈ H1(N) generates H1(N) and that δ3([n
′′]) = [n′]. Therefore to show that

[n′] is zero or primitive, it suffice to show that H1(TG, N) is torsion-free.

By one of the duality theorems ([Hat01], Theorem 3.46)

H1(TG, N) ' H1(TG −N)

By the Universal Coefficient Theorem ([Hat01], Theorem 3.2), the torsion sub-

group ofH1(TG−N) is isomorphic to Ext1(H0(TG−N),Z). The result follows.

6.7 Codimension 1 Orbits

Let ei be an element of E. Then S〈ei〉 is the codimension 1 orbit of T which

consists of the ‘general’ points of Ei, i.e. the points which do not lie on any other

exceptional divisor. The following was first observed by Craw and Ishii in [CI02].

Proposition 6.34. For any of the 2|G| triangles C(χ, σ) in the McKay quiver

of G, any ei ∈ E and any gnat-family F , exactly one of the arrows making up

C(χ, σ) fails to contribute an edge to ΓF ,〈ei〉.

Proof. Choose any triangle C(χ, σ). From (6.17) and (6.12) it follows that∑
i∈{1,2,3}

BF ,(χ,σ(i)) = (x1) + (x2) + (x3) =
∑
ei∈E

Ei (6.28)
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On the other hand, we know that every BF ,q =
∑
bq,jEj is an effective divisor.

This, together with (6.28) implies that each bq,j ∈ {0, 1} and that exactly one of

b(χ,σ(1)),j, b(χ,σ(2)),j and b(χ,σ(3)),j is equal to 1 for each ej ∈ E. This proves the

claim.

Corollary 6.35. For any gnat-family F and any ei ∈ E, ΓF ,〈ei〉 is connected.

Proof. Let r = (χ, a) be an arrow of McKay quiver which doesn’t contribute an

edge to Γ〈ei〉. So Br|A〈ei〉
= Ei. Let C(χ, σ) be either of the two triangles, which

contains r. But then (6.28) restricted to A〈ei〉 gives∑
q∈C(χ,σ)

Bq|A〈ei〉
= Ei

which implies that the other two arrows in C(χ, σ) restrict to zero on A〈ei〉 and

so, by Proposition 6.12, do each contribute an edge to Γ〈ei〉. These two edges

then connect the tail tq and the head hq of q. Thus the connectivity relation on

the vertices of McKay quiver in Γ〈ei〉 is the same as on the full McKay quiver,

and the result follows.

Observe that for each arrow q ∈ Q1, there are exactly two triangles in T2,
which contain q in their boundary: if q = (χ, a), they are T (χ, abc) and T (χ, acb)

where {a, b, c} = {1, 2, 3}. Proposition 6.34 implies that, if q /∈ Γ〈ei〉 for some

ei ∈ E, then the remaining four edges comprising the boundaries of these two

triangles, do belong to Γ〈ei〉. Correspondingly, in the quotient torus TG the closure

of the union of the cells φT (χ, abc) and φT (χ, acb) is a rhombus-shaped domain,

whose boundary lies in φΓ〈ei〉 and whose interior doesn’t:
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Definition 6.36. Given an arrow q = (χ, a) ∈ Q1 of the McKay quiver of G, we

write D(q) for the chain

eT (χ,abc) + eT (χ,acb)

in CT2 and say that it is an a-oriented diamond.

Definition 6.37. For any ei ∈ E, an ei-diamond is a diamond D(q) if q doesn’t

lie in Γ〈ei〉 and every 1-cell in δD(q) does.

Observe that, by Proposition 6.34, q /∈ Γ〈ei〉 if and only if every cell in σD(q)

does lie Γ〈ei〉.

Thus, Proposition 6.34 together with Proposition 6.12 imply:

Corollary 6.38. For any ei ∈ E and any arrow q of the McKay quiver, D(q) is

an ei-diamond if and only if Bq|A〈ei〉
= Ei, i.e. Ei occurs in Bq with non-zero

coefficient.

Proposition 6.34 therefore implies that every triangle T (χ;σ) lies in an unique

ei-diamond D(q). Thus we see that there are |G| ei-diamonds and that T is a

disjoint union of 2-cells comprising all ei-diamonds.

Also, observe that a 1-cell q lies in the boundary of some diamond if and

only if it lies Γ〈ei〉. Therefore, in the quotient torus TG, the image of Γ〈ei〉 is a

tessellation of TG into |G| rhombus-shaped domains.

Example 6.39. Let the setup be as in Example 6.17. In this example, we shall

calculate Γ〈e10〉. First, for each q ∈ Q1 we calculate the divisor Bq, as in (6.12).

Then we check whether E10 belongs to Bq or not.

Recall that (xa) =
∑
ei(xa)Ei, so

(x1) = E1 +
1

18
E4 +

2

18
E5 +

3

18
E6 +

4

18
E7 +

5

18
E8 +

6

18
E9+

8

18
E10 +

9

18
E11 +

11

18
E12 +

12

18
E13 +

15

18
E14

(x2) = E2 +
5

18
E4 +

10

18
E5 +

15

18
E6 +

2

18
E7 +

7

18
E8 +

12

18
E9 +

4

18
E10

+
9

18
E11 +

1

18
E12 +

6

18
E13 +

3

18
E14

(x3) = E3 +
12

18
E4 +

6

18
E5 +

12

18
E7 +

6

18
E8 +

6

18
E10 +

6

18
E12
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So, for example,

B(χ16,1) = Dχ2 + (x1)−Dχ3 = E13 + E14

and so by Proposition 6.7 we have (χ16, 1) ∈ Γ〈e10〉.

On the other hand,

B(χ15,3) = Dχ3 + (x3)−Dχ15 = E7 + E10 + E12

and so (χ15, 3) /∈ Γ〈e10〉.

Continuing this, we eventually obtain Γ〈e10〉 being:

Let us now consider the numbers of x1, x2 and x3 oriented e10-diamonds,

respectively, in Γ〈e10〉. Counting them on the diagram in the Example, we can

see that there are 8 x1-oriented e10-diamonds, 4 x2-oriented e10-diamonds and 6

x3-oriented e10-diamonds. And e10 = 1
18

(8, 4, 6). This is not a coincidence.
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Proposition 6.40. For any gnat-family F and any ei ∈ E, let na be the number

of xa-oriented ei-diamonds in TG. Then

na = |G|ei(xa) (6.29)

Proof. Let a ∈ {1, 2, 3}. Consider the multiplicity with which Ei occurs in∑
χ∈G∨

B(χ,a) (6.30)

On one hand, Proposition 6.34 implies that Ei occurs in each B(χ,a) with mul-

tiplicity of either 0 or 1. Also Proposition 6.7 implies that q ∈ Γ〈ei〉 if and only

if multiplicity of Ei in Bq is 0. So we see that multiplicity of Ei in (6.30) is the

number of xa oriented arrows of the McKay quiver, which do not belong to Γ〈ei〉,

and that is precisely na.

On the other hand, from definition of Bq, we can re-write (6.30) as∑
χ∈G∨

Dχ + (xa)−Dχρ(xa)

which, since
∑
Dχ =

∑
Dχρ(xa), is simply |G|(xa). Thus we see that

na = |G|vEi
(xa) = |G|ei(xa)

as required.

Observe, that, as a lift to Hom(Z3,Q), ei = 1
|G|(ei(x1), ei(x2), ei(x3)), so

Proposition 6.40 implies the observation that

ei =
1

|G|
(n1, n2, n3)

.

6.8 Homological digression

We know that the cohomology ring of torus, with multiplication given by the cup

product, is an exterior algebra of the first cohomology group. Therefore, using
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natural isomorphism (6.23):

L′
∼−→ H1(T ,Z)

established in the end of the Section 6.5, we can choose to identify the classes

in H•(T,Z) with elements of L′ and Λ2L′. For example, given a cocycle c ∈
Hom(CT1 ),Z), we shall speak of a class of c in L′ to mean the pre-image of the

cohomology class of c under (6.23).

In this section we shall establish how, given numerically a pair of cocycles

c and c′ in Hom(CT1 ,Q), to calculate their classes in L′ ⊗ Q as well as the cup

product of their classes in Λ2L′ ⊗Q.

To do that, we explicitly compute the natural isomorphism (6.22), which

(6.23) is a dual of.

Lemma 6.41. Consider natural homomorphism

CT1 → Z3 : e(χ,i) 7→ [xi] (6.31)

where [xi] denotes exponent of xi in Z3.

Then it descends to a map

H1(T ,Z)→M ′ (6.32)

and this map is the natural isomorphism (6.22).

Proof. To show that (6.31) descends to a map from H1(T ,Z) to M ′ we need to

show it maps cycles into M and boundaries into Z(1, 1, 1).

That (6.31) maps cycles to invariant monomials follows from the fact that it

clearly maps any closed edge-path to an invariant monomial, and any cycle is a

sum of closed edge-paths.

That (6.31) maps boundaries into Z(1, 1, 1) follows from the fact that if we

take any triangle T (χ, σ) then

ε(σ)
∑

q∈T (χ,σ)

eq 7→ ε(σ)[xσ(1)] + [xσ(2)] + [xσ(3)] = ε(σ)(1, 1, 1)

Finally, to see that resulting map from H1(T ,Z) to M ′ agrees with the natural

isomorphism (6.22), consider any closed edge-path c in CT1 . Given a 0-cell b, which
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lies in c, and a choice b′ of its lift to CU0 , there exists a unique edge-path c′ lifting

c to CU1 , such that b′ is its startpoint. It is clear from definition of (6.31), that the

endpoint of c′ is a translate of b′ by the image of c under (6.31). This gives the

requisite statement for the classes of closed edge-paths, and hence for the whole

of H1.

Corollary 6.42. Let ν : Q3 → Hom(CT1 ,Q) be a homomorphism defined by

setting ν(l) to be the map

e(χ,i) 7→ l([xi])

for all arrows q = (χ, i) in the McKay quiver.

Then the restriction of ν to L′ descends to a map L′ → Hom(H1(T ,Z),Z),

which is precisely the isomorphism (6.22).

Proof. This follows from Lemma 6.41 and the fact that ν restricted to L and

composed with map Hom(CT1 ,Q) → Hom(ZCT1 ,Q) is precisely the Hom(•,Z) of

a restriction of (6.31) to map ZCT1 →M , where ZCT1 denotes the subgroup of CT1
consisting of all 1-cycles.

Effectively, map ν singles out in each cohomology class a representative cocy-

cle.

Definition 6.43. Let l ∈ Q3. We say that cochain ν(l) in Corollary 6.42 is a

constant l-cochain.

The word ‘constant’ is chosen so as to refer to the fact that values of ν(l)

on the side of a triangle T are the same for all T in T2. Conversely, let c be

an arbitrary cochain in Hom(CT1 ,Q), observe that for any triangle T ∈ T2, there

exists an unique l ∈ L such that ν(l) agrees with c on eq for all three sides q ∈ T .

Definition 6.44. Let c be a cochain in Hom(CT1 ,Q). Define a local approxima-

tion map ψ(c) : T2 → Q3 by:

ψ(c)(T )([xi]) = c(eχ,i) (6.33)

where (χ, i) is the unique xi-oriented arrow in T .

Observe that if c filters through Z ↪→ Q, then ψ(c) filters through L ↪→ Q3.

And if c is a cocycle, then for any T ∈ T2 we have
∑

q∈T c(eq) = 0 and so ψ(c)

filters through inclusion L′ ↪→ L.

91



The local approximation map of constant l-cochain ν(l) is, naturally, the

constant map which maps every triangle in T2 to l. For an arbitrary cochain c,

as it turns out, taking average of its local approximations across T2 calculates its

cohomology class:

Proposition 6.45. Let c be a cocycle in Hom(CT1 ,Q). Write [c] ∈ L′⊗Q for the

cohomology class of c. Then

[c] =
1

2|G|
∑
T∈T2

ψ(c)(T ) (6.34)

NB: Observe, that in a special case of c = ν(l) for some l ∈ L′ ⊗Q, (6.34) is

trivially true since [ν(l)] = l and ψ(ν(l))(T ) = l for every T ∈ T2.

Proof. Since [ν([c])] = c, ν([c])−c must be a co-boundary. Since (6.34) is additive

in c and trivially true for c = ν(l), it suffices to show it holds whenever c is a

co-boundary.

Let c = δb for some b ∈ Hom(CT0 ,Q). Defining equation (6.33) of ψ(c)(T )

implies that evaluating RHS in (6.34) at any [xi] ∈ Z3, we get

1

2|G|
c(
∑
χ∈T0

2eχ,i) (6.35)

Observe that
∑

χ∈T0
2eχ,i is a cocycle in T1, hence

δb(
∑
χ∈T0

2eχ,i) = b(δ
∑
χ∈T0

2eχ,i) = 0

Since choice of basic monomial xi was arbitrary, RHS in (6.34) evaluates to 0 on

all of Z3 and hence must be 0 itself, as required.

More surprisingly, for an arbitrary pair of cocycles, taking average of the

wedge products of their local approximations across T2 calculates the cup product

of their cohomology classes in Λ2L′ ⊗Q:

Proposition 6.46. Let c1 and c2 be cocycles in Hom(CT1 ,Q). Let [c1] and [c2]
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denote their cohomology classes in L′ ⊗Q.

[c1] ∧ [c2] =
1

2|G|
∑
T∈T2

ψ(c1)(T ) ∧ ψ(c2)(T ) (6.36)

Proof. If c1 = ν(l) for some l ∈ L′ ⊗ Q, then (6.36) becomes l ∧ (
∑
ψ(c2)(T ))

and Proposition 6.45 gives the result. Therefore, as before, we can assume that

c1 is co-boundary δb for some b ∈ Hom(CT0 ,Q).

Define a cochain d ∈ Hom(CT1 ,Q) by d(eq) = (b(ehq) + b(etq))c2(eq). Then it

is straightforward calculation to verify that, for any T ∈ T2,

ψ(δb)(T ) ∧ ψ(c2)(T ) = δd(eT )(1, 0,−1) ∧ (0, 1,−1)

and hence (6.36) becomes d(δ(
∑

T2
eT ))(1, 0,−1) ∧ (0, 1,−1), which is zero since∑

T2
eT is a cycle.

We now seek to apply this to our situation at hand. Given a gnat-family

F = ⊕L(−Dχ), the valuation at Ei of each Dχ , i.e. the coefficient of Ei in Dχ,

defines a cochain in Hom(CT0 ,Q).

Definition 6.47. Let F = ⊕L(−
∑
qχ,iEi) be a normalised gnat-family. We

define a cochain µF ,ei
to be an element of Hom(CT0 ,Q) given by

eχ 7→ qχ−1,i

Now, Lemma 6.9 implies that, for every arrow q of McKay quiver, the 1-

cochain ν(ei) − δµF ,ei
maps eq to a coefficient of Ei in BF ,q. Therefore it is

actually an integer 1-cochain, and moreover for any arrow q ∈ Q1 we have eq 7→ 0

if and only if q ∈ Γ〈ei〉 and eq 7→ 1 if and only if q /∈ Γ〈ei〉. Thus we can think

of it as a characteristic map for ei-diamonds: it maps eq to 0, if D(q) is not an

ei-diamond, and to 1 if it is.

Definition 6.48. We define ei-diamond cochain dF ,ei
to be an element of Hom(CT1 ,Z)

given by

dF ,ei
= ν(ei)− δµF ,ei

(6.37)
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In other words,

dF ,ei
=
∑

q /∈Γ〈ei〉

e∨q (6.38)

In the dual cell-complex on the quotient torus TG, its image is a disjoint union

of line segments joining the centres of the two triangles in each ei-diamond.

Each of those line segments is an image of a 1-cell q∨, which we think of as

corresponding to the diamond D(q).

Example 6.49. Let the setup be as in Example 6.39. Then the image of the

e10-diamond cochain dF ,e10 in the dual complex T ∨ on TG looks like:

The arrowhead on each cell q∨ denotes its orientation in the cochain: its direction

agrees with e∨q if the orientation is e∨q , and goes in the opposite direction if the

orientation is−e∨q . In further diagrams, whenever the multiplicity of q∨ in cochain
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is greater than 1, we shall denote its value by writing it on the centre of the cell

q∨.

6.9 Codimension 2 Orbits

For each two-dimensional cone σ = 〈ei, ej〉 in the fan Σ of Y , where ei, ej ∈ E,

we have a codimension 2 torus orbit Sσ, which consists of the general points on

the intersection of the exceptional divisors Ei and Ej, i.e. points which do not

also lie on some third exceptional divisor Ek.

Consider now vector ei − ej ∈ L′. On one hand, as demonstrated in Section

6.8, ei − ej can be viewed as a cohomology class in H1(T ), and therefore in

H1(TG).

On one hand, ei−ej is precisely σ∩∆, i.e. the edge, in the triangulation of the

junior simplex ∆ by the fan of Y , which connects ei and ej. In toric picture, we

think of this edge as representing the curve Eσ, and of its interior as representing

the orbit Sσ. As it turns out, for each family F we can describe the way, in

which graph ΓF ,σ is disconnected, by a closed curve in torus TG. We first give an

intuitive sketch:

Example 6.50. Let F be a gnat-family across Y . Let q ∈ Q1 be an arrow of the

McKay quiver, and assume further that Ei ∈ BF ,q, i.e. D(q) is an ei-diamond.

There are three possible cases:

On the diagram, we marked each arrow by the restriction, to Aσ, of its divisor of

zeroes, except the arrows for which this restriction is zero. Such arrows belong

to Γσ and are drawn in bold instead.

Case I First case is that D(q) is also an ej-diamond, i.e. Bq|Aσ = Ei +Ej. In this

case, the four arrows belonging to the boundary σD(q) must all lie in Γσ,

by the Proposition 6.34.
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Case II Suppose D(q) is not also an ej-diamond, i.e. Bq|Aσ = Ei. Then Proposition

6.34 implies that out of the four arrows comprising the boundary σDq,

exactly two have the restriction of their divisor of zeroes in F to Aσ being

Ej. The Case II is when these two arrows are not adjacent to each other,

i.e. have no common 0-cells in their boundaries.

Case III This is the last remaining possibility: D(q) is not an ej-diamond and the

two arrows in the boundary of D(q), whose divisors of zeroes in F restricted

to Aσ is Ej, are adjacent to each other.

Observe that it is Cases II and III, which contribute to disconnectivity of Γσ,

as in them we see vertices of D(q) become disconnected from one another.

Moreover, suppose D(q) is a Case II or III ei-diamond. Let q′ be one of

the two arrows in the boundary σDq, which vanishes along Ej. As ei-diamonds

tessellate TG, there exists exactly one more ei-diamond, whose boundary contains

q′. Denote this ei-diamond by D(q′′) and observe that it must also be Case II or

III. Applying the same reasoning to D(q′′) as we did to D(q), we see that Case

II and III ei-diamonds form a closed band, whose boundary arrows all belong to

Γq and whose internal arrows have their divisor of zeroes in F restricted to Aσ

being Ei and Ej, consecutively. In other words, this band consists of interlocked

ei and ej diamonds:
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This band is precisely what disconnects Γσ: the rest is made up out of Case

I ei-diamonds, in each of which all four vertices are connected by edges of Γq.

Consider a curve passing through the middle of the band, as depicted on the

figure. This curve is closed, and therefore defines a homology class in TG. It

makes sense to ask whether it is somehow related to the cohomology class in

H1(TG) defined by ei − ej.

We now make the ideas sketched out in the Example 6.50 precise.

Definition 6.51. Let F be a gnat-family across Y and σ = 〈ei, ej〉 be a two-

dimensional cone in the fan of Y . Define SF ,σ,ei
to be the 1-cochain in Hom(CT1 ,Z)

defined by

SF ,σ,ei
= dF ,ei

− dF ,ej
(6.39)

By the σ-Strand we mean the subcomplex of T ∨ which is the support of

SF ,σ,ei
(or, equivalently, of SF ,σ,ej

).

Observe that (6.37) implies that:

dF ,ei
− dF ,ej

= δ(µF ,ei
− µF ,ej

)− ν(ei − ej) (6.40)

Since ei − ej lies in L′, ν(ei − ej) is a cocycle, and hence so is SF ,σ,ei
.

Next, we characterise the cells which belong to σ-Strand:

Lemma 6.52. Let F be a gnat-family across Y , σ = 〈ei, ej〉 be a two-dimensional

cone in the fan of Y and q be an arrow in the McKay quiver. Denote by µ the

coefficient of e∨q in SF ,σ,ei
. Then µ depends on Bq|Aσ as follows:

Bq|Aσ µ

Ei 1

Ej −1

0 or Ei + Ej 0

Proof. The coefficients of Ei and Ej in Bq are each either 0 or 1, as demonstrated

by (6.28). Since Ei|Aσ 6= 0 only if ei ∈ σ, there are four possible values of Bq|Aσ :

Ei, Ej, Ei + Ej and 0.
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Lemma 6.9 implies that coefficient of e∨q in dei
is the coefficient of Ei in Bq.

Therefore, for each of the four cases above, we can compute the coefficient of e∨q

in SF ,σ,ei
= dei

−dej
, which yields the table in the claim. E.g. if Bq|Aσ = Ei, then

dei
(eq) = 1 and dej

(eq) = 0, and therefore coefficient of e∨q in SF ,σ,ei
is 1.

In other words, q∨ lies in σ-Strand if and only if D(q) is an ei-diamond, or an

ej-diamond, but not both. Compare this with the construction in Example 6.50.

Lemma 6.53. Let F be a gnat-family across Y , σ = 〈ei, ej〉 be a two-dimensional

cone in the fan of Y and T be a triangle in T2. Then the T∨ ∈ σ-Strand if and

only if the restrictions, to Aσ, of divisors of zeroes of sides of T are Ei, Ej and

0.

Proof. First assume that T∨ belongs to σ-Strand. Then T must has a side q,

such that q∨ ∈ σ-Strand. Then by Lemma 6.52, Bq|Aσ is Ei or Ej. Without loss

of generality, let it be Ei. Then, by Proposition 6.34, for one of the remaining

two sides restriction to Aσ of its divisor of zeroes is Ej and for the other is 0.

Now assume that the restrictions, to Aσ, of divisors of zeroes of sides of T are

Ei, Ej and 0. Denote by qi, qj and q0, respectively, these sides of T . By Lemma

6.52, q∨i and q∨j belong to σ-Strand (note that q∨0 doesn’t!), and hence so does

T∨.

This immediately tells us the following about the shape of σ-Strand:

Corollary 6.54. Let F be a gnat-family across Y and σ = 〈ei, ej〉 be a two-

dimensional cone in the fan of Y . Then connected components of SF ,σ,ei
are

closed, non self-intersecting edge-paths.

Proof. Let n be a connected component of SF ,σ,ei
. By Lemma 6.52, no 1-cell in

n has multiplicity greater than 1. By Lemma 6.53, every 0-cell, which lies in the

support of n, has exactly two 1-cells of n attached to it. Since SF ,σ,ei
is a cocycle,

so is n, i.e. δ(n) = 0. Thus all the conditions of Lemma 6.32 are satisfied, and

therefore n is a non self-intersecting edge-path.

Observe that the image of σ-Strand in TG is precisely the curve constructed in

the end of the Example 6.50. It was claimed that it contains all the information

about connectivity of Γσ. We demonstrate this with the following proposition:
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Proposition 6.55. Let F be a gnat-family across Y and σ = 〈ei, ej〉 be a two-

dimensional cone in the fan of Y . Then Γσ is connected if and only if T ∨ \
σ-Strand is connected.

Proof. Firstly, observe that T ∨ \ σ-Strand is connected if and only if its dual,

T \ σ-Strand∨ is. Note that, since σ-Strand is defined as a support of a 1-

cochain, it contains no 2-cells. Hence T \σ-Strand∨ contains full 0-skeleton of T .

Therefore T \ σ-Strand∨ is connected if and only if all its 0-cells are in the same

connectedness class. Same is true for Γσ, which contains the full 0-skeleton of T .

Observe that Γσ is a subset of 1-skeleton of T \σ-Strand∨, and Corollary 6.52

implies that its complement consists precisely of those arrows q, for which D(q)

is both ei and ej-diamond. Let q be such arrow. We shall demonstrate that, in

Γσ, hq is still connected to tq, and therefore the connectivity relation on 0-cells

in Γσ is the same as in T1 \ σ-Strand∨. Indeed, D(q) is an ei and ej diamond,

therefore edges in σD(q) all belong to Γσ and connect hq to tq.

Example 6.56. Let the setup be as in Example 6.39. Let σ be the cone 〈e10, e4〉
in the fan of Y . We shall now calculate SF ,σ,e10 and the corresponding σ-Strand.

Repeating the calculations in Examples 6.39 and 6.49, we obtain dF ,e4 to be:
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Since SF ,σ,e10 = dF ,e10 − dF ,e4 , we can see that the diagram of its image in TG

is a combination of the diagram of dF ,e10 in the Example 6.49 and the diagram

of dF ,e4 above, but with arrows of the latter reversed, and with same arrows in

the opposite direction cancelling each other out:

We can ask, what is the cohomology class of SF ,σ,e10 in L′?

Proposition 6.57. Let F be a gnat-family across Y and σ = 〈ei, ej〉 be a two-

dimensional cone in the fan of Y . Then, writing [SF ,σ,ei
] for the cohomology class

of SF ,σ,ei
in L′, we have

[SF ,σ,ei
] = ei − ej

Proof. We see from (6.40) that SF ,σ,ei
and ν(ei − ej) differ by a co-boundary in

Hom(CT1 ,Q). Hence [SF ,σ,ei
] = [ν(ei − ej)] = ei − ej, as required.

Proposition 6.58. Let F be a gnat-family across Y and σ = 〈ei, ej〉 be a two-

dimensional cone in the fan of Y . Let s1, . . . , sk be the disjoint connected compo-

nents of SF ,σ,ei
. Then for any si, its cohomology class is either 0 or ±(ei − ej).
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Proof. For any 1 ≤ i < j ≤ k, we know that si and sj are disjoint. Therefore

for any T ∈ T2, the dual 0-cell T∨ lies in at most one of s̃i or s̃j. Therefore, for

any T ∈ T2, one of ψ(si)(T ) or ψ(sj)(T ) is zero. By Lemma 6.46, this implies

[si] ∧ [sj] = 0.

Hence, there exists f1 ∈ L′ such that each [si] = λif1, for some integer λi.

Then as
∑

[si] = [SF ,σ,ei
], Proposition 6.57 shows that ei − ej = (

∑
λi)f1.

But, since Y is smooth, in its fan Σ each 3-cone σ is basic, i.e. the generators

of σ are a basis for L. Consequently, since 2-cone 〈ei, ej〉 is a face of a basic

3-cone in Σ, ei− ej is not a scalar multiple of any element of L′. This establishes

f1 = ±(ei − ej).

Finally, by Corollary 6.54, each si is a closed, non self-intersecting edgepath,

and hence Lemma 6.33 implies that each [si] is either zero or primitive in L′.

Therefore each λi is 0 or ±1, as required.

Corollary 6.59. SF ,σ,ei
decomposes into a sum of disjoint subcycles a and c,

such that a is connected, and [c] = 0.

Proof. Let s1, . . . , sk be connected components of SF ,σ,ei
. Proposition 6.58 implies

that for each l ∈ 1, . . . , k, [sl] is either 0 or ±(ei − ej). Therefore, there exists

l ∈ 1, . . . , k such that [sl] = ei − ej, as

k∑
m=1

[sm] = [SF ,σ,ei
] = (ei − ej)

Set a = sl and c =
∑

m6=l sm, and observe that [c] = [SF ,σ,ei
] − [sl] = 0 as

required.

The reason we concern ourselves with components of σ-Strand, whose coho-

mology class is zero, is that we can actually contract them. That is to say, we can

produce a new family F ′, whose σ-Strand would be that of F minus any given

contractible component.

Proposition 6.60. Let F = ⊕L(−Dχ) be a gnat-family on Y and σ = 〈ei, ej〉
be a two dimensional cone in the fan of Y . Let c be any subcycle of SF ,σ,ei

, such

that its cohomology class [c] is zero.
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Then there exists a family F ′ = ⊕L(−D′
χ) such that

SF ′,σ,ei
= SF ,σ,ei

− c (6.41)

Furthermore, F ′ can be chosen in either such a way that D′
χ −Dχ is always

effective (or always anti-effective), or in such a way that D′
χ −Dχ is always an

integer multiple of Ei (or always an integer multiple of Ej).

Finally, if F was normalised family, then we can have F ′ also to be nor-

malised.

Proof. If [c] = 0, there exists a cochain s ∈ Hom(CT0 ,Z) such that δ(s) = c.

Let s =
∑
λχe

∨
χ. Without loss of generality, we can assume that λχ0 = 0, since

(−λχ0)
∑

χ∈G∨ e∨χ is a cocycle, and so adding it to s doesn’t change δs.

We claim that the set of G-Weil divisors defined by

D′
χ−1 = Dχ−1 + λχEi (6.42)

satisfies reductor condition (5.5), and therefore F ′ = ⊕L(−D′
χ) is a gnat-family

across Y .

Indeed, observe first that (5.5) is equivalent to divisor of zeroes BF ′,q being

effective for every arrow q of the McKay quiver. And defining equation (6.12) of

BF ,q, together with (6.42), implies that

BF ′,q = BF ,q − (λhq − λtq)Ei (6.43)

Since BF ,q is effective, we immediately see that, if (λhq − λtq) ≤ 0, BF ′,q is

also effective. Suppose (λhq − λtq) > 0. Since c = δ(s), the coefficient with

which e∨q appears in c is (λhq − λtq). As c is a subcycle of SF ,σ,ei
, we must

have (λhq − λtq) ≤ SF ,σ,ei
(eq). Since multiplicity of any 1-cell in SF ,σ,ei

is 0

or 1, (λhq − λtq) > 0 implies (λhq − λtq) = SF ,σ,ei
(eq) = 1. By Lemma 6.52,

SF ,σ,ei
(eq) = 1 implies BF ,q|Aσ = Ei, i.e. coefficient of Ei in BF ,q is 1. Substituting

(λhq − λtq) = 1 into (6.43) we obtain BF ′,q = BF ,q − Ei. Since BF ,q is effective

and the coefficient of Ei in it equals to 1, BF ′,q is also effective. Thus BF ′,q is

effective for all arrows q in the McKay quiver, as required.

This demonstrates that we can choose F ′ so that D′
χ−Dχ is always an integer
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multiple of Ei. To make it always be an integer multiple of Ej, set

D′
χ−1 = Dχ−1 − λχEj (6.44)

This time, we obtain

BF ′,q = BF ,q + (λhq − λtq)Ej (6.45)

Only now it is the case of (λhq−λtq) = −1, that we have to check. We use Lemma

6.52 again, which yields BF ,q|Aσ = Ej, and therefore BF ′,q is still effective.

To get D′
χ −Dχ to always be effective, we set

D′
χ−1 =

Dχ−1 + λχEi if λχ ≥ 0

Dχ−1 − λχEj if λχ < 0
(6.46)

Since (λhq − λtq) is either 0 or ±1, λhq and λtq must both be non-negative or

both be non-positive. This, together with (6.46), implies that, for each arrow q,

at least one of (6.43) or (6.45) holds. And that, as we saw already, implies that

BF ′,q is effective for all q, as required.

Case ofD′
χ−Dχ being always anti-effective is dealt with identically, by setting:

D′
χ−1 =

Dχ−1 − λχEj if λχ ≥ 0

Dχ−1 + λχEi if λχ < 0
(6.47)

To show (6.41) we recall Definition 6.47, which implies that µF ,ei
maps each

eχ to the coefficient of Ei in Dχ−1 . In the view of that, (6.42), (6.44), (6.46) and

(6.47) each imply that

µF ′,ei
− µF ′,ej

= µF ,ei
− µF ,ej

+ s

and therefore

SF ′,σ,ei
= dF ′,ei

− dF ′,ej

= (ν(ei)− ν(ej))− δ(µF ,ei
+ s− µF ,ej

)

= SF ,σ,ei
− c
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as δ(s) = c.

Note that since λχ0 = 0, we have D′
χ0

= Dχ0 and thus if F was normalised,

then so is F ′.

Thus, by modifying family F , we can get rid of all the contractible components

of σ-Strand, so that only a single connected component, whose cohomology class

is (ei− ej), remains. And as we shall now see, if σ-Strand is connected then so is

T ∨ \ σ-Strand:

Proposition 6.61. Let F be a gnat-family across Y and σ = 〈ei, ej〉 be a two-

dimensional cone in the fan of Y . Then the number of connected components of

σ-Strand equals to the number of connected components in T ∨ \ σ-Strand.

Proof. We argue by passing to the curve, defined by σ-Strand on the torus TG,

which is a geometrical realisation of the dual cell complex T ∨.

More generally, let S be any non self-intersecting closed curve on TG, with a

non-zero homology class. By Propositions 6.54 and 6.57 σ-Strand satisfies these

conditions.

Let Ṡ be an open neighbourhood of S, which retracts onto S. Consider the

long exact sequence for relative homology:

0→ H2(TG)
δ1−→ H2(TG, Ṡ)

δ2−→ H1(Ṡ)
δ3−→ H1(TG)→ . . . (6.48)

Since TG is connected and orientable, δ1 is an injection. By a duality theorem

([Hat01], Theorem 3.46) we have H2(TG, Ṡ) ' H0(TG − Ṡ). Thus H2(TG, Ṡ) is

a free Z-module, whose rank is the total number of connected components in

TG − S.

Since each connected component of S is homeomorphic to a circle, H1(Ṡ) is

a free Z-module, whose rank is the total number of connected components of S.

The long exact sequence (6.48) yields

rkH2(TG, Ṡ)− 1 = rkH1(Ṡ)− rk Im δ3

Since the homology class of S in TG is non-zero, rk Im δ3 > 0. On the other

hand, since S is non self-intersecting, the homology classes, in H1(TG), of its

connected components are all scalar multiples of each other and so rk Im δ3 = 1.

This implies that rkH2(TG, Ṡ) = rkH1(Ṡ), as required.
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Corollary 6.62. Let F = ⊕L(−Dχ) be a gnat-family on Y and σ = 〈ei, ej〉 be a

two-dimensional cone in the fan of Y .

There exists a one-step modification of F , which produces a gnat-family F ′ =

⊕L(−D′
χ) such that F ′|Aσ is a simple family. Moreover, it can be ensured that

D′
χ ≥ Dχ for all χ ∈ G∨.

Proof. First, we apply Corollary 6.59 to identify a contractible component C

of σ-Strand, whose complement is a single connected component. Then apply

Proposition 6.60 to contract C away, obtaining a family F ′, whose σ-Strand is

connected. Therefore, restriction of F ′ to Aσ is simple by Propositions 6.61 and

6.55. Observe that Proposition 6.60 allows us to ensure that D′
χ ≥ Dχ for all

χ ∈ G∨.

So far we have shown that, for any given codimension 2 orbit Sσ, there exists

a gnat-family whose restriction to Sσ is simple. But there is no apriori reason for

there to exist a gnat-family, which is simultaneously simple across all codimension

2 orbits. Modifying a family to get rid of contractible component of σ-Strand,

may create a contractible component in σ′-Strand for some other two-dimensional

cone σ′.

Proposition 6.63. Let F = ⊕L(−Dχ) be a gnat-family on Y and σ = 〈ei, ej〉
be a two-dimensional cone in the fan of Y .

Then there exists an algorithm, which keeps modifying the family F in such a

way, that eventually it produces a family F ′ which is simple across the whole of

Y .

Proof. The algorithm runs as follows: if there exists a three-dimensional cone σ

in the fan of Y , such that F|Aσ is not simple, then we can apply Corollary 6.62

to modify F so that new family ⊕L(−D′
χ) is simple restricted to Aσ and so that

D′
χ ≥ D′

χ for all χ ∈ G∨. Observe that there also must exist χ ∈ G∨ such that

D′
χ > Dχ, as ⊕L(−D′

χ) and ⊕L(−Dχ) can not be the same family. Thus, at

every step of the algorithm, we strictly increase one of the divisors Dχ in F .

Now recall that, by Proposition 5.20, there exists a set of maximal shift G-

Weil divisors Mχ (see Definition 5.18), such that for any normalised gnat-family

⊕L(−D′
χ)

Dχ ≤Mχ
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Therefore the algorithm must eventually terminate, producing a family F ′,

such that F ′|Aσ is simple for every three-dimensional cone σ in the fan of Y .

Observe that, in particular, the family ⊕(−Mχ) itself has to be a terminal

point for the algorithm in Proposition 6.63.

Corollary 6.64. Let Fmax be maximal shift family ⊕L(−Mχ) on Y . Then F|Aσ

is a simple family.

6.10 Codimension 3 Orbits

For each three-dimensional cone σ = 〈ei, ej, ek〉 in the fan Σ of Y , where ei, ej, ek ∈
E, we have a codimension 3 torus orbit Sσ, consisting of a single toric fixed point,

which is the intersection of the exceptional divisors Ei, Ej and Ek.

Unfortunately, as the following example demonstrates, it is perfectly possible

for a gnat-family to be simple everywhere but at these toric fixed points of Y and

yet fail to be simple at one of them:

Example 6.65. Let the general setup be as in Example 6.17. We shall take our

family F to be the maximal shift family Fmax and calculate Γσ for σ = 〈e1, e4, e10〉.
Using the method demonstrated in Example 6.39, we first compute Bq for

each arrow q of the McKay quiver. Then we look at each restriction Bq|Aσ as,

according to Proposition 6.12, q ∈ Γσ if and only if Bq|Aσ = 0. In the end, we

obtain Γσ to be:
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Instead of Γσ, we could consider the complex N = T ∨ \ Γ∨σ and check whether it

disconnects T ∨. In our case, N looks like:
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Either way, observe that we have three disjoint regions:

R1 : {χ0, χ1, χ6, χ13, χ8, χ3}

R2 : {χ10, χ15}

R3 : {χ11, χ16, χ4, χ9, χ14, χ2, χ7, χ12, χ17, χ5}

If we denote by V the G-constellation parametrised in Fmax by toric fixed point

Sσ, then ⊕χ∈Rj
Vχ, for j = 1, 2, 3, are the three simple summands of V .

However, we know from Corollary 6.13, Proposition 6.35 and Corollary 6.64,

that ΓFmax,σ is connected for all the codimension 0, 1 and 2 orbits Sσ. Therefore,

Fmax is simple everywhere, away from the toric fixed points of Y . In particular,

the strands for the three 2-dimensional faces of σ consist each of a single con-

nected component and do not disconnect TG. We have already seen the diagram

for SF ,〈e4,e10〉,e10 , when we calculated it in the Example 6.56. If we repeat this

calculation for the other two faces of σ, we obtain SF ,〈e4,e1〉,e1 to be:
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and SF ,〈e10,e1〉,e1 to be:

Observe that taking a union of strands for any pair of faces of σ yields sub-

complex N of T∨, defined above, minus an isolated edge (χ1, 1)∨, an edge for

which the corresponding diamond D(χ1, 1) is simultaneously an e1, e4 and e10-

diamond. And removal of such an isolated edge, similar to what we’ve seen in

the proof of Proposition 6.55, doesn’t affect connectedness of the complement of

N .

We see that the problem lies in the strands of the two-dimensional faces of σ

intersecting each other and together disconnecting a region of T ∨. Indeed, take

the region R2 above and consider δ(χ∨10 + χ∨15): a 1-cocycle, whose support in T∨

encloses R2.

We see that neither this cocycle, nor its inverse, are a subchain of either

SF ,〈e10,e4〉,e10 , SF ,〈e1,e4〉,e1 or SF ,〈e1,e10〉,e1 . Therefore we can not apply Proposition

6.60 to get rid of it.
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However, let us consider cocycle SF ,〈e10,e4〉,e10 + SF ,〈e10,e1〉,e10 , i.e. 2dF ,e10 −
dF ,e1 − dF ,e4 :

Recall that we mark by ‘2’ those 1-cells q∨, which have multiplicity 2 in the

cocycle depicted.

Observe that support of SF ,〈e10,e4〉,e10 + SF ,〈e10,e1〉,e10 is precisely the union of

the three strands of the two-dimensional faces of σ.

Furthermore, observe that δ(−χ∨10−χ∨15) is a subcycle of 2dF ,e10−dF ,e1−dF ,e4 .

Analogy with Proposition 6.60 suggests that there might be a way to modify

our family in a way, which would remove this subcycle. And indeed, observe
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that in a family F ′, obtained from F by subtracting E10 from Dχ15 and Dχ10 ,

2dF ,e10 − dF ,e1 − dFe4 looks like:

Observe that its support no longer disconnects T∨, and one can verify that

the new family F ′ is simple at the toric fixed point Sσ.

We therefore make the following definition:

Definition 6.66. Let F = ⊕L(−Dχ) be a gnat-family on Y and σ = 〈ei, ej, ek〉
be a three-dimensional cone in the fan of Y .
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We define cochain NF ,σ,ei
in Hom(CT1 ,Z) by:

NF ,σ,ei
= 2dF ,ei

− dF ,ej
− dF ,ek

(6.49)

We define σ-Necklace to be the support ÑF ,σ,ei
of NF ,σ,ei

.

Lemma 6.67. Let F = ⊕L(−Dχ) be a gnat-family on Y and σ = 〈ei, ej, ek〉 be a

three-dimensional cone in the fan of Y . Let q be an arrow in the McKay quiver.

Let µ be the coefficient of e∨q in NF ,σ,ei
.

Then µ is depends on the restriction of the divisor of zeroes Bq to Aσ in the

following fashion:

Bq|Aσ µ

Ei 2

Ei + Ej or Ei + Ek 1

0 or Ei + Ej + Ek 0

Ej or Ek −1

Ej + Ek −2

Proof. The coefficients of Ei, Ej and Ek in Bq are all either 0 or 1, as demon-

strated by (6.28). This gives eight possibilities for Bq|Aσ . By Lemma 6.9, the

coefficient of e∨q in dF ,ei
is precisely the coefficient of Ei in Bq, and so for each of

the eight possibilities we can use (6.49) to compute µ, giving the table above.

Similar to the case of codimension 2 orbit, the family being simple at Sσ is

equivalent to σ-Necklace not disconnecting T ∨:

Proposition 6.68. Let F be a gnat-family across Y and σ = 〈ei, ej, ek〉 be a

three-dimensional cone in the fan of Y . Then Γσ is connected if and only if

T ∨ \ σ-Necklace is connected.

Proof. We repeat the steps of the proof of 6.55. As before T ∨ \ σ-Necklace is

connected if and only if T \ σ-Necklace∨ is connected. And T \ σ-Necklace∨ and

Γσ are, each, connected if and only if all their 0-cells are in the same connectivity

class.

We again see that Γσ lies within 1-skeleton of T \ σ-Necklace∨, and its com-

plement consists of 1-cells q∨ for which D(q) is an ei, ej and ek-diamond.
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To show that removal of these 1-cells from T \ σ-Necklace∨ doesn’t affect

connectivity relation on the 0-cells, we, again, observe that given cell q, such that

Bq|Aσ = Ei + Ej + Ek, all the 1-cells in the boundary of D(q) necessarily, by

Proposition 6.34, lie in Γσ, connecting hq to tq.

For a codimension 2 orbit Sσ, given a subcycle s of SF ,σ,ei
whose cohomology

class is 0, we were able to modify family F in such a way as to reduce the σ-Strand

by the support of s. We now show that the same is also true for codimension 3

orbit Sσ and σ-Necklace, albeit with certain restrictions:

Proposition 6.69. Let F = ⊕L(−Dχ) be a gnat-family on Y and σ = 〈ei, ej, ek〉
be a three-dimensional cone in the fan of Y . Let c be any subcycle of NF ,σ,ei

, such

that its cohomology class [c] is zero, and such that multiplicity of any 1-cell in c

is no greater than 1.

Then there exists a family F ′ = ⊕L(−D′
χ) such that

NF ′,σ,ei
= NF ,σ,ei

− 2c (6.50)

SF ′,〈ei,ej〉,ei
= SF ,〈ei,ej〉,ei

− c (6.51)

SF ′,〈ei,ek〉,ei
= SF ,〈ei,ek〉,ei

− c (6.52)

SF ′,〈ej ,ek〉,ei
= SF ,〈ej ,ek〉,ei

(6.53)

If F was normalised family, then we can have F ′ also to be normalised.

Proof. The proof follows along the lines of the proof of Proposition 6.60. As

before, [c] = 0 implies existence of a cochain s ∈ Hom(CT0 ,Z) such that δ(s) = c.

Let s =
∑
λχe

∨
χ.

We claim that the set of G-Weil divisors defined by

D′
χ−1 = Dχ−1 + λχEi (6.54)

satisfies reductor condition (5.5), and therefore F ′ = ⊕L(−D′
χ) is a gnat-family

across Y .

We again have

BF ′,q = BF ,q − (λhq − λtq)Ei (6.55)
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As before, if (λhq − λtq) is non-positive, then effectiveness of BF ′,q is immediate,

as BF ,q is effective. Since c = σ(s), (λhq − λtq) is the coefficient with which e∨q

appears in c. This coefficient is, by assumption, 0 or ±1.

Assume q is an arrow such that (λhq − λtq) equals to 1. Assumption that c

is a subcycle of NF ,σ,ei
yields that NF ,σ,ei

(eq) ≥ 1. Therefore, by Lemma 6.67,

coefficient of Ei in BF ,q is positive, therefore, as BF ′,q = BF ,q − Ei, we see that

BF ′,q is effective, as required.

Showing that (6.50) hold and that if F was normalised, we can ensure F ′

would also be normalised, is identical to the way it is done in the proof of Propo-

sition 6.60.

The result appears to not be as satisfactory as that of Proposition 6.60, since

instead of removing a contractible subcycle of NF ,σ,ei
we appear to be replacing

it by its inverse. Indeed, if a 1-cell q∨ has multiplicity 1 both in c and NF ,σ,ei
,

then in NF ′,σ,ei
it will still have multiplicity 1, but its orientation will change

to the opposite. But observe that if q∨ has multiplicity 1 in c, but multiplicity

2 in NF ,σ,ei
, then the contraction procedure in Proposition 6.69 shall remove it

from NF ,σ,ei
entirely. Since we do not add any new 1-cells to NF ,σ,ei

, we see

that the number of 1-cells in σ-Necklace will decrease. Recall the Example 6.65:

there we saw this procedure removing entirely the edges (χ15, 3)∨ and (χ10, 2)∨

from NFmax,σ,e10 , connecting up the region R2 with both the other connected

components of T ∨.

We, therefore, set out to study the structure of Nσ,ei
and specifically its sub-

chains of multiplicity 2.

Definition 6.70. We define the multiplicity 2 component of NF ,σ,ei
, denoted

N2
F ,σ,ei

, to be the maximal co-chain n ∈ Hom(CT1 ,Z) such that 2n is a subchain

of NF ,σ,ei
.

Lemma 6.71. Let q∨ be a 1-cell of T ∨. Let µ denote the coefficient of e∨q in

N2
F ,σ,ei

, then it depends on Bq|Aσ in the following fashion:

Bq|Aσ µ

Ei 1

Ej + Ek −1

Any other 0
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Proof. We consider eight possible values of Bq|Aσ , and then apply Lemma 6.67

to establish coefficient µ′ of e∨q in NF ,σ,ei
. Then, by Definition 6.70, µ is a half of

µ′, rounded down.

Lemma 6.72. Let T∨ be a 0-cell of T ∨. Then it belongs to the support of N2
F ,σ,ei

if and only if restrictions to Aσ of divisors of zeroes of sides of T are either Ei,

Ej and Ek, or Ei, Ej + Ek and 0.

Proof. T∨ lies in N2
F ,σ,ei

, if and only if, for one of the sides q of T , q∨ lies in N2
F ,σ,ei

.

Let q be such a side, then by, Lemma 6.71, Bq|Aσ = Ei or Bq|Aσ = Ej + Ek. By

Proposition 6.34, if Bq|Aσ = Ei, then the restrictions to Aσ of divisors of zeroes

of the other two sides of T must be Ej and Ek or Ej + Ek and 0. Similarly, if

Bq|Aσ = Ej + Ek, then these restrictions must be Ei and 0.

Lemma 6.73. Let co-chain n ∈ Hom(CT
1 ,Z) be a connected component of N2

F ,σ,ei
.

Then it is an non self-intersecting edge-path. Let T∨ be a 0-cell of T ∨, which lies

in the support of n. Then:

1. T∨ is a startpoint of n if and only if T is a ‘minus’ triangle and divisors of

zeroes of the sides of T restrict to Aσ as Ei, Ej and Ek.

2. T∨ is an endpoint of n if and only if T is a ‘plus’ triangle and divisors of

zeroes of the sides of T restrict to Aσ as Ei, Ej and Ek.

3. T∨ is an internal point of n if and only if divisors of zeroes of the sides of

T restrict to Aσ as Ei, Ej + Ek and 0.

Proof. By Lemma 6.71, the multiplicity of any 1-cell in n is no greater than 1.

Take any 0-cell T (χ, σ)∨, which lies in the support of n. Denote by q1, q2 and

q3 the sides of triangle T (χ, σ). By Lemma 6.72, the restrictions of Bq1 , Bq2 and

Bq3 to Aσ are either Ei, Ej and Ek, or Ei, Ej + Ek and 0.

First, assume, without loss of generality, that Bq1|Aσ = Ei, Bq2|Aσ = Ej and

Bq3|Aσ = Ek. Then by Lemma 6.71, we see that n(eq1) = 1, n(eq2) = 0, and

n(eq3) = 0. Therefore, there is exactly one 1-cell of n attached to T (χ, σ)∨.

Furthermore, by equation (6.20) in the definition of boundary map δ for CT , we

have:

δn(eT (χ,σ)) = n(δeT (χ,σ)) = ε(σ)n(eq1 + eq2 + eq3) = ε(σ) (6.56)
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Now, assume that Bq1|Aσ = Ei, Bq2|Aσ = Ej + Ek and Bq3|Aσ = 0. Then

Lemma 6.71 yields n(eq1) = 1, n(eq2) = −1, and n(eq3) = 0. Therefore, there are

exactly two 1-cells of n attached to T (χ, σ)∨, and

δn(eT (χ,σ)) = n(δeT (χ,σ)) = ε(σ)n(eq1 + eq2 + eq3) = 0 (6.57)

Since choice of 0-cell T (χ, σ)∨ in the support of n was arbitrary, this demon-

strated that n satisfies all the conditions in Lemma 6.32 and thus n is a non

self-intersecting edgepath.

For the second part of the claim, let T∨ be any 0-cell in the support of n. If

the restrictions to Aσ of divisors of zeroes of sides of T are Ei, Ej + Ek and 0,

then (6.57) demonstrates (see Definition 6.31) that T∨ is an internal point of n.

And if the restrictions are Ei, Ej and Ek, then (6.56) demonstrates that if T is

a ‘minus’ triangle (resp. a ‘plus’ triangle), then T∨ is the startpoint (resp. the

endpoint) of n. This proves the claim.

Example 6.74. Similar to the case of σ-Strand in the Example 6.50, we can

visualise a connected component n of N2
σ,ei

as a sequence interlocked ei-diamonds

and (ej, ek)-diamonds in T , through the centres of which runs the edgepath n:

Observe that the sequence consists of triangles, divisors of zeroes of whose

sides restrict to Aσ as Ei, Ej +Ek and 0 and terminates with a triangle, divisors

of zeroes of whose sides restrict to Aσ as Ei, Ej and Ek, illustrating Lemma 6.73.

Note that, as on the figure this triangle is a ‘minus’ triangle, Lemma 6.73 tells

us that it is a startpoint of the edgepath n.

For a concrete example, let the setup be as in the Example 6.65, with σ again

denoting 〈e10, e1, e4〉, and recall the diagram of NFmax,σ,e10 . On the diagram below,

116



we mark each arrow q of McKay quiver by restriction of BFmax,q to Aσ, marking

in bold the arrows where this restriction is zero:

Observe that there are 6 triangles, divisors of zeroes of whose sides restrict to

Aσ as E10, E4 and E1:

‘minus’ triangles: T (χ6, 132), T (χ5, 132) and T (χ16, 132) (6.58)

‘plus’ triangles: T (χ11, 123), T (χ3, 123) and T (χ12, 123) (6.59)

Observe that N2
Fmax,σ,e10

splits, as in Lemma 6.73, into three edgepaths, which

join up the triangles of (6.58) to triangles of (6.59). Writing them down as formal
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edgepaths, and denoting each oriented cell (q, oq) by oq for brevity, we obtain:

T (χ6, 132)→ T (χ12, 123) : {+e∨χ11,2}

T (χ16, 132)→ T (χ3, 123) : {+e∨χ15,3}

T (χ5, 132)→ T (χ11, 123) : {+e∨χ10,2}

Similarly, the three edgepaths composing N2
Fmax,σ,e1

are:

T (χ6, 132)→ T (χ3, 123) :

{+e∨χ6,1,−e∨χ5,2,+e
∨
χ0,1,−e∨χ12,3,+e

∨
χ13,1,−e∨χ7,3,+e

∨
χ8,1,−e∨χ2,3,+e

∨
χ3,1}

T (χ16, 132)→ T (χ11, 123) : {+e∨χ16,1,−e∨χ10,3,+e
∨
χ11,2}

T (χ5, 132)→ T (χ12, 123) : {+e∨χ5,1,−e∨χ4,2,+e
∨
χ17,1,−e∨χ11,3,+e

∨
χ12,1}

Finally, the three edge-paths composing N2
Fmax,σ,e4

are:

T (χ6, 132)→ T (χ11, 123) : {+e∨χ5,3}

T (χ16, 132)→ T (χ12, 123) :

{+e∨χ6,3,−e∨χ7,1,+e
∨
χ1,3,−e∨χ2,1,+e

∨
χ1,2,−e∨χ14,1,+e

∨
χ8,3,−e∨χ9,1,+e

∨
χ3,3,−e∨χ4,1,+e

∨
χ3,2}

T (χ5, 132)→ T (χ3, 123) : {+e∨χ4,3,−e∨χ10,1,+e
∨
χ9,3,−e∨χ15,1,+e

∨
χ2,2}

Observe that σ-Necklace is a union of supports of N2
σ,e10

, N2
σ,e1

and N2
σ,e4

. Thus

we can think of σ-Necklace as a graph with 6 vertices, which are the triangles

listed in (6.58) and (6.59), and 9 edges, which are the 3 edge-paths of N2
σ,e10

, the

3 edge-paths of N2
σ,e1

and the 3 edge-paths of N2
σ,e4

.

Finally, observe that there is another way to divide the six triangles, listed

in (6.58) and (6.59), into two groups. For each of them, if we take first the

side q such that Bq|Aσ = E10, then such that Bq|Aσ = E4 and then such that

Bq|Aσ = E1, we shall follow around the boundary of the triangle in one of the two

possible directions. On the diagram above, we see that in cases of T (χ12, 123),

T (χ16, 132), T (χ11, 123) and T (χ5, 132) this direction is ‘clockwise’, while in cases

of T (χ3, 123) and T (χ16, 132) it is ‘anti-clockwise’.

Definition 6.75. Let F = ⊕L(−Dχ) be a gnat-family on Y and σ be a three-

dimensional cone in the fan of Y . Let n be a 1-cochain in Hom(CT1 ,Z).
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Given a generator ei ∈ σ, we say that n is a (σ, ei)-link if it is a connected

component of N2
F ,σ,ei

. We say that n is an σ-link if it is a (σ, ei)-link for one of

the generators ei ∈ σ.

Definition 6.76. Let F = ⊕L(−Dχ) be a gnat-family on Y and σ = 〈ei, ej, ek〉
be a three-dimensional cone in the fan of Y . Let T∨ be a 0-cell of T ∨. Let T be

a dual 2-cell in T and let q1, q2 and q3 be its x1, x2 and x3-oriented sides.

We say that T∨ is a σ-Clasp if there exists a bijection θ : {1, 2, 3} → {i, j, k}
such that

Bqa|Aσ = Eθ(a) ∀ a ∈ {1, 2, 3} (6.60)

We say that T∨ is a regular σ-Clasp if the ordered triple of points eθ(1),

eθ(2), eθ(3) have the same orientation as the ordered triple e1, e2 and e3. In other

words, if (eθ(1)− eθ(2))∧ (eθ(1)− eθ(3)) is a positive multiple of (e1− e2)∧ (e1− e3).
Otherwise, we say that T∨ is a reversed σ-Clasp.

Example 6.77. Let us return to the observation made in the end of Example

6.74. Let T∨ be one of the σ-Clasps listed in (6.58) and (6.59), let q1, q2 and q3

be its x1, x2 and x3-oriented, sides and let θ be the bijection satisfying (6.60). We

observed that if we follow the sides of T in order qθ−1(10), qθ−1(4), qθ−1(1), then, if

T is one of T (χ12, 123), T (χ16, 132), T (χ11, 123) or T (χ5, 132), we shall go around

the boundary of T ‘clockwise’, while, if T is one of T (χ3, 123) or T (χ16, 132), we

shall go around it ‘anti-clockwise’.

Observe that ordering sides as q1, q2, q3 goes around the boundary of every

T ‘clockwise’. Therefore the ordering qθ−1(10), qθ−1(4), qθ−1(1) goes around the

boundary of T ‘clockwise’, if and only if the ordered triple of points e1, e2, e3

defines the same orientation of plane L′ as the ordered triple eθ−1(10), eθ−1(4),

eθ−1(1). And the latter happens if and only if the ordered triple eθ(1), eθ(2), eθ(3)

defines the same orientation of L′ as the ordered triple e10, e4, e1.

On the other hand, by looking at the diagram in the Example 6.17, we see

that e10, e4 and e1 define the same, ‘anti-clockwise’, orientation of L′ as e1, e2,

e3.

Thus we see that T (χ12, 123), T (χ16, 132), T (χ11, 123) and T (χ5, 132) are reg-

ular σ-Clasps, while T (χ3, 123) and T (χ16, 132) are the reversed ones.
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Recall the local approximation map ψ, introduced in Definition 6.44. Let

ei ∈ E, and recall that ei-diamond cochain dei
, introduced in Definition 6.48,

maps eq to 1, if Ei ∈ Bq, and to 0, otherwise.

Now take any triangle T in T and let q1, q2 and q3 be its x1, x2 and x3-oriented

sides. Then, for any a ∈ {1, 2, 3}, the element ψ(dei
)(T ) of L′ maps [xa] to 1,

if Ei ∈ Bqa , and to 0, otherwise. Proposition 6.34 implies that the divisor of

zeroes of precisely one of the sides of T contains Ei. Let this side be qb, for some

b ∈ {1, 2, 3}. Then ψ(dei
)(T ) is the vertex eb of the junior simplex ∆.

We conclude that ψ(de•)(T ) defines a map from E to {1, 2, 3} such that for

any ei ∈ E and a ∈ {1, 2, 3}

ψ(dei
)(T ) = ea if and only if Ei ∈ Bqa (6.61)

This allows for a following algebraic criterion, which determines whether a

1-cell T∨ is an σ-Clasp:

Proposition 6.78. Let F = ⊕L(−Dχ) be a gnat-family on Y and σ = 〈ei, ej, ek〉
be a three-dimensional cone in the fan of Y . Let T∨ be a 0-cell of T ∨. Then one

of the following always holds:

1. T∨ is not an σ-Clasp and

ψ(dei
− dej

)(T ) ∧ ψ(dei
− dek

)(T ) = 0 (6.62)

2. T∨ is a regular σ-Clasp and

ψ(dei
− dej

)(T ) ∧ ψ(dei
− dek

)(T ) = +|G|(ei − ej) ∧ (ei − ek) (6.63)

3. T∨ is a reversed σ-Clasp and

ψ(dei
− dej

)(T ) ∧ ψ(dei
− dek

)(T ) = −|G|(ei − ej) ∧ (ei − ek) (6.64)

Proof. Observe the map ψ(de•)(T ) from {i, j, k} to {1, 2, 3} is a bijection if and

only if T∨ is an σ-Clasp. This is because if the requisite bijection θ from {1, 2, 3}
to {i, j, k} defined by (6.60) exists, then, by (6.61), it has to be the inverse of

ψ(de•)(T ).
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On the other hand, clearly ψ(de•)(T ) is a bijection if and only if

ψ(dei
− dej

)(T ) ∧ ψ(dei
− dek

)(T ) 6= 0

Suppose T∨ is an σ-Clasp. Then observe that

(ψ(dei
)(T )− ψ(dej

)(T )) ∧ (ψ(dei
)(T )− ψ(dej

)(T ))

is a basis for Λ2((Z3)∨ ∩ (1, 1, 1)⊥).

Since (ei − ej) ∧ (ei − ek) is a basis of Λ2(L ∩ (1, 1, 1)⊥), we have:

(ψ(dei
)(T )−ψ(dej

)(T ))∧(ψ(dei
)(T )−ψ(dej

))(T ) = ±|L : (Z3)∨| (ei−ej)∧(ei−ek)

And since, as seen in Section 4.1, L/(Z3)∨ is isomorphic to G, we see that |L :

(Z3)∨|, the index of (Z3)∨ in L, must be equal to |G|. The result follows.

One particular consequence of Proposition 6.78 is that, when using Lemma

6.46 to calculate the cup product of cohomology classes of dei
− dej

and dei
− dek

,

only σ-Clasps contribute to the answer.

Proposition 6.79. Let F = ⊕L(−Dχ) be a gnat-family on Y and σ = 〈ei, ej, ek〉
be a three-dimensional cone in the fan of Y .

Then

(# of regular σ-Clasps) = (# of reversed σ-Clasps) + 2

Proof. Proposition 6.57 tells us that the cohomology classes of dei
− dej

and

dei
− dek

are ei− ej and ei− ek, respectively. Then Proposition 6.46 tells us that

their cup product is an average of wedge product of their local approximations

across T2, that is:∑
T∈T2

ψ(dei
− dej

)(T ) ∧ ψ(dei
− dek

)(T ) = 2|G|(ei − ej) ∧ (ei − ek)

Proposition 6.78 tells us that only σ-Clasps contribute a non-zero term to the

sum in LHS. It further says that each regular σ-Clasp contributes +|G|(ei− ej)∧
(ei− ek), while each reversed σ-Clasp contributes −|G|(ei− ej)∧ (ei− ek). Thus,

we see that there must be two more regular σ-Clasps than reversed σ-Clasps.
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Recall how in Example 6.74 we saw that σ-Necklace was union of σ-Clasps

and supports of σ-links, with the only cells, belonging to a support of more then

one σ-link, being σ-Clasps.

We now prove that this is always the case:

Lemma 6.80. Let F = ⊕L(−Dχ) be a gnat-family on Y and σ be a three-

dimensional cone in the fan of Y . Then

1. σ-Necklace is a disjoint union of all σ-Clasps and interiors of supports of

all σ-links.

2. For any two-dimensional face σ′ of σ, σ′-Strand is a disjoint union of all

σ-Clasps and interiors of supports of all (σ, ei)-links, for ei ∈ σ′.

Proof. Let q∨ be a 1-cell, which lies in σ-Necklace. Then Lemma 6.67 lists all six

possible values of Bq|Aσ , and applying Lemma 6.71 for each of them, shows that

q∨ lies in N2
F ,σ,ei

for precisely one ei ∈ σ. E.g., if Bq|Aσ = Ei, then q∨ ∈ N2
F ,σ,ei

,

and if Bq|Aσ = Ei+Ej, then q∨ ∈ N2
F ,σ,ek

. Thus every 1-cell of σ-Necklace belongs

to an unique σ-link.

Let T∨ be a 0-cell, which belongs to σ-Necklace. We must show that it is

either an σ-Clasp or an internal point of an unique σ-link. Since every 1-cell of

σ-Necklace belongs to some σ-link n, so must T∨. Then, by Lemma 6.73, T∨ is

either an σ-Clasp or an interior point of n.

If T∨ is an interior point of n, assume, without loss of generality, that n is an

(σ, ei)-link. Since all (σ, ei) are, by definition, disjoint, it remains to show that

T∨ doesn’t belong to any (σ, ej) or (σ, ek)-link.

Denote by q1, q2 and q3 the sides of triangle T . Since T is an interior point

of a (σ, ei)-link, Lemma 6.73 says that the restrictions of Bq1 , Bq2 and Bq2 to

Aσ are, in some order, Ei, Ej + Ek and 0. Then, by Lemma 6.71, none of the

three 1-cells q∨1 , q∨2 or q∨3 , attached to T∨, lie in a (σ, ej)-link or in a (σ, ej)-link.

Therefore T∨ doesn’t either, as required.

This shows 1. The proof of 2 is similar. We first use Lemmas 6.52 and

6.71 to establish that any 1-cell in 〈ei, ej〉-Strand belongs to an unique (σ, ei) or

(σ, ej)-link, and then proceed as before.

Proposition 6.81. Let F = ⊕L(−Dχ) be a gnat-family on Y and σ = 〈ei, ej, ek〉
be a three-dimensional cone in the fan of Y . Assume, further, that σ-Necklace is

connected.
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The number of connected components in T ∨ \ σ-Necklace is half the number

of σ-Clasps.

Proof. We argue by passing to TG, a geometrical realisation of T ∨. Let Ṅ be an

open neighbourhood which retracts onto the image of σ-Necklace in TG. Consider

the long exact sequence for relative homology:

0 → H2(TG) → H2(TG, Ṅ) →
H1(Ṅ)

δ1−→ H1(TG) → H1(TG, Ṅ) →
H0(Ṅ)

δ2−→ H0(TG) → H0(TG, Ṅ) → 0

As both Ṅ and TG are connected, δ2 is an isomorphism. Since Ṅ contains

the images of σ′-Strands for the three two-dimensional faces σ′ of σ, it supports

a basis for H1(TG) and hence δ1 is a surjection. Consequently, H1(TG, Ṅ) =

H0(TG, Ṅ) = 0.

Let nR denote the number of the connected components of T∨\σ-Necklace. By

a duality theorem ([Hat01], Theorem 3.46) H2(TG, Ṅ) is isomorphic to H0(TG −
Ṅ). Therefore rkH2(TG, Ṅ) = nR.

Therefore the long exact sequence yields:

χ(N)− χ(TG) + nR = 0 (6.65)

The Euler characteristic χ(TG) of the torus TG is 0. By ([Hat01], p. 146) the

Euler characteristic χ(N) of a CW-complex N equals to n0 − n1, where n0 and

n1 are total numbers of 0-cells and 1-cells in N , respectively. Every 1-cell in N

is attached to two 0-cells. A 0-cell in N has three 1-cells attached to it, if it is

an σ-Clasp, and two 1-cells attached to it otherwise. Therefore n1 = n0 + 1
2
nC ,

where nC is a total number of σ-Clasps. Thus χ(N) = −1
2
nC .

Substituting all this into (6.65) yields

nR =
1

2
nC

as required.

Thus the reversed σ-Clasps represent an obstruction to the connectedness of

T ∨ \ σ-Necklace: the latter is connected if and only if there exist exactly two
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σ-Clasps, which, by Proposition 6.79, is equivalent to there not existing any

reversed σ-Clasps.

We now, given a reversed σ-Clasp T∨, explicitly construct a contractible com-

ponent of σ-Necklace, whose boundary T∨ lies on. Provided that σ-Strands

corresponding to faces of σ-Necklace are all connected, i.e. the disconnectedness

of T ∨ \ σ-Necklace doesn’t come from any single σ-Strand, but from the way

they intersect each other. But, most importantly, we construct this contractible

component in such a way that we can apply Proposition 6.69 to it:

Proposition 6.82. Let F = ⊕L(−Dχ) be a gnat-family on Y and σ = 〈ei, ej, ek〉
be a three-dimensional cone in the fan of Y . Assume further that, for each of the

three two-dimensional faces σ′ of σ, σ′-Strand is connected.

If there exists a reversed σ-Clasp, then one of NF ,σ,ei
, NF ,σ,ej

or NF ,σ,ek
con-

tains subcycle c, which is a closed edge-path and which has cohomology class 0.

Proof. Proposition 6.79 implies that, if there exists a reversed σ-Clasp, then there

exists a regular one. Let σ′ be any two-dimensional face of σ. By Lemma 6.80,

σ′-Strand is a disjoint union of all σ-Clasps and interiors of such (σ, ea)-links,

that ea ∈ σ′. Since, by assumption, σ′-Strand is also connected, we see that there

must exist an open σ-link n, connecting a regular σ-Clasp and a reversed one.

Without a loss of generality, let n be a (σ, ei)-link. Let T∨
0 denote the startpoint

of n and T∨
1 denote the endpoint, i.e. δn = e∨T1

− e∨T0
.

Consider S〈ej ,ek〉,ej
= dej

− dek
. By assumption it is connected, therefore by

Corollary 6.54 it is a closed non self-intersecting edgepath. Lemma 6.80 implies

that every σ-Clasp belongs to it. In particular, T∨
0 and T∨

1 do, splitting S〈ej ,ek〉,ej

in two open edge-paths: one that goes from T∨
0 to T∨

1 and one that goes from

T∨
1 to T∨

0 . Let m1 and m2, respectively, denote the corresponding subchains of

S〈ej ,ek〉,ej
, so that we have S〈ej ,ek〉,ej

= m1 +m2, δm1 = δn and δm2 = −δn. Then

m1 − n and −m2 − n are closed edge-paths.

By applying Lemmas 6.71 and 6.67 for each cell q∨ in n, we see that −N2
F ,σ,ei

is subchain of both NF ,σ,ej
and NF ,σ,ek

. Similarly, by applying Lemmas 6.52 and

6.67, we see that S〈ej ,ek〉,ej
is a subchain of NF ,σ,ej

and −S〈ej ,ek〉,ej
is a subchain

of NF ,σ,ek
. We conclude that m1 − n is a subcycle of NF ,σ,ej

and −m2 − n is a

subcycle of NF ,σ,ek
.

Therefore, if we can show that one of the cohomology classes [m1 − n] or

[−m2 − n] is zero, we are done.
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A key step is to establish that

[m1 − n] ∧ [m1 +m2] = 0 (6.66)

Suppose we have done that. Then [m1 − n] = k[m1 + m2] for some integer k.

Consequently, [−m2 − n] = [m1 − n] − [m1 + m2] = (k − 1)[m1 + m2]. On the

other hand, both n−m1 and −n−m2 are closed, non self-intersecting edge-paths,

and therefore, by Lemma 6.33, both k and (1− k) have to be 0, +1 or −1. This

necessitates one of them to be zero, and the proof is finished.

It remains to demonstrate (6.66). We give first a geometric proof, using

intersection theory on torus TG, then we follow the sketch with a purist algebraic

proof working entirely in abstract complex T∨.

The geometric proof is as follows: we claim that since TG is an orientable

manifold, there are only two principally different configurations of n, m1 and m2:

The Case 1 is the situation, which we desire: m1 − n is the contractible cycle we

seek. Observe, that bothm1−n and−m2−n can clearly be homotopied away from

m1+m2, therefore the cup products [m1−n]∧[m1+m2] and [−m2−n]∧[m1+m2]

are zero. On the other hand, in Case 2, neither m1 − n, nor −m2 − n are

contractible and m1 − n and −m2 − n are both homotopic to a curve, which

intersectm1+m2 transversally in one point, and therefore neither of the respective

cup products is zero. We claim that the Case 1 configuration happens precisely

when one of the two clasps T∨
0 and T∨

1 is regular and the other reversed, while

Case 2 configuration happens whenever both clasps are of the same type. Indeed,

observe that each of n, m1 and m2 is attached to each clasp by precisely one 1-cell

of T ∨
1 . On the figure we have, in each case, marked by i, j, or k whether this cell
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is a part of (σ, ei), (σ, ej) or (σ, ek)-link, or equivalently, whether the restriction to

Aσ of the divisor of zeroes of its dual in T1 is Ei, Ej or Ek. Recalling the discussion

in the beginning of the Example 6.77, observe that, in Case 1, markings i, j and

k go clockwise around T ∨
0 and anti-clockwise around T ∨

1 , while in Case 2, they

go clockwise around both of the clasps.

We now proceed to an algebraic proof. To calculate [m1 − n]∧ [m1 +m2], we

use Proposition 6.46, which tells us that it is an average of ψ(m1−n)(T )∧ψ(m1+

m2)(T ) across all the triangles T in T2. By construction, the only 0-cells in T ∨,

which belong to more than one of n, m1 and m2, are T∨
0 and T∨

1 . Therefore, for

all T 6= T0 or T1, ψ(m1 − n)(T ) ∧ ψ(m1 +m2)(T ) = 0 and thus:

2|G|[m1 − n] ∧ [m1 +m2] =
∑

T=T0,T1

ψ(m1 − n)(T ) ∧ ψ(m1 +m2)(T ) (6.67)

Consider a triangle T0. Let qi, qj and qk denote the sides of T0, restrictions

of whose divisors of zeroes to Aσ are Ei, Ej and Ek, respectively. By Lemma

6.71, n maps eqi
to 1 and maps eqj

and eqk
to 0. So does dei

, and therefore

ψ(n)(T0) = ψ(dei
)(T0).

On the other hand, m1 +m2 = dej
−dek

, and therefore m1 +m2(eqi
) = 0, m1 +

m2(eqj
) = +1 and m1 +m2(eqk

) = −1. Therefore, the edgepath m1 +m2 contains

two oriented 1-cells attached to T∨
0 : (q∨j ,+e

∨
qj

) and (q∨k ,−e∨qk
). By Lemma 6.73,

T0 is a ‘minus’ triangle, as it is a startpoint of an σ-link. Using (6.21), we have:

δ(+e∨qj
)(eT0) = +e∨qj

(δ(eT0)) = +e∨qj
(−eqi

− eqj
− eqj

) = −1

δ(−e∨qk
)(eT0) = −e∨qk

(δ(eT0)) = −e∨qk
(−eqi

− eqj
− eqj

) = +1

Therefore T0 is an origin of (q∨j ,+e
∨
qj

) and an end of (q∨k ,−e∨qk
). Since m1 is a

subchain of m1 +m2, which is an open edgepath starting at T∨
0 , m1 must contain

(q∨j ,+e
∨
qj

), and not (q∨k ,−e∨qk
). We conclude, that m1 maps eqj

to +1 and maps

eqi
and eqk

to 0, and therefore ψ(m1)(T0) = ψ(dej
)(T0). By the same reasoning,

ψ(m2)(T0) = ψ(−dek
)(T0).

Thus we have

ψ(m1 − n)(T0) ∧ ψ(m1 +m2)(T0) = ψ(dej
− dei

)(T0) ∧ ψ(dej
− dek

)(T0) (6.68)
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Repeating the same calculation for T1, we obtain that also

ψ(m1 − n)(T1) ∧ ψ(m1 +m2)(T1) = ψ(dej
− dei

)(T0) ∧ ψ(dej
− dek

)(T1) (6.69)

By assumption one of T0 and T1 is a regular clasp and the other is reversed.

Therefore the sum of RHSs in (6.68) and (6.69) is zero, and substituting (6.68)

and (6.69) into (6.67), we conclude that [n−m1]∧ [m1 +m2] = 0, as required.

It might be tempting to use Proposition 6.82 to locate contractible com-

ponents of σ-Necklace and Proposition 6.69 to modify F , over and over, until

T \σ-Necklace becomes connected. However, we can only apply Proposition 6.82

whenever, for each two-dimensional face σ′ of σ, σ′-Strand is connected. And

there is no guarantee that applying Proposition 6.69 wouldn’t disconnect one of

them. We can reconnect any given σ′-Strand by using Proposition 6.63, but doing

so might disconnect one of the other two strands.

However it turns out that it is possible to make modifications to F in such a

way that the number of 1-cells in σ-Necklace strictly decreases with each modi-

fication.

The key observation is that applying Proposition 6.69 to contractible compo-

nent c of NF ,σ,ei
, we add no new 1-cells to σ-Necklace, but remove from it every

1-cell q∨, whose multiplicity in c is 1 and whose multiplicity in NF ,σ,ei
is 2.

Indeed, recalling Proof of Proposition 6.69, new family F ′ was constructed in

such a way that

NF ′,σ,ei
= NF ,σ,ei

− 2c (6.70)

Let q∨ be a 1-cell in T ∨, which doesn’t lie in σ-Necklace of F . ThenNF ,σ,ei
(eq) =

0. Since c is a subcycle of NF ,σ,ei
(eq), we also have c(eq) = 0. Therefore

NF ′,σ,ei
(eq) = 0, and therefore q∨ doesn’t lie in the σ-Necklace of F ′.

Suppose q∨ is a 1-cell, whose multiplicity in c is 1 and whose multiplicity in

NF ,σ,ei
is 2. Therefore NF ,σ,ei

(eq) = ±2 c(eq). Since c is a subchain of NF ,σ,ei
,

orientation of q∨ must be the same in both of them (see equation (6.19)), and

therefore NF ,σ,ei
(eq) = +2 c(eq). Substituting this into 6.70 yields NF ′,σ,ei

(eq) = 0

and therefore q∨ doesn’t lie in σ-Necklace of F ′.

We can now prove the main theorem of this chapter.
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Theorem 6.83. Let G be a finite, abelian subgroup of SL3(C). Let Y be any

crepant toric resolution of X = C3/G. Let F = ⊕L(−Dχ) be a gnat-family on

Y . Let σ = 〈ei, ej, ek〉 be any three-dimensional cone in the fan of Y .

Then there exists an algorithm, which modifies F until it produces a new

gnat-family F ′, which is simple restricted to Aσ.

Proof. Each step of the algorithm consists of applying one of the following two

modifications to F . The algorithm terminates if, at some step, we obtain a family

F ′, to which neither modification can be applied.

Modification A: This can be applied if σ has a two-dimensional subface σ′,

such that σ′-Strand is disconnected. If this is the case, let σ′ = 〈ei, ej〉, without

loss of generality. Then we use Proposition 6.59 to decompose SF ,〈ei,ej〉,ei
into

two disjoint subcycles a and c, such a is connected and [c] = 0. By Lemma 6.52,

no 1-cell of T ∨ belongs to n with multiplicity greater than 1. Also, by applying

Lemmas 6.52 and 6.67 , we see that c is a subcycle of NF ,σ,ei
, while −c is a

subcycle of NF ,σ,ej
.

By assumption, c is non-empty. Let q∨ be a 1-cell of c. By Lemma 6.80, q∨

has multiplicity 2 in either NF ,σ,ei
or NF ,σ,ej

.

If q∨ has multiplicity 2 in NF ,σ,ei
, apply Proposition 6.69 to c, as a subcycle

of NF ,σ,ei
, to obtain a new family F ′. The number of 1-cells in σ-Necklace of F ′

will be strictly less that the number of 1-cells in σ-Necklace of F .

If q∨ has multiplicity 2 in NF ,σ,ei
, apply Proposition 6.69 to −c, as a subcycle

of NF ,σ,ej
, to obtain a new family F ′. Again, the number of 1-cells in σ-Necklace

of F ′ is strictly less that the number of 1-cells in σ-Necklace of F .

Modification B: This can be applied whenever σ′-Strand is connected for all

three two-dimensional faces σ′ of σ and there exists reversed σ-Clasps. If this is

the case, we can apply Proposition 6.82, to identify a subcycle c of, without loss

of generality, NF ,σ,ei
, such that c is a closed edge-path and [c] = 0. Then we claim

that c must contain a 1-cell q∨ of N2
F ,σ,ei

. Assume otherwise. then by 6.80 its

support is a subset of 〈ej, ek〉-Strand. By assumption, 〈ej, ek〉-Strand is connected,

so by Corollary 6.54, it is a support of a closed, non self-intersecting edge-path.

Since c is a closed edge-path itself, the support of c must be the whole of 〈ej, ek〉-
Strand. Then we can apply Lemma 6.33, to show that T∨ \ 〈ej, ek〉-Strand has

two connected components. Which is impossible, as then by Proposition 6.61,

〈ej, ek〉-Strand would also have two connected components.
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Since at each step of the algorithm we decrease the number of 1-cells in

σ-Necklace of F , the process must terminate. This can happen only when at

some step we produced family F ′, such that σ′-Strand is connected for all three

two-dimensional faces σ′ of σ and no reversed σ-Clasps exist. Then by Proposition

6.79, the total number of σ-Clasps is 2, hence by Proposition 6.81, T∨\σ-Necklace

has a single connected component. Therefore, by Proposition 6.68, F|Aσ is sim-

ple

6.11 Conclusion

The goal of this chapter was to prove that for any abelian G ⊂ SL3(C) and any

crepant toric resolution Y of C3/G, there exists a (globally) simple gnat-family

F . Since every gnat-family is simple on codimension 0 and 1 orbits (Corollary

6.13 and Proposition 6.35), the problem reduces to considering codimension 2

and 3 orbits. Indeed, by Proposition 6.12, if F is simple on an orbit Sσ, it is

simple on the affine open piece Aσ. Therefore if F is simple at all toric fixed

points Sσ, where σ ranges across all three-dimensional cones in the fan of Y , then

F is simple on the whole of Y .

For any codimension 2-orbit Sσ, we have found the following criterion: F
is simple along Sσ if and only if σ-Strand is connected (Proposition 6.55). We

know how to modify any gnat-family F to make it satisfy this criterion (Propo-

sition 6.60). Furthermore, by making these modifications in a controlled way, we

can ensure that eventually we reach a gnat-family which is simple along all the

codimension 2 orbits (Proposition 6.63). In fact, we can also see that, for any

G and Y , there is a particular gnat-family, the maximal shift family, which is

simple everywhere in codimension 2 (Corollary 6.64).

Now, for any toric fixed point Sσ, we also have a criterion: F is simple at

Sσ if and only if σ-Necklace is connected and there are no reversed σ-Clasps

(Propositions 6.81 and 6.79). We have an algorithm which repeatedly modifies

any gnat-family F until this criterion is satisfied at a given fixed point (Theorem

6.83). However, using this algorithm may affect the simplicity of F at other fixed

points and we have no way to control the repeated use of this algorithm to ensure

that we can make F simple at all fixed points simultaneously.

Thus, the existence of a (globally) simple gnat-family for an arbitrary choice
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of a finite abelian G ⊂ SL3(C) and of a toric crepant resolution Y of C3/G still

remains unproven.

An alternative approach to trying to control the repeated use of the algorithm

in Theorem 6.83 would be, similar to the case of the maximal shift family and

codimension 2 orbits, to try to directly construct a gnat-family F in a way which

would ensure that no reversed σ-Clasps could exist.

6.12 Non-projective example

Although we do not prove that a simple gnat-family always exists, the methods

we developed provide the tools, with which, for any given G and Y , one could

attempt to construct such a family or to verify that a given family is simple.

For any crepant projective resolution Y , in case finite of abelian G ⊂ SL3(C),

Theorem 1.1 [CI02] proves there exists θ, such that Y is a moduli space of θ-stable

constellations. Then the pushdown to Y of the universal θ-stable G-constellation

on Y × C3 can be shown to be an orthonormal gnat-family. In particular, this

shows that for each crepant projective Y , there is at least one family F , which is

(globally) simple on Y .

In this section, we turn our attention to a case when the resolution Y of

C3/G is non-projective. Such Y can not be a moduli space Mθ of θ-stable G-

constellations for some parameter θ, since these are constructed (cf. [CI02], Sec-

tion 2.1) as GIT quotient spaces and therefore are projective. Thus, the existence

of a gnat-family which is (globally) simple on Y is not guaranteed.

The following example establishes existence of a simple gnat-family for one

particular non-projective resolution:

Example 6.84. We set the group G to be 1
6
(1, 1, 4) ⊕ 1

2
(1, 0, 1). That is, the

image in SL3(Cn) of the product µ6 × µ2 of the groups of 6th and 2nd roots of

unity, respectively, under the embedding:

(ξ1, ξ2) 7→

ξ1ξ2 ξ1

ξ4
1ξ2

 (6.71)

By χi,j we shall denote the character onG induced from the character (ξ1, ξ2) 7→
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ξi
1ξ

j
2 on µ6×µ2. Thus, as in Definition 3.1, the monomial x1 is of weight χ1,1 and

G acts on it by the character χ−1
1,1 = χ5,0. Hence in the McKay quiver quiver of

G, there is an arrow from each χ ∈ G∨ to χχ5,0.

Calculating the whole of the McKay quiver of G, we obtain the following:

The above is a diagram of the fundamental domain of the McKay quiver of G

in the universal cover quiver U , the latter being embedded into R2 as described

in Section 6.4.

The lattice L, defined in Section 4.1, is generated in (Z3)∨ ⊗ Q by (1, 0, 0),

(0, 1, 0), (0, 0, 1), 1
6
(1, 1, 4) and 1

2
(1, 0, 1). Calculating set E of elements of L,
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which lie in the junior simplex ∆ we obtain:

e1 = (1, 0, 0) e2 = (0, 1, 0) e3 = (0, 0, 1)

e4 = 1
6
(1, 1, 4) e5 = 1

3
(1, 1, 1) e6 = 1

2
(1, 1, 0)

e7 = 1
6
(1, 4, 1) e8 = 1

2
(1, 0, 1) e9 = 1

6
(4, 1, 1)

e10 = 1
2
(0, 1, 1)

(6.72)

We choose Y to be the resolution of X = C3/G, whose fan Σ triangulates the

junior simplex as follows:

We choose gnat-family F on Y to be the maximal shift family ⊕L(−Mχ),

where χ-Weil divisors Mχ are the maximal shift divisors introduced in Definition

5.18. We calculate them, as shown in Example 5.21, for the above choices of G

and Y , and obtain that the coefficients of Ei in Mχ are given by the following

table:
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E4 E5 E6 E7 E8 E9 E10

Mχ0,0 0 0 0 0 0 0 0

Mχ2,0

2
6

4
6

0 2
6

0 2
6

0

Mχ4,0

4
6

12
6

0 4
6

0 4
6

0

Mχ1,1

1
6

2
6

3
6

1
6

3
6

4
6

0

Mχ1,0

1
6

2
6

3
6

4
6

0 1
6

3
6

Mχ4,1

4
6

2
6

0 1
6

3
6

1
6

3
6

Mχ3,1

3
6

1 3
6

3
6

3
6

1 0

Mχ3,0

3
6

1 3
6

1 0 3
6

3
6

Mχ0,1 1 1 0 3
6

3
6

3
6

3
6

Mχ5,1

5
6

4
6

3
6

5
6

3
6

2
6

0

Mχ5,0

5
6

4
6

3
6

2
6

0 5
6

3
6

Mχ2,1

2
6

4
6

0 5
6

3
6

5
6

3
6

We omit E1, E2 and E3 as they have coefficient 0 in all Mχ. Recall also that,

by Corollary 3.14, Ei are the only prime Weil divisors on Y , which can have

non-zero coefficients in any of Mχ. Next, using equation 6.12, we calculate Bq

for each arrow q in the McKay quiver of G. We obtain:
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Bχ0,0,1 = E1 Bχ1,1,1 = E1 + E4 + E5 + E6 + E7 + E8 + E9

Bχ0,0,2 = E2 Bχ1,1,2 = E2 + E6 + E7

Bχ0,0,3 = E3 Bχ1,1,3 = E3 + E4 + E8

Bχ4,0,1 = E1 Bχ1,0,1 = E1 + E6 + E9

Bχ4,0,2 = E2 Bχ1,0,2 = E2 + E4 + E5 + E6 + E7 + E9 + E10

Bχ4,0,3 = E3 Bχ1,0,3 = E3 + E4 + E10

Bχ2,0,1 = E1 + E5 + E9 Bχ4,1,1 = E1 + E8 + E9

Bχ2,0,2 = E2 + E5 + E7 Bχ4,1,2 = E2 + E7 + E10

Bχ2,0,3 = E3 + E4 + E5 Bχ4,1,3 = E3 + E4 + E5 + E7 + E8 + E9 + E10

Bχ5,1,1 = E1 + E6 + E8 + E9 Bχ3,1,1 = E1 + E6 + E8 + E9

Bχ5,1,2 = E2 + E6 Bχ3,1,2 = E2 + E5 + E6 + E7 + E9

Bχ5,1,3 = E3 + E8 Bχ3,1,3 = E3 + E4 + E5 + E8 + E9

Bχ5,0,1 = E1 + E6 Bχ3,0,1 = E1 + E5 + E6 + E7 + E9

Bχ5,0,2 = E2 + E6 + E7 + E10 Bχ3,0,2 = E2 + E6 + E7 + E10

Bχ5,0,3 = E3 + E10 Bχ3,0,3 = E3 + E4 + E5 + E7 + E10

Bχ2,1,1 = E1 + E8 Bχ0,1,1 = E1 + E4 + E5 + E8 + E9

Bχ2,1,2 = E2 + E10 Bχ0,1,2 = E2 + E4 + E5 + E7 + E10

Bχ2,1,3 = E3 + E4 + E8 + E10 Bχ0,1,3 = E3 + E4 + E8 + E10

By Proposition 6.68, to demonstrate that F is a simple family it suffices

to demonstrate that, for every three-dimensional cone σ in the fan of Y , the

σ-Necklace is connected. By symmetry of the fan Σ and divisors Mχ, we only

need to check that σ-Necklace is connected for the cones 〈e1, e8, e9〉, 〈e9, e8, e3〉,
〈e9, e3, e4〉 and 〈e9, e4, e5〉. First we calculate diamond cochains dei

(cf. Definition

6.48) for e1, e3, e4, e5, e8 and e9. We use the fact that e∨q has coefficient 1 in dei

if Ei ∈ Bq and 0 otherwise. We obtain the following:
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de1 de3

de4 de5

de8 de9
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We then calculate σ-Necklaces. We obtain that 〈e1, e8, e9〉-Necklace is:

that 〈e9, e8, e3〉-Necklace is:
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that 〈e9, e3, e4〉-Necklace is:

and that 〈e9, e4, e5〉-Necklace is:
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The reader can now verify that each of the σ-Necklaces on the diagrams above

is connected and has only two clasps. Therefore, by Proposition 6.81, the family

F is simple on affine open pieces A〈e1,e8,e9〉, A〈e9,e8,e3〉, A〈e9,e3,e4〉 and A〈e9,e4,e5〉.

And hence, by symmetry, on the whole of Y .
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