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Heisenberg algebras (review)
A lattice is a free Z-module M of finite rank equipped with a
nondegenerate bilinear form

χ∶M ×M → Z, v ,w ↦ ⟨v ,w⟩χ.

We do not require the form χ to be symmetric nor antisymmetric.

Let (M, χ) be a lattice. The Heisenberg algebra HM ∶= H(M,χ) is

the unital k-algebra with generators p
(n)
a , q

(n)
a for a ∈M and

integers n ≥ 0 modulo the following relations for all a,b ∈M and
n,m ≥ 0:
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Heisenberg algebra of a category

Let V be a k-linear category with finite dimensional Hom-spaces.
The Grothendieck group K0(V) of V comes equipped with the
Euler (or Mukai) pairing

[a], [b]↦ ⟨[a], [b]⟩χ ∶= χ(HomV(a,b)) = ∑
n∈Z

(−1)nHn HomV(a,b).

A Serre functor on A is an autoequivalence S of A equipped with
a isomorphisms

ηa,b ∶HomA(a,b) ≃ HomA(b,Sa)∗,

natural in a,b ∈ A.



Heisenberg algebra of a category
If there is a Serre functor on V, the left and right kernels of χ
agree.
Proof:

⟨[a], [b]⟩χ = ⟨[b], [Sa]⟩χ = ⟨[S−1b], [a]⟩χ
Numerical Grothendieck group: Knum

0 (V) ∶= K0(V)/ ker(χ).
Under certain conditions, this is a finite rank free abelian group.

Example

If X is a smooth and proper variety over k, then Db
coh(X )

(=Kb(Coh(X )) modulo quasi-isomorphisms) admits a Serre
functor S = (−)⊗X ωX [dimX ], where ωX is the canonical line
bundle of X . Via Hirzebruch-Riemann-Roch:

χ(Hom(a,b)) = χ(a∨ ⊗ b) = ∫
X

ch(a∨ ⊗ b) ⋅ td(TX ).

Knum
0 (Db

coh(X )) = Knum
0 (X ) ∶= K0(X )/ ker(ch)

HX ∶= H(Knum
0 (X),χ)



Categorification

When categorifying a k-algebra A, we are looking for a k-linear
monoidal category A with the following (compatible) data:

▸ for a,b ∈ A, there is a ○1 b ∈ A (1-composition),

▸ for α ∈ HomA(a,b), β ∈ HomA(b, c) there is
α ○2 β ∈ HomA(a, c) (2-composition)

such that Knum
0 (A) ≃ A as a k-algebra.

Khovanov has found a categorification of the Heisenberg algebra
HZ of the rank 1 lattice (free boson).

Theorem (Gy-K-L)

Let V be a k-linear (triangulated) category with a Serre functor.
There is a k-linear (triangulated) monoidal category HV such that
Knum

0 (HV) ≃ HKnum
0 (V).



Some examples where the Theorem can be applied

1. Db
coh(X ) where X is a smooth and proper variety over k,

S = (−)⊗X ωX [dimX ], Knum
0 (Db

coh(X )) = Knum
0 (X )

2. Db
coh(Spec(k)) = Db

coh(pt), S = Id, Knum
0 (pt) = Z

↝ our HDb
coh

(pt) reproduces Khovanov’s Heisenberg category

3. Γ < SL(2,C) a finite subgroup, Y = C2/Γ, X its minimal
resolution. Let Db

coh(X ) be the bounded derived category of

coherent sheaves on X , and V be full subcategory of Db
coh(X )

consisting of sheaves supported on the exceptional divisor E .
Then
▸ the Serre functor is given by the shift [2].
▸ Knum

0 (V) = Z∆, the root lattice corresponding to Γ
▸ χ is given by the Cartan matrix = the intersection form on E .



Categorification of the HA
Let V be a k-linear category with a Serre functor.
Provisional Heisenberg category: H′

V
▸ objects: finite words on 2 sets of symbols:

Pa & Qa where a ∈ Ob(V)
▸ morphisms: { planar string diagrams } / ∼a set of relations

Example

A planar string diagram:

Pa

α

Pe

Pb Qb Qc

β

Qd

γ

Represents a morphism in HomHV (PaPbQbQb,QdPe)
Diagrams are read from bottom to top!



Categorification of the HA

Provisional Heisenberg category: H′
V (continued)

▸ 1-composition: concatenations of words

(PaPbQc) ○1 (QdPe) = PaPbQcQdPe

▸ 2-compositon: composition of string diagrams

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ PSa

PSa

Qa

Qa

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

○2

⎡⎢⎢⎢⎢⎢⎢⎢⎣ PSa

1

Qa

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

PSa

1

Qa



String diagrams - Generators

▸ dots for α ∈ HomV(a,b):

Pa

α

Pb

and

Qa

α

Qb

.

▸ cups and caps (1 = empty word):

Pa

1

Qa

,

PSa

1

Qa

,
Qa

1

PSa

,
Qa

1

Pa

,

▸ crossings in all possible orientations

, , , .



String diagrams - Relations
The diagrams are considered up to boundary preserving isotopies
and a number of relations:

1. Linearity relations:

α + β = α + β c α = cα

for any scalar c ∈ k and any compatible orientation of the
strings.

2. Neighboring dots can merge (with sign when upwards):

α
β = β ○ α .

3. Symmetric group downwards (also holds upwards)

= =



4. Dots may slide through caps and cups as follows:

Pa

α
Qb

=
Pa

α
Qb Qb

α
PSa

=
Qb

Sα
PSa

Qa

α
Pb

=
Qa

α
Pb PSb

Sα

Pa

=
PSb

α
Pa

5. Dots may freely slide along strands as well as through all
types of crossings.

α ⋯ β = α ⋯ β

α
= α

α
= α



6. Left curls vanish

Qa

QSa

= 0

PSa

Pa

= 0

7. The Serre functor S induces a Serre trace map

Tr∶HomA(a,Sa)→ k, α ↦ ηa,a(ida)(α).

We impose

α = Tr(α),

where α ∈ HomV(a,Sa).



8.

Pa

Pa Qb

Qb

=

Pa

Pa

Qb

Qb

9. Fix a basis {β`} of Hom(a,b) ↝ dual basis {β∨` } of
Hom(b,Sa) ≅ Hom(a,b)∨. We impose

Qa

Qa Pb

Pb

=

Qa

Qa

Pb

Pb

− ∑

`

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qa

β`

Pb

Qa

β∨`
Pb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



Cups & caps ≈ adjunction units & counits
An adjoint triple of functors:

Pa ⊣ Qa ⊣ PSa.

By relation 7, for any α ∈ HomV(a, Sa) the composition

1
unitÐÐ→ QaPa

(idQa)αÐÐÐÐ→ QaPSa
counitÐÐÐ→ 1, pictorially α

1

1

is the multiplication by Tr(α) ∈ k.

Example

In Db
coh(pt), Q and P are biadjoint:

1
unitÐÐ→ QP

counitÐÐÐ→ 1, pictorially

1

1

, is the identity.



Our relations imply further ones

Example

Upward crossing:

= = = =

= = ,



Example: Heisenberg relation
A.

QP

PQ ∑`

QP

=

Q

Q P

P

+ ∑

`

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q P

Q P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

Q

Q

P

P

= IdQP

B.

PQ ∑`2

QP

PQ ∑`1

=

P

P Q

Q

+ ∑
`1,`2

δl1l2=

P

P

Q

Q

+∑
`1,`2

Tr(δ`1`2) = IdPQ⊕∑`

(A) + (B) Ô⇒ QP ≃ PQ⊕∑` β` ≃ PQ⊕Hom(a,b)



Idempotent completion
The Heisenberg category HV associated with V is the idempotent
completion of H′

V :

▸ objects are pairs (R, e), where R is an object of H′
V and

e ∶R → R is a idempotent in End(R).

▸ morphisms (R1, e1)→ (R2, e2) are morphisms f ∶R1 → R2 from
H′
V which satisfy f = e2 ○ f ○ e1.

The symmetric group relations imply that we have an action of the
symmetric group Sn on n parallel upward/downwards strands, i.e.
morphism k[Sn]→ End(Pn

a) and k[Sn]→ End(Qn
a).

Let

etriv =
1

n!
∑
σ∈Sn

σ ∈ k[Sn]

be the symmetrizer idempotent of k[Sn].
Define P

(n)
a ∶= (Pn

a , etriv) and Q
(n)
a ∶= (Qn

a , etriv).

Theorem (Gy-K-L)

Q
(m)
a P

(n)
b ≅⊕min(m,n)

i=0 Symi HomV(a,b)⊗k P
(n−i)
b Q

(m−i)
a .



Symmetric powers of a category
N-fold tensor power V⊗N has

▸ objects: finite direct sums of N-tuples a1 ⊗ ⋅ ⋅ ⋅ ⊗ aN of objects
of V

▸ morphism spaces:

HomV⊗N (a1 ⊗ ⋅ ⋅ ⋅ ⊗ aN , b1 ⊗ ⋅ ⋅ ⋅ ⊗ bN) ∶=
HomV(a1,b1)⊗k ⋅ ⋅ ⋅ ⊗k HomV(aN ,bN).

The category V⊗N can be endowed with an SN -action given on
objects by

σ(a1 ⊗ ⋅ ⋅ ⋅ ⊗ aN) ∶= aσ−1(1) ⊗ ⋅ ⋅ ⋅ ⊗ aσ−1(N).

We let
SymN V ∶= (V⊗N)SN

be the category of SN -equivariant objects in V⊗N , i.e. of tuples
(a, (εσ)σ∈SN) with a ∈ V⊗N and εσ ∶ a

∼Ð→ σ(a) isomorphisms
compatible with the SN -action.



Representation

We identify SN−1 with the subgroup 1 × SN−1 of SN .
Correspondingly, we have a forgetful functor

Res1×SN−1

SN
∶SymN V → V × SymN−1 V.

It has a left and right adjoint

IndSN
1×SN−1

∶V × SymN−1 V → SymN V.

A. Krug introduced (in a more specialized context) the functors

PN,a ∶ SymN−1 V a⊗−ÐÐ→ V ⊗ SymN−1 V
Ind

SN
1×SN−1ÐÐÐÐÐ→ SymN V,

and

QN,a ∶ SymN V
Res

1×SN−1
SNÐÐÐÐÐ→ V ⊗ SymN−1 V

HomV(a,−)⊗id
ÐÐÐÐÐÐÐÐ→ SymN−1 V.



Representation
Let

FV ∶=
∞
⊕
N=0

SymN V

and for every a ∈ V

Pa ∶= ⊕N≥1PN,a ∶ FV → FV Qa ∶= ⊕N≥1QN,a ∶ FV → FV

Theorem (Gy-K-L)

The correspondence Pa ↦ Pa and Qa ↦ Qa extends to a monoidal
functor HV → End(FV).

Under certain technical conditions, this categorifies the Fock space
representation
HKnum

0 (V) → End(FKnum
0 (V)) = End(⊕∞N=0 SymN Knum

0 (V)).

Example
α for α ∈ HomV(a,b) is mapped to the natural transformation

IndSN
1×SN−1

○ (α⊗ Id) ∶ Pa Ô⇒ Pb



The geometric example
For V = Db

coh(X ),

FV =
∞
⊕
N=0

SymN Db
coh(X ) =

∞
⊕
N=0

Db
coh([X

N/SN]).

Bridgeland-King-Reid: If X is a smooth projective surface, there is
an equivalence

Db
coh([X

N/SN]) = Db
coh(X

[N])

Corollary

For a smooth projective surface X the representation

HDb
coh

(X) → End(FDb
coh

(X))

strongly categorifies the representation

HKnum
0 (X) → End(⊕∞N=0K

num
0 (X [N]))

constructed by Grojnowki-Nakajima.



Thank you for your attention!

Questions?


