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Introduction

Aim of the talk is to give an introduction to the recent joint work
with Misha Kapranov and Lev Soukhanov “Perverse schobers and
the algebra of the infrared", arXiv:2011.00845. It develops further
an earlier paper of Kapranov, Kontsevich and myself “Algebra of the
infrared and secondary polytopes", arXiv:1408.2673. Recent paper
has two different motivations: one from 2d QFT (physics) and
another one from symplectic topology (mathematics). From the
physics perspective: we categorify the algebra of the infrared of
Gaiotto-Moore-Witten which underlies the IR limits of
2d ,N “ p2, 2q theories. From the mathematics perspective: we
propose a generalization of the notion of Fukaya-Seidel category to
the case of perverse schobers. Perverse schobers categorify perverse
sheaves. For applications to Fukaya-Seidel categories we will need
perverse sheaves and their categorification on the complex line C
only.



Conceptual approach to perverse schobers on general real surfaces
will be developed in the joint project with Dyckerhoff, Kapranov
and Schechtman (first paper has already appeared: “Perverse
sheaves on Riemann surfaces as Milnor sheaves",
arXiv:2012.11388). For the purposes of this talk it suffices to use
the elementary approach proposed by Kapranov and Schechtman in
their very first paper on perverse schobers arXiv:1411.2772.
Plan.
1.Motivations.
2. Reminder on the algebra of the infrared and perverse sheaves.
3. Categorification of 2 with applications to FS categories.



Motivations
Physics: for massive 2-dimensional theories with p2, 2q
supersymmetry, the set A of vacua is discrete and embedded into
the complex plane parametrizing charges of the supersymmetry
algebra: A “ tw1, ¨ ¨ ¨ ,wNu Ă C. Each vacuum has its category of
D-branes, so we have have triangulated categories Φ1, ¨ ¨ ¨ ,ΦN .
The tunnelling between the vacua gives rise to transport functors

Mij : Φi ÝÑ Φj .

Mathematics: Landau-Ginzburg model (=Fukaya-Seidel category
FSpX ,W q) gives rise to similar data. Then Φi are “local" FS
categories generated by “vanishing thimbles", at least for Morse
potential W . Transport functors Mij are induced by symplectic
parallel transports of vanishing Lagrangian spheres along e.g.
straight segments rwi ,wj s. Notice that alternatively we can choose
a generic point 8, and take symplectic transport of the Lagrangian
spheres to this point first. A priori the answer depends on the
choice of paths to infinity which form a “spider" graph. But the
triangulated category FSpX ,W q is independent of choices.



Example of the spider graph

D

w2
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γ1
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γN



Comments
Let X be a complex Kähler manifold, dimCX “ n, and W : X Ñ C
an analytic function (potential) with isolated Morse critical points
CritpW q :“ tx1, ..., xku Ă X and pairwise distinct critical values
A :“ tw1, ...,wku. Assume that the symplectic structure on X is
exact: ω “ dα, and there exists a nowhere vanishing holomorphic
volume form Ωn,0 (Calabi-Yau structure).
For each 1 ď j ď k and a small circle of radius ε centered at wj we
have a local system Fj of the Fukaya categories with fibers which
are Fukaya categories “ FpW´1pwj ` ε ¨ e iθqq. Each fiber category
is endowed with an autoequivalence coming from the action of the
monodromy. In a similar way one defines a local system FS j of
Fukaya-Seidel categories, consisting of Lagrangian submanifolds in
W´1p|w ´ wj | ă εq with boundaries on W´1pwj ` ε ¨ e iθq. Choice
of paths γi gives rise to the point on the small circle about wi , and
Φi is the fiber of FS j at this point. Transport functors Mij in this
model appear when we move the category Φi at wi to “infinity"
using symplectic connection and then move the resulting category
to wj .
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Analogy with perverse sheaves

The categories Φi are analogs (“categorifications”) of the spaces of
vanishing cycles of a perverse sheaf F on C at the singular points
wi . The idea of viewing F in terms of the transport data (“quiver”)
pΦi ,Mijq goes back to the 1996 paper of S. Gelfand, R.
MacPherson and K. Vilonen on the classification of perverse
sheaves. It is remarkable that this type of data appears in physics
as “tunnelling data” between vacua. So the shortest summary of
our paper would be: GMW=categorification of GMV. The
categorification of GMV leads naturally to the notion of perverse
schober on C with singularities at A “ twiu.



Role of Fourier transform

The approach to Fukaya-Seidel categories (=Landau-Ginzburg
models) proposed by GMW involves straight intervals. Their
arguments come from physics. Mathematically this means that we
look at perverse sheaves and subsequently perverse schobers with
the intent of making the Fourier transform. More precisely, in the
physical tunnelling picture, it is the rectilinear intervals rwi ,wj s that
play a distinguished role, so the transport happens along such
intervals. But the approach of Gelfand-MacPherson-Vilonen
involves the transport along curved paths passing through some
common faraway point 8 (referring to the geometry of Russia we
call it “Vladivostok”).



Relevance of the Fourier transform for Landau-Ginzburg theory
associated with a holomorphic function W : Y Ñ C can be also
seen from the perspective of the corresponding oscillatory integrals.
A typical oscillatory integral

I p~q “
ż

ΓĂY
e

i
~W pyqΩpyqdy ,

can be seen as the result of first integrating over the fibers of W
and then taking the single variable Fourier transform.
Mathematically, the construction of the Fukaya-Seidel category
with its dependence on the direction to infinity can be seen as a
categorification (involving perverse schobers rather than sheaves) of
the Geometric Fourier Transform of Laumon which produces a local
system on the dual complex plane with the origin removed. Perverse
sheaves correspond to D-modules with regular singularities. The
Fourier transform still has regular singularities on C (hence defines
a perverse sheaf), but it has a higher order pole at the origin (or at
infinity, depending on conventions). One can describe the
corresponding Stokes data in terms of the transport maps.



Picard-Lefsctetz identities

An important part in the physics story is played by the wall-crossing
functors constructed by GMW. In fact they are built into the very
structure of a perverse schober. Just as for a perverse sheaf we
have abstract Picard-Lefschetz identities describing the change in
the curvilinear transport with the variation of the path, for a
perverse schober, we have Picard-Lefschetz triangles which are
exact triangles in appropriate triangulated categories of functors. In
fact, it is the arrows in the Picard-Lefschetz triangles which give
the most important ingredient of the Algebra of the Infrared,
namely, the already mentioned Maurer-Cartan element.



Algebra of the infrared and FS category

It was observed by GMW and made mathematically precise in our
paper with Kapranov and Kontsevich that the FS category can be
alternatively described as the triangulated envelope of the category
of A8-modules over a certain A8-algebra.
The idea of construction is the following. First one constructs an
L8-algebra g generated roughly speaking by triangulations of the
polygon Convptwiuq. Then one constructs an A8-algebra R in
terms of convex polygons with vertices at Convptwiuq and a point
at infinity in a given direction. There is a morphism of L8-algebras
gÑ C ‚pR,Rq (Hochschild cochain complex of R). The desired A8
structure on R is defined as a perturbation of the initial one. The
latter depends only on the set of triangualtions of Convptwiuq

(more precisely, on the structure of the secondary polytope of this
convex hull), while in order to define the former one has to specify
a Maurer-Cartan element in g.



The Maurer-Cartan element can be described either analytically in
terms of the moduli spaces of solutions to certain non-linear
equations (ζ-instanton equations of GMW) or algebraically in terms
of a collection of Picard-Lefschetz relations (wall-crossing
formulas). It is not clear how to generalize analytic approach to the
case of schobers. In the paper with Kapranov and Soukhanov we
used the second approach. Instead of the A8-algebra in the
category of vector spaces we have an algebra in a certain
dg-category of functors.
Next several slides are devoted to a short reminder of the
above-mentioned L8 and A8 algebras from our paper with
Kapranov and Kontsevich (it gives the IR description of the
conventional FS category). Conventional FS category corresponds
to the Lefschetz perverse schober associated with W (fiber of the
Lefschetz schober at z P C´ twiu is the Fukaya category of
W´1pzq). These several slides are not necessary for understanding
perverse sheaves and perverse schobers, but it helps to understand
what kind of structure we would like to categorify in order to obtain
the IR description of the FS category with coefficients in a perverse
schober.



Reminder on L8-algebras

L8-algebras are also known as homotopy Lie algebras. Such an
algebra g is a Z-graded vector space, i.e. g “ ‘nPZgn endowed
with “higher Lie brackets"

λn : ^n gÑ gr2´ ns,

(everything is understood in Z-graded sense) satisfying an infinite
system of quadratic relations. In case if only λ2 is non-trivial, we
get usual Lie algebras. In case if λ1, λ2 are non-trivial we get a
DGLA with λ1 “ d being a differential. In these two cases the
Jacobi identity for λ2 is satisfied. In general it is satisfied up to
higher homotopies only, hence the name.
Equivalently, such an L8-structure on g is given by a differential Q
on the free commutative graded algebra Sympg˚r´1sq (in fact it
should be completed).



Reminder about A8-algebras and Hochschild cochain
complex

Definition of the notion of A8-algebra is similar, but this time we
use free tensor algebras without symmetrization. Then for an
A8-algebra R we have “higher products"

mn : Rbn Ñ Rr2´ ns

satisfying quadratic relations. Usual associative algebras correspond
to the case when only m2 is non-trivial. DGAs correspond to the
case when m1,m2 are non-trivial with m1 “ d being the differential.
For an A8-algebra R one can define its Hochschild cochain
complex C ‚pR,Rq “ ‘ně1HompRbn,Rq as a complex or even as a
DGLA (after a shift of the grading).



A8-categories

The notion of A8-algebra can be upgraded to the notion of
A8-category. Such categories appear naturally as “categories of
branes" in physics. L8-algebras naturally appear in deformation
theory of A8-algebras (or categories). The reason for that is the
fact that shifted Hochschild complex C ‚pR,Rqr1s is a DGLA, and
in the deformation theory one can replace the controlling DGLA by
any quasi-isomorphic L8-algebra.
Both L8 and A8 structures have natural geometric interpretation
in terms of formal graded manifolds (non-commutative in A8 case)
endowed with a “homological" vector field Q of degree `1 such
that rQ,Qs “ 0. (see my joint paper with Kontsevich “Notes on
A-infinity algebras, A-infinity categories and non-commutative
geometry. I", arXiv:math/0606241)



Polytopes and marked polytopes

Standard reference for the foundational material is the classical
book by I. Gelfand, M. Kapranov, A. Zelevinsky “Discriminants,
Resultants and Multidimensional Determinants".



Let A Ă Rd be a finite set, Q “ ConvpAq be the convex hull (we
will need only d “ 2). Assume that affine span of A is the whole
space, so Q is a d-dimensional convex polytope. If we want to
remember the set A we will call the pair pQ,Aq marked polytope.
Then we can speak about marked subpolytopes pQ 1,A1q Ă pQ,Aq
as well as about polyhedral subdivisions pQ,Aq “ YνpQν ,Aνq (here
Q has to be the union of Qν , but this is not required for A and
Aν). A triangulation is a polyhedral subdivision into d-simplicies
such that the intersection of two simplices is a common face (it can
be empty).



Example

Qν Qν1

Figure: A triangulation and a polyhedral subdivision.



Secondary polytopes

Recall that a triangulation T of pQ,Aq is called regular if if there is
a continuous convex function f : Q Ñ R such that:

f is affine-linear on each simplex of T .
f is not affine-linear on any subset of Q which is not contained
in a simplex of T . In other words, f breaks along each
codimension 1 simplex which is a common face of two
different d-dimensional simplices of T .

We denote by ΣpAq the secondary polytope of A. Thus ΣpAq is a
convex polytope (it can be realized as a subset in RA, the space of
all functions A Ñ R) whose vertices ϕT are in bijection with
regular triangulations T of pQ,Aq. It has the remarkable
factorization property: faces of ΣpAq correspond to regular
subdivisions in such a way that the face FP corresponding to a
regular subdivision P “ pQν ,Aνq, has the form FP “

ś

ν ΣpAνq.



The L8-algebra

To a polytope P we associate its chain complex over any ground
field k:

C‚pPq “ ‘FĂPorpF qrdim F s,

where orpF q “ Hdim F
c pintpF q, kq is the orientation line of the face

F . If we take P “ ΣpAq, this gives us the graded vector space

V :“ ‘A1ĂA,|A1|ěd`1orpΣpA1qqrdim ΣpA1qs.

Notice that if k “ R then orpΣpA1qq “
Źmax

pRA1{Aff pRdqq.

Proposition
The graded vector space g :“ gA “ V ˚r´1s carries a natural
L8-structure. Moreover, it is nilpotent, i.e. λn “ 0 for sufficiently
large n.



Comments on the Proposition

Suppose that A is affinely generic (i.e. each subset of d ` 1
elements generates a d-simplex). Then:
1. gď0 “ 0.
2. g1 is spanned by d-simplices, i.e. by marked subpolytopes
pQ 1,A1q such that |A1| “ d ` 1.
3. g2 corresponds to circuits, which are subsets A1 Ă A such that
|A1| “ d ` 2 and ΣpA1q is an interval.
The differential and higher brackets λn roughly correspond to
composing a bigger convex polytope from smaller ones. They come
from the “big" differential Q on SympV q which can be derived from
a (compatible with each other) chain differentials on all C‚pΣpA

1qq.
The differential Q makes SympV q into a DGA, which implies the
Proposition.



Example: four points in the convex position

Let d “ 2, and let A consists of 4 points, forming the vertices of a
convex 4-gon. Then g1 has dimension 4, with the basis vectors
corresponding to the 4 triangles a, b, c , d . The space g2 is
1-dimensional, with the basis vector corresponding to the 4-gon
itself, while gě3 “ 0. Thus is has five basis vectors: ea, eb, ec , ed of
degree 1 and eA of degree 2, with the only non-zero brackets being

rea, ebs “ rec , ed s “ eA.

a

b c

d

Figure: Four points in convex position



If we add to the story a half-plane containing the set A, the
orthogonal direction to the boundary line specified by a non-zero
complex number ζ defines a point “at infinity". Then we can play
the same game as above, by allowing one vertex of the convex
polygon to be at infinity. In this way we arrive to an A8-algebra
RA,ζ . Main observation is that the L8-algebra gA acts on RA,ζ .
Next slide contains the figure illustrating this action. After that we
will continue with perverse sheaves and their categorification.



Figure of infinite polytopes

rQ

¨ ¨ ¨8 ¨ ¨ ¨

Q

rQ

8

Q

Figure: 8 as a point at the projective infinity vs. as a finite point far
away.



Review of perverse sheaves on complex line

Elementary approach to schobers is a categorification of the quiver
description of perverse sheaves on a disc. Then we will obtain a
categorification of the set of relations which follow from basic
Picard-Lefschetz triangles for perverse sheaves. The collection of
these relations for perverse sheaves can be thought of as the “baby
algebra of the infrared".



Perverse sheaves on the disk

Let X “ D “ t|z | ď 1u be the unit disk in C and A “ t0u. We
recall the classical description of the category PervpD, 0q over any
ground field k of characteristic zero.
PervpD, 0q is equivalent to the category P of diagrams

a : Φ Ñ Ψ, b : Ψ Ñ Φ

of k-vector spaces are linear maps such that TΨ :“ IdΨ ´ ab is an
isomorphism (equivalently, TΦ “ IdΦ ´ ba is an isomorphism). This
can be generalized to the case of several singular points. Then we
have several ai , bi ,Ti . This gives the quiver description of the
category PervpD,Aq of perverse sheaves on the disc with
singularities at the finite subset A Ă D.



Perverse sheaves with several singular points
Let X “ D be a unit disc and A “ tw1, ¨ ¨ ¨ ,wNu a collection of
distinct points in X . For any w P A we have the natural circle of
directions

S1
w “

`

TwX ´ t0u
˘

{R˚ą0.

Let F P PervpX ,Aq. For any i “ 1, ¨ ¨ ¨ ,N we can restrict F to a
small disk around wi and associate to it local systems
Φi “ Φwi pFq, Ψi “ Ψwi pFq on S1

wi
.

wi wj

wk

α
p

ΨαΦi ,α
Φj ,α

Figure: The transport map.



Transport maps
The stalks

Φi ,α “ H1
αpFqwi , Φj ,α “ H1

αpFqwj

are just the stalks of the local systems Φi ,Φj at the tangent
directions diri pαq and dirjpαq respectively. The stalk

Ψα “ Γpα´ twi ,wju,H1
αpFqq

is identified with the stalk Fp at any intermediate point p P α.
Note that this identification depends on the chosen orientations of
X and α which give a co-orientation of α, i.e., a particular
numeration of the 2-element set of “sides” of Σ´ α near p (change
of either orientation incurs a minus sign in the identification).
These spaces are connected by the maps

Φi ,α

ai,α // Ψα
bi,α
oo

bj,α
// Φj ,α,

aj,αoo

obtained from the description of F on small disks near wi and wj .
We define the transport map along α as
mijpαq “ bj ,α ˝ ai ,α : Φi ,α ÝÑ Φj ,α.



Picard-Lefschetz formulas
We now describe what happens when a path crosses a marked
point. That is, we consider a situation as in Figure where a path γ1

from wi to wk approaches the composite path formed by β from wi

to wj and α from wj to wk . After crossing wj , the path γ1 is
changed to γ.

wkwi

wj

γ1

β α

γ

Figure: The Picard-Lefschetz situation.

In this case we have identifications

(0.2) Φi ,γ » Φi ,β » Φi ,γ1 , Φk,γ1 » Φk,α » Φk,γ , Φj ,β » Φj ,α,

given by clockwise monodromies of the local systems ˘ around the
corresponding arcs in the circles of directions. So after these
identications we can assume that we deal with single vector spaces
denoted by Φi ,Φk and Φj respectively.



Proposition (Abstract Picard-Lefschetz identity)
We have the equality of linear operators Φi Ñ Φk :

mikpγ
1q “ mikpγq ´mjkpαqmijpβq.



Fourier transform of perverse sheaves

Let A “ tw1, ¨ ¨ ¨ ,wNu Ă C. Let us assume that A is in linearly
general position including infinity. For any wi P A, we identify S1

wi
,

the circle of directions at wi , with the unit circle
S1 “ t|ζ| “ 1u Ă C. Let us denote by

(0.4) ζij “
wi ´ wj

|wi ´ wj |
P S1

the slope of the intervals rwi ,wj s.
Let F P PervpC,Aq. We denote by Φi pFq the stalk of the local
system Φi pFq at the horizontal direction 1 P S1

wi
» S1. For any

i ‰ j we define the rectilinear transport map
mij “ mijpFq : Φi pFq Ñ ΦjpFq as the composition

Φi pFq “ Φi pFq1
T1,ζji
ÝÑ Φi pFqζji

mij pri ,jsq
ÝÑ ΦjpFqζij

Tζji ,1
ÝÑ ΦjpFq1 “ ΦjpFq.



Here mijprwi ,wj sq is the transport map along the rectilinear interval
rwi ,wj s, T1,ζji , resp. Tζij ,1 is the monodromy from 1 to ζji , resp.
from ζij to 1, taken in the counterclockwise direction, if
Impwi q ă Impwjq, and in the clockwise direction, if
Impwi q ą Impwjq.

‚

‚

wj

wi
T1,ζji

Tζji ,1

Figure: Rectilinear transport.



We also define

mii “ biai : Φi pFq ÝÑ Φi pFq,

where ai and bi are the maps in the standard pΦ,Ψq-diagram

Φi pFq
ai // Ψi pFq
bi
oo , representing F near wi in the horizontal

direction.
Thus the data pΦi pFq,mijq form an object of the category MN ,
whose objects are diagrams consisting of
a) Vector spaces Φi , i “ 1, ¨ ¨ ¨ ,N.
b) Linear operators mij : Φi Ñ Φj given for all i , j and such that
IdΦi

´mii is invertible, and we have the functor of rectilinear
transport data
Φ‖ “ Φ

‖
A : PervpC,Aq ÝÑMN , F ÞÑ pΦi pFq,mijq.

Here the bar denotes the quotient by the subcategory of local
systems.

Proposition
The functor Φ‖ is an equivalence of categories.



Baby infrared relations

Let us describe the Fourier transform of the pΦ,Ψq-diagram

qΦ
qa //

qΨ
qb

oo , of the Fourier transform qF of a perverse sheaf

F P PervpC,Aq. One can show that qF P PervpC, 0q and

qΨ “ Ψp qFq :“
N
à

i“1
Φi pFq, qΦ “ Φ0p qFq :“ ΨpFq,

qb “
N
ÿ

i“1

ai , qa “ pqa1, ¨ ¨ ¨ , qaNq, qai “ bi Ti´1,Φ...T1,Φ.



In terms of transport maps (this is incarnation of the infrared
algebra) the same maps look as follows.

Proposition
We have

qb “
ÿ

i

ai , qai “ bi `
ÿ

ką1

p´1qk´1
ÿ

j1ă...ăjk“i

mjk´1,i mjk´2,jk´1 ¨ ¨ ¨ mj1,j2 bj1 ,

where mij : Φi Ñ Φj is the rectilinear transport map for F , and
pj1 ă ¨ ¨ ¨ ă jk “ jq run over sequences such that wj1 , ¨ ¨ ¨ ,wjk “ wi

is a left convex path.
The term “left convex path" is explained on the next slide.



We say that a sequence b1, ¨ ¨ ¨ , bl of complex numbers is a
ζ-convex path, if the intervals rb1, b2s, rb2, b3s, ¨ ¨ ¨ , rbl´1, bl s are
successive edges of the polygon

Convζtb1, ¨ ¨ ¨ , blu :“ Conv

ˆ

Ť

bi
pbi ` ζ ¨ R`q

˙

. Left convex path

corresponds to ζ “ 1.

‚

‚

‚

‚

bl

...

b2

b1

Conv`pBq

Figure: A left convex path.



Categorification: schobers on pD, 0q and spherical functors.

Let Φ,Ψ be (dg-enhanced) triangulated categories and a : Φ Ñ Ψ
be an exact (dg-) functor. Assume that a has left and right adjoints
˚a, a˚ : Ψ Ñ Φ with the corresponding unit and counit maps

e : IdΨ ÝÑ a ˝ p˚aq, η : p˚aq ˝ a ÝÑ IdΦ,

e 1 : IdΦ ÝÑ pa˚q ˝ a, η1 : a ˝ a˚ ÝÑ IdΨ.

Using the dg-ehnancement, we define the functors

TΨ “ Conepeqr´1s, TΦ “ Conepηq,

so that we have exact triangles of functors

TΨ
λ
Ñ IdΨ

e
Ñ a˝p˚aq

f
Ñ TΨr1s, TΦr´1s

g
Ñ p˚aq˝a

η
Ñ IdΦ Ñ TΦ.



Proposition (Spherical functor package )
In the following list, any two properties imply the two others:
(i) TΨ is an equivalence (quasi-equivalence of dg-categories).
(ii) TΦ is an equivalence.
(iii) The composite map

TΦ ˝ a˚r´1s g˝a
˚

ÝÑ ˚a ˝ a ˝ a˚
˚a˝η1
ÝÑ ˚a

is an isomorphism (quasi-isomorphism of dg-functors).
(iv) The composite map

˚a
e1˝p˚aq
ÝÑ pa˚q ˝ a ˝ p˚aq

a˚˝f
ÝÑ a˚ ˝ TΨr1s

is an isomorphism.

The functor a is called spherical, if the conditions of Proposition are
satisfied. This is a categorification of the fact that the monodromy
TΦ “ idΦ ´ ba was invertible in case of perverse sheaves.



Definition
A perverse schober S on pD, 0q is a datum of a spherical functor
a : Φ Ñ Ψ between enhanced triangulated categories.
This definition can be naturally generalized to the case of several
singular points. Then one has Ψ and several Φi ’s with the spherical
functors associated with each pair ai , bi . Let me recall this
definition after Kapranov-Schechtman in the case of arbitrary
surfaces. As I have already mentioned this definition will be
sufficient for the purposes of this talk.



Definition of perverse schober
Let pX ,A “ tw1, ¨ ¨ ¨ ,wNuq be a stratified surface and S1

wi
be the

circle of directions at wi . Let Di be a small disk around wi and
D˝i “ Diztwiu be the punctured disk. Thus we have a homotopy
equvalence D˝i Ñ S1

wi
which is “homotopy canonical”, i.e., defined

uniquely up to a contractible space of choices.

Definition
A perverse schober on pX ,Aq is a datum consisting of:

A local system S0 “ S|X zA of pre-triangulated categories on
X zA.
For each i , a spherical local system ai : Φi pSq Ñ Ψi pSq on
S1
wi

(or, equivalently, on D˝i ).
An identification S0|D˝i » Ψi pSq for each i .

Recall that Landau-Ginzburg model with the Morse potential W
gives rise to a perverse schober, where Ψi is the Fukaya category of
W´1ppq, p P S1

wi
and Φi is the Fukaya-Seidel category generated by

thimbles projected to rwi , ps. Morse condition can be relaxed.



Let α be a piecewise smooth oriented path in X , joining wi with wj

and avoiding other wk . For a schober S P SchobpX ,Aq we have
the category Φi ,α “ Φi pSqdiri pαq (the stalk of the local system
Φi pSq in the direction of α) and the similar category Φj ,α.
Denoting Ψα the stalk of the local system S0 at any intermediate
point of α, we have two spherical functors

Φi ,α
ai,α
ÝÑ Ψα

aj,α
ÐÝ Φj ,α

and we define the transport functor

(0.10) Mijpαq “
˚aj ,α ˝ ai ,α : Φi ,α ÝÑ Φj ,α,

analogous to the transport map for perverse sheaves.

Let α´1 be the path obtained by reversing the direction of α, so
α´1 goes from wj to wi . We have the transport functor
Mji pα

´1q “ ˚ai ,α ˝ aj ,α : Φj ,α ÝÑ Φi ,α.

Proposition
We have identifications of functors

Mijpαq » TΦj
˝Mji pα

´1q˚ r1s » ˚Mji pα
´1q ˝ TΦi

r´1s.



Unitriangular monads
Definition
Let V “ pV1, ¨ ¨ ¨ ,VNq be a finite ordered sequence of
pre-triangulated dg-categories.
A unitriangular (dg-)monad on V is a collection
M “ pMij : Vi Ñ Vjqiăj ,Mii “ IdVi

of dg-functors together with
closed, degree 0 natural transformations, called composition maps

cijk : Mjk ˝Mij ÝÑ Mik , i ă j ă k ,

such that for any i ă j ă k ă l the diagram below commutes
(associativity condition):

Mkl ˝Mjk ˝Mij

cjkl˝Mij

��

Mkl˝cijk // Mkl ˝Mik

cikl

��
Mjk ˝Mij cijl

// Mil .



An M-algebra is a sequence of objects V “ pV1, ¨ ¨ ¨ ,VNq, Vi P Vi ,
together with closed, degree 0 morphisms (action maps)

αij : MijpVi q ÝÑ Vj , i ă j ,

such that for any i ă j ă k the diagram below commutes:

MjkpMijpVi qq

cijk,Vi
��

Mjk pαij q // MjkpVjq

αjk

��
MikpVi q αik

// Vk .



Let
Φ1

a1 !!

¨ ¨ ¨ ΦN

aN}}
Ψ

be a diagram of N spherical dg-functors with common target. It
gives a uni-triangular dg-monad
M “ Mpa1, ¨ ¨ ¨ , aNq “

`

Mij “ a˚j ˝ ai : Φi ÝÑ Φj

˘

iăj
on

Φ :“ pΦ1, ¨ ¨ ¨ ,ΦNq. Compositions:

cijk : Mjk ˝Mij “ a˚k ˝ aj ˝ a˚j ˝ ai ÝÑ a˚k ˝ ai “ Mik

coming from the counit ηj : aj ˝ a˚j Ñ IdΦj
by composing with a˚k

on the left and ai on the right. In general a monad gives rise to the
category of algebras over it. In our case it is a pre-triangulated
category AlgM “ xΦ1, ¨ ¨ ¨ ,ΦNy with its standard semi-orthogonal
decomposition.



In particular for U P Ψ the collection bpUq “ pa˚1pUq, ¨ ¨ ¨ , a
˚
NpUqq

is naturally an M-algebra. The action map

αij : Mijpa
˚
i pUqq “ a˚j ai a˚i pUq ÝÑ a˚j pUq

is obtained from the counit ai ˝ a˚i Ñ Id. This gives a dg-functor

(0.13) b : Ψ ÝÑ AlgM

which we call the Barr-Beck functor.



Fourier transform and Fukaya-Seidel category
We assume that A is in linearly general position and
S P SchobpC,Aq. We distinguish the horizontal direction (ζ “ 1)
in each circle S1

wi
and denote Φi pSq the stalk of the local system

Φi pSq at 1 P S1
wi
. For any distinct i , j P t1, ¨ ¨ ¨ ,Nu we have the

rectilinear transport functor

Mij :“ Mijprwi ,wj sq : Φi pSq ÝÑ ΦjpSq,

Let now S is represented by a diagram of spherical functors
tai : Φi Ñ Ψu with respect to a spider-like graph K with the head
of the spider at infinity in the direction of ζ, |ζ| “ 1. Define the
Fourier transform qS to be represented by the single Barr-Beck
spherical functor

b : Ψ ÝÑ FK pC, ζ;Sq :“ AlgMK
.

Study of the Fukaya-Seidel category FK pC, ζ;Sq can be therefore
seen as study of the Fourier transform for schobers. The notation
AlgMK

means the category of algebras over the uni-triangular
monad associated with rectilinear Mij as above.



L8-algebra associated with a schober

Let A “ tw1, ¨ ¨ ¨ ,wNu Ă C be in linearly general position and
Q “ ConvpAq. By a subpolygon in Q we mean a set of the form
Q 1 “ ConvpA1q, where A1 Ă A has cardinality at least 3.
Let Q 1 Ă Q be a subpolygon with p vertices which we denote
wi1 , ¨ ¨ ¨ ,wip in the clockwise cyclic order, starting from some
chosen vertiex wi1 . The choice of wi1 being not essential, we will
consider i1, ¨ ¨ ¨ , ip as a cyclically ordered set identified with Z{p, in
particular, write ip`1 “ i1 etc. Let now S P SchobpC,Aq be a
schober with singularities in A.



We define the (dg-)space of intertwiners of S associated to Q 1 as

(0.14) IpQ 1q “ Hom‚pMi1,ip ,Mip´1,ip ¨ ¨ ¨Mi1,i2q.

One can prove that IpQ 1q does not depend, up to a canonical
identification, on the choice of the initial vertex wi1 .

Proposition
Let ir , ir`1, ¨ ¨ ¨ , is be a cyclic interval in ti1, ¨ ¨ ¨ , ipu. Then we have
a canonical identification

IpQ 1q “ Hom‚
ˆ

Mir`1,ir T
´1
ir`1

Mir`2,ir`1T´1
ir`2
¨ ¨ ¨T´1

is´1
Mis ,is´1 ,

Mir´1,ir Mir´2,ir´1 ¨ ¨ ¨Mis ,is´1

˙

r´r ` s ` 1s.

In particular, for r “ s “ 1 (cyclic interval of length 0) we have

IpQ 1q “ Hom‚
`

TΦ1 ,Mip ,i1Mip´1,ip ¨ ¨ ¨Mi1,i2

˘

r1s.



Assume that A is in sufficiently general position. For any subset
A1 Ă A with |A| ě 3 we define Q 1 “ ConvpA1q and IpA1q “ IpQ 1q.

The secondary polytope ΣpA1q has dimension |A1| ´ 3 and its faces
FP are labelled by regular polygonal decompositions P “ pQ2ν ,A2νq
of pQ,Aq. Further, an inclusion of faces FP 1 Ă FP means that we
have a refinement relation P 1 ă P and so the map

(0.16) ΠP 1,P : IpP 1q ÝÑ IpPq.

One shows that the maps ΠP 1,P are transitive for triple refinement
P2 ă P 1 ă P and so define a cellular complex of sheaves NA1 on
ΣpA1q as on my slides from last time. That is, the stalk of NA1 on
FP is IpPq and the generalization map from FP 1 to FP is ΠP 1,P .
The complex NA1 is factorizing, i.e., for any regular polygonal
decomposition P “ pQ2ν ,A2νq as above, the restriction of NA1 to
FP “

ś

ΣpA2νq is identified with bνNA2ν .
Let us now define gA1 “
IpA1q b orpΣpA1qqr´ dim ΣpA1q ´ 1s, gQ1 :“ gQ1XA, Q 1 Ă pQ,Aq.



Theorem
The differentials in the cellular cochain complexes of the NA1 unite
to make the dg-vector space

‚
g “

À

pQ1,A1qĂpQ,Aq gA1 into a
Lie8-algebra. The subspace g “

À

Q1ĂpQ,Aq gQ1 is a

Lie8-subalgebra in
‚
g.

The second part of the Infrared Algebra formalism is an A8 algebra
associated to a choice of a direction towards infinity. In our schober
setting this will be not an algebra in the usual sense (i.e., living in
the category of vector spaces) but an algebra in an appropriate
category of functors, i.e., a monad similar to the one considered
previously.



Let ζ P C, |ζ| “ 1. Let us assume that no interval rwi ,wj s has
direction ζ, i.e., none of the slopes ζij from (0.4) is equal to ζ.
Recall also the concept of ζ-convexity. It gives rise to the partial
order ďζ on the set A.
Let us number A “ tw1, ¨ ¨ ¨ ,wNu according to this order, i.e., so
that wi ăζ wj for i ă j .
We will be interested in ζ-convex polygons P “ ConvζpBq, B Ă A,
|B| ě 2. Such a polygon is unbounded and we can number its
vertices wi1 , ¨ ¨ ¨ ,wip in clockwise direction so that the edges are

rζ8,wi1s rwi1 ,wi2s, ¨ ¨ ¨ , rwip , ζ8s, i1 ă ¨ ¨ ¨ ă ip.



We denote spPq “ wi1 , tpPq “ wip and call these vertices the
source and target vertices of P . For i ă j let Ppi , jq be the set of
ζ-convex polygons P with VertpPq Ă A, spPq “ wi and tpPq “ wj .
For P P Ppi , jq we consider the functor

MpPq “ Mip´1,ip ¨ ¨ ¨Mi1,i2 : Φi ÝÑ Φj .

For any i ă j put

Rij “ Rζ
ij “

à

PPPpi ,jq
RP , RP :“ MpPqr1´ |P X A|s.

Let i ă j ă k and P P Ppj , kq, P 1 P Ppi , jq. If P Y P 1 is convex,
then P Y P 1 P Ppi , kq, and the composition of functors gives rise to
the map

cP,P 1 : RP b RP 1 ÝÑ RPYP .

Let us define the maps cijk : Rjk b Rij Ñ Rik by

cijk |RPbRP1
“

#

cP,P 1 , if P Y P 1 is convex;

0, otherwise.



Since the cijk are given by composition of functors, they are
associative. In other words, R “ Rζ “ pRij , cijkq is a unitriangular
monad. This monad is a replacement, for the general schober
situation, of the A8-algebra mentioned earlier. We now define the
deformation complex, or ordered Hochschild complex of the monad
R as

ÝÑ
C ‚ “

ÝÑ
C ě1pR,Rq “

"

à

iăjăk

Hom‚pRjkRij ,Rikq Ñ

à

iăjăkăl

Hom‚pRklRjkRij ,Rilq Ñ ¨ ¨ ¨

*

,

with the (horizontal) grading starting in degree 1.



Elements of the component

ÝÑ
C p “

à

i0ă¨¨¨ăip`1

Hom‚
`

Rip ,ip`1 ¨ ¨ ¨Ri0,i1 , Ri0,ip`1

˘

can be seen as pp ` 1q-ary “operations” having as inputs, the p ` 1
functors Riν ,in`1 and as output, the functor Ri0,ip`1 . Similarly to the
case of the Hochschild of an associative (dg-)algebra, ÝÑC ‚ is a
dg-Lie algebra with respect to the Gerstenhaber bracket

rf , g s “
p`1
ÿ

ν“1

f ˝ν g ´p´1qdegpf q degpgq
q`1
ÿ

ν“1

g ˝ν f , f P
ÝÑ
C p, g P

ÝÑ
C q.

Here f ˝ν g is the “operadic composition”, obtained by substituting
the output of the operation g into the ν-th input of the operation f
(whenever this makes sense, and defined to be zero otherwise).



As in the case with associative (dg-)algebras, a Maurer-Cartan
element β P ÝÑC 1 gives a unitriangular A8-deformation Rpβq of R .
More precisely, β, being of total degree 1, consists of components

βp2q “ pβ
p2q
ijk q P

à

iăjăk

Hom0pRjkRij ,Rikq, βp3q “ pβ
p3q
ijkl q P

à

iăjăkăl

Hom´1pRklRjkRij ,Rilq, ¨ ¨ ¨

The deformed monad Rpβq has:
(0) The same functors Rpβqij “ Rij .
(1) The composition maps cijkpβq : RjkRij Ñ Rik defined by

cijkpβq “ cijk ` β
p2q
ijk .

(2) The cijkpβq may not be strictly associative but the βp3qijkl define
the homotopy for the associativity and so on to give a full
A8-structure.



Then one can construct explicit morphism of the L8 algebra g
constructed above to the ordered Hochschild complex ÝÑC ě1.
Conjecturally, there is a Maurer-Cartan element which gives rise to
the category equivalent to the previously defined FS category. Inn
the case of Lefschetz schober all that is equivalent to GMW and
our paper with Kapranov and Kontsevich.


