Universes as Big-Data: Physics, Geometry & AI

YANG-HUI HE

London Institute for Mathematical Sciences, Royal Institution Dept of Mathematics, City, University of London Merton College, University of Oxford School of Physics, NanKai University

Quiver, Clusters, Moduli & Stability; Alastair King@60, Oxford, Jan 2023

Enriching the Maths/Physics Dialogue

- Alg./diff. Geometry/topology Rep. Theo : the right language for physics
 - $\bullet\,$ Gravity \sim Ricci 2-form of Tangent bundles;
 - Elementary Particles \sim irred reps of the Lorentz group and sections of bundles with Lie structure group; Interactions \sim Tensor products of sections . . .
 - String theory: brain-child of gauge-gravity geometrization tradition
- A new exciting era for synergy with (pure & computational) geometry, group theory, combinatorics, number theory: *Sage*, *M2*, *GAP*, *LMFDB*, *GrDB* are becoming indispensible tools for physicists
- Interdisciplinary enterprise: cross-fertilisation of particle/string theory, phenomenology, pure mathematics, computer algorithms, data-bases, ...

・ロト ・日下 ・ヨト

e.g., DICTIONARY: Quivers & QFT (Thank you, Alastair)

$$S = \int d^4x \left[\int d^2\theta d^2\bar{\theta} \, \Phi_i^{\dagger} e^V \Phi_i + \left(\frac{1}{4g^2} \int d^2\theta \, \operatorname{Tr} \mathcal{W}_{\alpha} \mathcal{W}^{\alpha} + \int d^2\theta \, W(\Phi) + \text{c.c.} \right) \right]$$
$$W = \text{superpotential} \qquad V(\phi_i, \bar{\phi}_i) = \sum_i \left| \frac{\partial W}{\partial \phi_i} \right|^2 + \frac{g^2}{4} (\sum_i q_i |\phi_i|^2)^2$$

• Encode into **QUIVER** (rep of finite labelled graph with relations):

 $\prod_{i=1}^{k} U(N_i)$ gauge group k nodes, dim vec (N_1, \ldots, N_k) bi-fund X_{ii} field $(\Box, \overline{\Box})$ of $U(N_i) \times U(N_i)$ Arrow $i \rightarrow j$ Loop $i \rightarrow i$ adjoint ϕ_i field of $U(N_i)$ Cycles Gauge Invariant Operator 2-cycles Mass-terms $W = \sum c_i \operatorname{cycles}_i$ Superpotenital Relations Jacobian of $W(\phi_i, X_{ij})$ $\frac{\partial W}{\partial + \mathbf{v}} = 0$ **F-TERMS**

• VACUUM ~
$$V(\phi_i, \phi_i) = 0 \Rightarrow \begin{cases} \sum_{i} q_i |\phi_i|^2 + q_k |X_k| = 0 & \text{D-TERMS} \end{cases}$$

ML Maths

VMS: Vacuum Moduli Space

- M := vacuum moduli space = space of sol'ns to F and D-flatness = affine algebraic variety → Representation (Quiver) Variety (GIT quotient)
- If \mathcal{M} affine Calabi-Yau 3-fold: dim_C $\mathcal{M} = 3$ and locally $Ric(g^{\mu\nu}) = 0$
 - can realize in string theory ($10 = 4 + 2 \times 3$) as D3-brane $\perp M$;
 - Dirichlet p-Branes: p + 1 dimensional submanifold of ℝ^{1,9} on which open-strings can end; D3-brane → ℝ^{1,3}
 - TRANSVERSE: local (affine, singular) Calabi-Yau 3-fold (cone over Sasaki-Einstein 5-manifold), crepant resolution to smooth CY3:

Geom Engineer

Affine CY3 $\mathcal{M} \longleftrightarrow$ Quiver Gauge Theory VMS

• Rmk: for N-branes, get $Sym^N\mathcal{M}=\mathcal{M}^N/\Sigma_N$

standard string paradigm: $10 = 4 + 3 \times 2$

YANG-HUI HE (London/Oxford/Nankai)

Toric CY3, Mirror Symmetry, Bipartite Tilings, Cluster Mutation, Seiberg Duality, Dessins, etc., etc.

- PHYSICISTS: Feng, Franco, Hanany, YHH, Kennaway, Martelli, Mekareeya, Seong, Sparks, Vafa, Vegh, Yamazaki, Zaffaroni ...
- THEOREM: [R. Böckland, N. Broomhead, A. Craw, A. King, K. Ueda ...] The (coherent component of) VMS as representation variety of a quiver is an affine (non-compact, possibly singular) toric Calabi-Yau variety of complex dimension 3 ⇔ the quiver + superpotential is graph dual to a bipartite graph drawn on T², and cluster mutation of the quiver corresponds to Seiberg Duality.

Image: A math the second se

Perhaps the biggest theoretical challenge to string theory:

selection criterion ??? metric on the landscape ???

- Douglas (2003): Statistics of String vacua
- Kachru-Kallosh-Linde-Trivedi (2003): type II/CY estimates of 10^{500}
- Taylor-YN Wang (2015-7): F-theory estimates 10^{3000} to 10^{10^5}
- Basic Reason:

Algebraic Geometry \rightsquigarrow Combinatorial Geometry \rightsquigarrow Exponential Growth in dim

Image: A math a math

e.g., Borisov-Batyrev & Kreuzer-Skarke

GrDB: Brown, Kaspryzyk, Nil, Kahle, ... http://www.grdb.co.uk/ Altman-Gray-YHH-Jejjala-Nelson (2014): brute-force: $\sim 10^6$ up to $h^{1,1} = 6$ Altman-Carifio-Halverson-Nelson (2018): estimated 10^{10^4} triangulations

Demirtas-Long-McAllister-Stillman (2019): all triang $240 \le h^{1,1} \le 491$

Image: A matrix

Algebraic Geometry as Image Processing

• A typical calculation:

- Key to computational Algebraic Geometry: Gröbner basis, double-exponential complexity (unlike Gaussian elimination which is generalizes)
- [YHH 1706.02714] Deep-Learning the Landscape, *PLB 774, 2017*; (cf. Feature in *Science*, Aug, vol 365 issue 6452, 2019): think of it as an image processing problem

YHH: The CY Landscape: from Geometry, to Physics, to ML: Springer 2021; YHH, Ed: ML in Pure Maths & Theoretical Physics: WS 2023

Image: A math a math

Machine Learning Mathematics

Why stop at string/geometry?

Review: YHH 2101.06317

• $[0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, \ldots]$

multiple of 3 or not.

- [1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, ...]
 Prime or Not for odd integers.

A B > 4
 B > 4
 B

- [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, ...] multiple of 3 or not.

A B > 4
 B > 4
 B

- [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, ...] multiple of 3 or not.
- [1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, ...] Prime or Not for odd integers.

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, ...] multiple of 3 or not.
- [1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, ...]Even/Odd of number of prime factors (Liouville Lambda)

A B > 4
 B > 4
 B

Pattern Recognition: Machine-Learning

• Binary Classification of a Binary Vector (sliding window of, say, length 100); supervised learning: predict next one, e.g., Prime/Not becomes:

- pass to standard classifiers: SVW, Bayes, Nearest Neighbour; NN of the form $\mathbb{R}^{100} \xrightarrow{\text{linear}} \mathbb{R}^{20} \xrightarrow{\text{tanh}} \mathbb{R}^{20} \xrightarrow{\text{Round} \sum} \mathbb{R}$, your kitchen sink, ...
- take 50,000 samples, 20-80 cross-validation, record (precision, MCC)
- similar performance for most: Mod3: (1.0, 1.0); PrimeQ, after balancing: (0.8, 0.6); Liouville Λ: (0.5, 0.001)

Image: A math the second se

Pattern Recognition: Machine-Learning

• Binary Classification of a Binary Vector (sliding window of, say, length 100); supervised learning: predict next one, e.g., Prime/Not becomes:

- pass to standard classifiers: SVW, Bayes, Nearest Neighbour; NN of the form $\mathbb{R}^{100} \xrightarrow{\text{linear}} \mathbb{R}^{20} \xrightarrow{\text{tanh}} \mathbb{R}^{20} \xrightarrow{\text{Round} \sum} \mathbb{R}$, your kitchen sink, ...
- take 50,000 samples, 20-80 cross-validation, record (precision, MCC)
- similar performance for most: Mod3: (1.0, 1.0); PrimeQ, after balancing: (0.8, 0.6); Liouville Λ: (0.5, 0.001)

< ロ > < 同 > < 回 > < 回

my fantastic students

Jiakang Bao, Elli Heyes, Ed Hirst

Tejas Acharya, Daatta Aggrawal, Malik Amir, Kieran Bull, Lucille Calmon, Siqi Chen, Suvajit

Majumder, Maks Manko, Toby Peterken, Juan Pérez-Ipiña, Max Sharnoff, Yan Xiao my wonderful collaborators

Physics: Guillermo Arias-Tamargo, David Berman, Heng-Yu Chen, Andrei Constantin, Sebastián Franco, Vishnu Jejjala,

Seung-Joo Lee, Andre Lukas, Shailesh Lal, Brent Nelson, Diego Rodriguez-Gomez, Zaid Zaz

Algebraic Geometry: Anthony Ashmore, Challenger Mishra, Rehan Deen, Burt Ovrut

Number Theory: Laura Alessandretti, Andrea Baronchelli, Kyu-Hwan Lee, Tom Oliver, Alexey Pozdnyakov, Drew

Sutherland, Eldar Sultanow

Representation Theory: Mandy Cheung, Pierre Dechant, Minhyong Kim, Jianrong Li, Gregg Musiker

Combinatorics: Johannes Hofscheier, Alexander Kasprzyk, Shiing-Tung Yau

Russell-Whitehead Principia Mathematica [1910s] (Leibniz, Frege, ...) axiomatize maths, but ... Gödel [1931] Incompleteness ; Church-Turing [1930s] Undecidability Automated Theorem Proving (ATP) "The practicing mathematician hardly ever worries about Gödel"

- Newell-Simon-Shaw [1956] Logical Theory Machine: subset of Principia
- Type Theory [1970s] Martin-Löf, Coquand, ... Coq: 4-color (2005); Feit-Thompson Thm (2012); Lean (2013); Univalent Foundation / Homotopy Type Theory [2006-] Voevodsky

Buzzard: "Future of Maths" 2019, ICM 2022

Davenport: ICM 2018 "Computer Assisted Proofs"

Szegedy: more extreme view, computers > humans @ chess (1990s); @ Go (2018); @ Proving theorems (2030)

We can call this Bottom-up Mathematics

• • • • • • • • • • •

Russell-Whitehead Principia Mathematica [1910s] (Leibniz, Frege, ...) axiomatize maths, but ... Gödel [1931] Incompleteness; Church-Turing [1930s] Undecidability
 Automated Theorem Proving (ATP) "The practicing mathematician hardly ever worries about Gödel"

- Newell-Simon-Shaw [1956] Logical Theory Machine: subset of Principia
- Type Theory [1970s] Martin-Löf, Coquand, ... Coq: 4-color (2005); Feit-Thompson Thm (2012); Lean (2013); Univalent Foundation / Homotopy Type Theory [2006-] Voevodsky

Buzzard: "Future of Maths" 2019, ICM 2022

Davenport: ICM 2018 "Computer Assisted Proofs"

Szegedy: more extreme view, computers > humans @ chess (1990s); @ Go (2018); @ Proving theorems (2030)

We can call this Bottom-up Mathematics

Image: A math a math

How does one *DO* mathematics, II ?

- Historically, Maths perhaps more Top-Down: practice before foundation
 - Countless examples: calculus before analysis; algebraic geometry before Bourbaki, permutation groups / Galois theory before abstract algebra . .
 - A lot of mathematics starts with intuition, experience, and experimentation
- The best neural network of C18-19th? brain of Gauß ; e.g., age 16

(w/o computer and before complex analysis [50 years before Hadamard-de la Vallée-Poussin's proof]): PNT $\pi(x) \sim x/\log(x)$

• BSD computer experiment of Birch & Swinnerton-Dyer [1960's] on plots of rank $r \& N_p$ on elliptic curves

How does one *DO* mathematics, II ?

- Historically, Maths perhaps more Top-Down: practice before foundation
 - Countless examples: calculus before analysis; algebraic geometry before Bourbaki, permutation groups / Galois theory before abstract algebra ...
 - A lot of mathematics starts with intuition, experience, and experimentation
- The best neural network of C18-19th? brain of Gauß ; e.g., age 16

(w/o computer and before complex analysis [50 years before Hadamard-de la Vallée-Poussin's proof]): PNT $\pi(x) \sim x/\log(x)$

• BSD computer experiment of Birch & Swinnerton-Dyer [1960's] on plots of rank $r \& N_p$ on elliptic curves

How does one *DO* mathematics, II ?

- Historically, Maths perhaps more Top-Down: practice before foundation
 - Countless examples: calculus before analysis; algebraic geometry before Bourbaki, permutation groups / Galois theory before abstract algebra ...
 - A lot of mathematics starts with intuition, experience, and experimentation
- The best neural network of C18-19th? brain of Gauß ; e.g., age 16

(w/o computer and before complex analysis [50 years before Hadamard-de la Vallée-Poussin's proof]): PNT $\pi(x) \sim x/\log(x)$

 BSD computer experiment of Birch & Swinnerton-Dyer [1960's] on plots of rank r & N_p on elliptic curves NOISELESS Data: different from real-world data to which ML is usually applied; If I gave you 100,000 cases of

- Q: Is there a pattern? Can one conjecture & then prove a formula?
- Q: What branch of mathematics does it come from?

• NOISELESS Data: different from real-world data to which ML is usually applied; If I gave you 100,000 cases of

- Q: Is there a pattern? Can one conjecture & then prove a formula?
- Q: What branch of mathematics does it come from?

• NOISELESS Data: different from real-world data to which ML is usually applied; If I gave you 100,000 cases of

 $\left(\begin{array}{c} \frac{5}{2}, \frac{3}{2}, \frac{4}{2}, \frac{3}{2}, \frac{5}{2}, \frac{4}{4}, \frac{4}{4}, \frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \frac{5}{2}, \frac{4}{4}, \frac{4}{4}, \frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \frac{5}{2}, \frac{4}{2}, \frac{4}{2}, \frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \frac{5}{2}, \frac{1}{2}, \frac{4}{2}, \frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \frac{5}{2}, \frac{1}{2}, \frac{4}{2}, \frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \frac{5}{2}, \frac{1}{2}, \frac{4}{2}, \frac{1}{2}, \frac{2}{2}, \frac{5}{2}, \frac{1}{2}, \frac{1$

- Q: Is there a pattern? Can one conjecture & then prove a formula?
- Q: What branch of mathematics does it come from?

ML Algebraic Structures (GAP DB) [YHH-MH. Kim 1905.02263,]

- When is a Latin Square (Sudoku) the Cayley (multiplication) table of a finite group? Bypass quadrangle thm (0.95, 0.9)
- Can one look at the Cayley table and recognize a finite simple group?
 - bypass Sylow and Noether Thm; (0.97, 0.95) rmk: can do it via character-table T, but getting T not trivial
 - SVM: space of finite-groups (point-cloud of Cayley tables) seems to exist a hypersurface separating simple/non-simple

A B > 4
 B > 4
 B

[YHH-ST. Yau 2006.16619] Wolfram Finite simple graphs DB

• ML standard graph properties:

?acyclic (0.95, 0.96); ?planar (0.8, 0.6); ?genus >, =, < 0 (0.8, 0.7); ?∃
Hamilton cycles (0.8, 0.6); ?∃ Euler cycles (0.8, 0.6)
(Rmk: NB. Only "solving" the likes of traveling salesman stochastically)</pre>

- spectral bounds $(R^2 \sim 0.9) \dots$
- Recognition of Ricci-Flatness (0.9, 0.9) (todo: find new Ricci-flat graphs);

Image: A math a math

Example III: Quivers, Clusters, Brane setups, ...

- [Bao-Franco-Hirst-Musiker, 2006.10783, Dechant-YHH-Heyes-Hirst 2203.13847] Recognition of mutation types (> 0.9)
- [Hirst-YHH-Peterken 2004.05218]: adjacency+permutation triple of dessin d'enfants; predicting transcendental degree > 0.9
- [Arias-Tamargo, YHH, Heyes, Hirst, Rodriguez-Gomez 2202.05845] Recognition of equivalence (SL(2; ℤ), Seiberg, Hanany-Witten) of brane-webs
- [Cheung-Dechant-YHH-Heyes-Hirst-Li 2212.09771] learning Young tableaux representation of variables in Grassmannian cluster algebras (> 0.99)

Image: A math a math

Example IV: Number Theory

Arithmetic, A Classical Reprobate? (prime numbers are Difficult!)

- [YHH 1706.02714, 1812.02893:]
 - Predicting primes $2 \rightarrow 3, \ 2, 3 \rightarrow 5, \ 2, 3, 5 \rightarrow 7$; no way
 - PrimeQ: (0.7, 0.8); Sarnak's Challenger of Liouville Lambda (0.5, 0.001)
- [Alessandretti-Baronchelli-YHH 1911.02008] ML/TDA@Birch-Swinnerton-Dyer III and Ω ok with regression & decision trees: RMS < 0.1; Weierstrass \rightarrow rank: random
- Arithmetic Geometry: A Modern Hope? YHH-KH Lee-Oliver
 - 2010.01213: Complex Multiplication, Sato-Tate $(0.99 \sim 1.0, 0.99 \sim 1.0)$
 - 2011.08958: Number Fields: rank and Galois group (0.97, 0.9)
 - 2012.04084: BSD from Euler coeffs, integer points, torsion (0.99, 0.9); Tate-Shafarevich III (0.6, 0.8) [Hardest quantity of BSD]

Clearly useful for maths and physics

- Conjecture Formulation e.g.,
 - '19 YHH-Kim: separating hyperplane simple/non-simple groups; open
 - '19 Brodie-Constantin-Lukas: exact formulae for cohomo surf.; proved.
 - '20 YHH-Lee-Oliver: L-coefs and integer pt./torsion on ell; proved.
 - '20 Craven-Jejjala-Par: Jones poly best-fit function; open
 - '22 DeepMind Collab bounds on volume conjecture for knots
 - . . .
- Speed up & Improve Accuracies e.g.,
 - computing/estimating (top.inv., charges, etc) MUCH FASTER
 - '19 Ashmore-YHH-Ovrut: speed up Donaldson alg@CY metric 10-100
 - '20 Douglas et al., Anderson et al. accuracy improvement on Donaldson 10-100 times

• . .

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- ML the structure of mathematics: YHH 2101.06317
- In decreasing precision/increasing difficulty:

```
\begin{array}{rl} \mbox{numerical} \\ \mbox{string theory} \rightarrow & \mbox{algebraic geometry over } \mathbb{C} \sim \mbox{arithmetic geometry} \\ & \mbox{algebra} \\ \mbox{string theory} \rightarrow & \mbox{combinatorics} \\ & \mbox{analytic number theory} \end{array}
```

Image: A matrix

Launching in 2023

IJDSMS

Calling for Papers

Editor-in-Chief Yang-Hui He London Institute for Mathematical Sciences & Merton Callege, University of Oxford email: hey@maths.ox.ac.uk

More Information: https://www.worldscientific.com/worldscinet/ijdsms

INTERNATIONAL JOURNAL OF DATA SCIENCE IN THE MATHEMATICAL SCIENCES

The London Institute for Mathematical Sciences

- UK's only independent research institute for maths; modelled after IAS, Princeton
- Founded in 2011 by Dr. Thomas Fink
- Housed in the Faraday Suites of the Royal Institution of Great Britain
- 23 Themes: https://lims.ac.uk/
- Just established:

Arnold Felowships Landau Fellowships

Thank You

Happy 60th Birthday Alastair!!

A B +
 A
 B +
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Proper Way $\mathcal{O}(e^{e^d})$

• Recall Hodge decomposition $H^{p,q}(X) \simeq H^q(X, \wedge^p T^\star X) \rightsquigarrow$

 $H^{1,1}(X) = H^1(X, T_X^*), \qquad H^{2,1}(X) \simeq H^{1,2} = H^2(X, T_X^*) \simeq H^1(X, T_X)$

• Euler Sequence for subvariety $X \subset A$ is short exact:

$$0 \to T_X \to T_M|_X \to N_X \to 0$$

Induces long exact sequence in cohomology:

• Need to compute Rk(d), cohomology and $H^i(X, T_A|_X)$ (Cf. Hübsch)

Back to Alg Geo

Image: A math a math

The Neural Network Approach

• Bijection from
$$1234567890$$
 to $\{1, 2, \dots, 9, 0\}$?

• Take large sample, take a few hundred thousand (e.g. NIST database)

• Data = Training Data \sqcup Validation Data

Test trained NN on validations data to see accuracy performance

Image: A math a math

Large Depth Thm: (Cybenko-Hornik) For every continuous function $f : \mathbb{R}^d \to \mathbb{R}^D$, every compact subset $K \subset \mathbb{R}^d$, and every $\epsilon > 0$, there exists a continuous function $f_\epsilon : \mathbb{R}^d \to \mathbb{R}^D$ such that $f_\epsilon = W_2(\sigma(W_1))$, where σ is a fixed continuous function, $W_{1,2}$ affine transformations and composition appropriately defined, so that $\sup_{x \in K} |f(x) - f_\epsilon(x)| < \epsilon$.

Large Width Thm: (Kidger-Lyons) Consider a feed-forward NN with n input neurons, m output neuron and an arbitrary number of hidden layers each with n + m + 2 neurons, such that every hidden neuron has activation function φ and every output neuron has activation function the identity. Then, given any vector-valued function f from a compact subset $K \subset \mathbb{R}^m$, and any $\epsilon > 0$, one can find an F, a NN of the above type, so that $|F(x) - f(x)| < \epsilon$ for all $x \in K$.

ReLU Thm: (Hanin) For any Lebesgue-integral function $f : \mathbb{R}^n \to \mathbb{R}$ and any $\epsilon > 0$, there exists a fully connected ReLU NN F with width of all layers less than n + 4 such that $\int_{\mathbb{R}^n} |f(x) - F(x)| dx < \epsilon$.

Back to NN@Alg Geo

(日) (同) (日) (日) (日)