INTRODUCTION TO SPHERICAL AND P-TWISTS

TIMOTHY LOGVINENKO AND CIARAN MEACHAN

Exercise 1.1. Let X be a K3 surface and $C \subset X$ a smooth rational curve with $C^2 = -2$. Show that $\mathcal{O}_C(k)$ is a spherical object. That is, show that $\operatorname{Ext}^*_X(\mathcal{O}_C(k), \mathcal{O}_C(k)) \simeq \mathbb{C} \oplus \mathbb{C}[-2]$.

Exercise 1.2. Recall that the spherical twist $T_{\mathcal{E}}$ associated to a spherical object $\mathcal{E} \in \mathcal{D}(X)$ is defined by the following distinguished triangle

$$\operatorname{Hom}^*(\mathcal{E}, \mathcal{F}) \otimes \mathcal{E} \to \mathcal{F} \to T_{\mathcal{E}}(\mathcal{F}).$$

In the setting of Exercise 1.1, compute $T_{\mathcal{O}_C}(\mathcal{O}_x)$ where \mathcal{O}_x is the skyscraper sheaf of a point $x \in X$ and observe the difference between the answers when $x \notin C$ and $x \in C$.

Exercise 1.3. Let $\mathcal{E} \in \mathcal{D}(X)$ be any object. Show that $\mathcal{E} \cup \mathcal{E}^{\perp}$ is a spanning class for $\mathcal{D}(X)$.

(Recall that a collection of objects Ω in $\mathcal{D}(X)$ is a spanning class if for all $\mathcal{G} \in \mathcal{D}(X)$ the following two conditions hold: (i) if $\operatorname{Hom}(\mathcal{F}, \mathcal{G}[i]) = 0$ for all $\mathcal{F} \in \Omega$ and all $i \in \mathbb{Z}$ then $\mathcal{G} \simeq 0$, (ii) if $\operatorname{Hom}(\mathcal{G}[i], \mathcal{F}) = 0$ for all $\mathcal{F} \in \Omega$ and all $i \in \mathbb{Z}$ then $\mathcal{G} \simeq 0$.)

Exercise 1.4. Show that $T_{\mathcal{E}}(\mathcal{E}) \simeq \mathcal{E}[1 - \dim X]$ and $T_{\mathcal{E}}(\mathcal{F}) \simeq \mathcal{F}$ for all $\mathcal{F} \in \mathcal{E}^{\perp}$ and deduce that $\operatorname{Hom}(\mathcal{G}, \mathcal{G}'[i]) \to \operatorname{Hom}(T_{\mathcal{E}}(\mathcal{G}), T_{\mathcal{E}}(\mathcal{G}')[i])$ is an isomorphism for all $\mathcal{G}, \mathcal{G}' \in \mathcal{E} \cup \mathcal{E}^{\perp}$ and all $i \in \mathbb{Z}$.

Exercise 1.5. Let X be a (strict) CY3-fold and $C \subset X$ a smooth rational curve with normal bundle $\mathcal{N}_{C/X} \simeq \mathcal{O}_C(-1) \oplus \mathcal{O}_C(-1)$. Show that $\mathcal{O}_C(k)$ is again a spherical object. That is, show that $\operatorname{Ext}_X^*(\mathcal{O}_C(k), \mathcal{O}_C(k)) \simeq \mathbb{C} \oplus \mathbb{C}[-3]$. (Hint: Use the fact that $i^*i_*\mathcal{O}_C \simeq \bigoplus \bigwedge^k \mathcal{N}_{C/X}[k]$.)

Exercise 1.6. Consider the Atiyah flop of $C \subset X$ in the setting of Exercise 1.3:

Show that there are natural isomorphisms $q_*p^*p_*q^*\mathcal{O}_X(-k) \simeq T_{\mathcal{O}_{\mathbb{P}^1}(-1)}^{-1}(\mathcal{O}_X(-k))$ for k = 0, 1where $T_{\mathcal{E}}^{-1}$ is defined by the following distinguished triangle

$$T_{\mathcal{E}}^{-1}(\mathcal{F}) \to \mathcal{F} \to \operatorname{Hom}^*(\mathcal{F}, \mathcal{E})^{\vee} \otimes \mathcal{E}.$$

School of Mathematics, University of Cardiff, Wales *E-mail address*: LogvinenkoT@cardiff.ac.uk

School of Mathematics, University of Edinburgh, Scotland $E\text{-}mail \ address: ciaran.meachan@ed.ac.uk$