
Technical Report:

Syntactic Checks for Safety Cases

Software Engineering Group, Department of Computer Science,

University of Toronto, Toronto, Canada

November 2019

1. Introduction 1

2. Background 2

2.1 Safety Case Metamodel 2

2.2 Object Constraint Language (OCL) 2

3. Syntactic Checks 4

3.1 Supported-By Relations 4

3.2 In-Context-Of Relations 7

3.3 Overall Structure 9

3.4 ASIL Decomposition 12

3.5 State Validity 15

4. Demo 17

5. Discussion 19

5.1 Other Possible Safety Case Checks 19

5.2 Categorizing Constraint Checks 19

Appendix 21

A. Safety Case for Lane Management System 21

1. Introduction

This technical report presents, by means of example, how syntactic checks on model instances

can be formulated using the Object Constraint Language (OCL) and executed using the Eclipse

IDE. In particular, this technical report focuses on syntactic checks for assurance cases (or

equivalently, safety cases) in the automotive domain, thus the checks are derived not only from

assurance case standards (namely, the GSN standard) but also from ISO 26262.

The remainder of this technical report is structured as follows. Since OCL constraints relate to

specific metamodels, the adopted safety case metamodel will be presented in Section 2

together with a short introduction to OCL. This is followed by the list of implemented checks in

Section 3, and in Section 4, its implementation and execution in Eclipse will be shown using

screenshots. Finally, the technical report concludes with a discussion on other possible types of

constraint checks.

2. Background

2.1 Safety Case Metamodel

Figure 1 shows the adopted safety case metamodel, which is based on the GSN standard. Thus

as expected, a safety case is modelled to contain goals, strategies, solutions, contexts,

justifications and assumptions, all of which are connected to each other by either supported-by

relations or in-context-of relations. However, it is extended for the automotive domain to include

ASILs as well as independence goals and ASIL decomposition strategies. To support impact

assessment, safety case nodes also contain validity attributes and can be associated with

impact annotations.

2.2 Object Constraint Language (OCL)

OCL is a formal language for specifying expressions on models. These expressions do not have

side effects and are generally used for querying models or specifying constraints over them, the

latter of which is the purpose of using OCL in this technical report. Typically, an OCL constraint

is as follows (ignoring comments which start with -- and continue to the end of the line):

context Goal inv:

self.supportedBy ->

forAll(s |

s.premise.oclIsKindOf(Goal) or

s.premise.oclIsKindOf(Strategy) or

s.premise.oclIsKindOf(Solution));

context Goal inv: specifies that the accompanying OCL expression is an invariant that

applies to all instances of Goal, thus self in the subsequent line refers to the goal model

element being checked. self.supportedBy traverses the supportedBy relation in goals,

which in this case results in a set of SupportedBy model elements (see Figure 1). The

collection operator -> and forAll iterator causes an iteration to be performed on the

SupportedBy model elements, returning true if they all satisfy the condition specified inside

the forAll iterator. In this case, the condition is that the premise of the SupportedBy element

conforms to type Goal, Strategy or Solution.

Figure 1. The adopted safety case metamodel

3. Syntactic Checks

In total, 17 syntactic checks have been identified and formalized in OCL. 12 are derived from

the GSN standard and therefore relate to safety cases in general, while 4 are derived from ISO

26262 and relate to ASIL decomposition and inheritance. The last syntactic check relates to the

validity states of goals and solutions and is specific to the adopted metamodel.

For ease of presentation, this section is divided into five different sub-sections, with each check

documented as follows:

Check No. Check name (Source of check, e.g. GSN standard, ISO 26262, etc.).

(E.g. 13) Description of syntactic check (in natural language).

 Implementation of check in OCL

Pass Case

Fragment of the safety case for the lane
management system (LMS) that
illustrates the constraint. If no such
fragment exists, then a contrived example
will be used instead. The complete safety
case can be found in Appendix A.

Fail Case

Example safety case that fails the
syntactic check. If the check is enforced
automatically by the implemented
metamodel, then no such model can be
instantiated. Model elements that violate
the check will be indicated by a cross.

3.1 Supported-By Relations

1. Goal Supporter (GSN Standard)

Goals can only be supported by goals, strategies and solutions.

context Goal inv:

 -- Retrieve the supported-by relations of the goal

self.supportedBy ->

-- Check that the premise of each supported-by relation

-- is either a goal, strategy or solution.

forAll(s | s.premise.oclIsKindOf(Goal) or

s.premise.oclIsKindOf(Strategy) or

s.premise.oclIsKindOf(Solution));

Pass Case

Fail Case

N/A

2. Strategy Supporter (GSN Standard)

Strategies can only be supported by goals and solutions.

context Strategy inv:

-- Retrieve the supported-by relations of the strategy

self.supportedBy ->

-- Check that the premise of each supported-by relation

-- is either a goal or solution (i.e. not a strategy).

forAll(s |

s.premise.oclIsKindOf(Goal) or

s.premise.oclIsKindOf(Solution));

Pass Case

Fail Case

3. Solution Supporter (GSN Standard)

Solutions cannot be supported by any safety case element. (Solutions must be leaves)

context Solution inv:

-- Check that the solution is not (more specifically,

-- cannot be cast into) a decomposable core element and can

-- therefore not be supported.

-- This is trivially true.

self.oclAsType(DecomposableCoreElement).oclIsInvalid();

Pass Case

Fail Case

N/A

4. Contextual Element Supporter (GSN Standard)

Contextual elements cannot be supported by any safety case element.

context ContextualElement inv:

-- Check that the contextual element is not (more

-- specifically, cannot be cast into) a decomposable

-- core element and can therefore not be supported.

-- This is trivially true.

self.oclAsType(DecomposableCoreElement).oclIsInvalid();

Pass Case

Fail Case

N/A

3.2 In-Context-Of Relations

5. Goal Context (GSN Standard)

Goals can be in the context of contexts, assumptions and/or justifications.

context Goal inv:

 -- Retrieve the contextual elements connected to the goal.

self.inContextOf.context ->

-- Check that each contextual element is either a context,

-- assumption or justification.

forAll(c |

c.oclIsKindOf(Context) or

c.oclIsKindOf(Assumption) or

c.oclIsKindOf(Justification));

Pass Case

Fail Case

N/A

6. Strategy Context (GSN Standard)

Strategies can be in the context of contexts, assumptions and/or justifications.

context Strategy inv:

 -- Retrieve the contextual elements of the strategy.

self.inContextOf.context ->

-- Check that each contextual element is either a context,

-- assumption or justification.

forAll(c |

c.oclIsKindOf(Context) or

c.oclIsKindOf(Assumption) or

c.oclIsKindOf(Justification));

Pass Case

Fail Case

N/A

7. Solution Context (GSN Standard)

Solutions cannot be in the context of any safety case element.

context Solution inv:

-- Check that the solution is not a decomposable core

-- element and can therefore not be contextualised.

-- This is trivially true.

self.oclAsType(DecomposableCoreElement).oclIsInvalid();

Pass Case

Fail Case

N/A

8. Contextual Element Context (GSN Standard)

Contextual elements cannot be in the context of any safety case element.

context ContextualElement inv:

-- Check that the contextual element is not a decomposable

-- core element and can therefore not be contextualised.

-- This is trivially true.

self.oclAsType(DecomposableCoreElement).oclIsInvalid();

Pass Case

Fail Case

N/A

3.3 Overall Structure

9. Support Cycle (Implied by GSN Standard)

There cannot be any supported-by cycles.

context DecomposableCoreElement inv:

 -- Retrieve all supporting elements.

self.supportedBy.premise ->

-- Retrieve all their descendants (including themselves).

closure(p |

 if p.oclIsKindOf(DecomposableCoreElement) then

p.oclAsType(DecomposableCoreElement).

supportedBy.

premise

else p.oclAsSet()

endif

 -- Check that none of the retrieved supporting elements is

 -- the decomposable core element itself.

) -> excludes(self);

Pass Case

Fail Case

10. Single Root (Implied by GSN Standard)

There can only be one root in an assurance case.

context SafetyCase inv:

 -- Retrieve all core elements that are not supporting

 -- any other (decomposable) core element.

CoreElement.allInstances() ->

select(d |

d.supports.conclusion -> isEmpty()

 -- Check that there is only one such core element.

)-> size() = 1;

Pass Case

Fail Case

11. Goal Root (Implied by GSN Standard)

The root of an assurance case must be a “basic” goal.

 context CoreElement inv:

 -- Retrieve the element supported by the core element.

self.supports.conclusion ->

-- If the core element is not supporting anything,

-- it is the root and must therefore be the goal.

isEmpty() implies self.oclIsTypeOf(BasicGoal);

Pass Case

Fail Case

12. Non-Decomposable Leaves (Implied by GSN Standard)

The leaves of an assurance case must be solutions, not goals nor strategies.

Context DecomposableCoreElement inv:

 -- The decomposable core element (i.e. goal or strategy)

-- must be supported by a (non-null) safety case element.

 self.supportedBy.premise -> size() > 0 and

self.supportedBy.premise -> excludes(null);

Pass Case

Fail Case

3.4 ASIL Decomposition

13. ASIL Decomposition Independence (Implied by ISO 26262)

An ASIL decomposition strategy must be supported by one “independence goal”.

context ASILDecompositionStrategy inv:

 -- Retrieve the independence goals supporting the strategy

self.supportedBy.premise ->

selectByType(IndependenceGoal) ->

 -- Check that there is exactly one such goal.

size() = 1;

Pass Case

(S4 is the ASIL decomposition strategy

and G10 the independence goal)

Fail Case

(S1 is the ASIL decomposition strategy
while G2 and G3 are both basic goals)

14. ASIL Decomposition Components (Implied by ISO 26262)

An ASIL decomposition strategy must be supported by two “basic” goals

context ASILDecompositionStrategy inv:

 -- Retrieve the basic goals supporting the strategy

self.supportedBy.premise ->

selectByType(BasicGoal) ->

 -- Check that there are exactly two such goals.

size() = 2;

Pass Case

(S4 is the ASIL decomposition strategy
while G11 and G12 are the basic goals)

Fail Case

(S1 is the ASIL decomposition strategy

and G2 the only basic goal)

15. ASIL Inheritance (ISO 26262)

Any child goal that support a parent goal directly or via a “basic” strategy must have the

same ASIL or stronger as the parent goal (if any).

 context Goal inv:

let

 -- Retrieve all parent goals of the goal in question.

 directParents : Set(Goal) = self.supports.conclusion ->

 select(d |d.oclIsKindOf(Goal)).oclAsType(Goal) -> asSet(),

 -- Retrieve all "indirect" goals by retrieving:

 -- 1) All basic strategies supported by the goal

 -- 2) All goals supported by those strategies.

 indirectParents : Set(Goal) = self.supports.conclusion ->

 select(d |d.oclIsTypeOf(BasicStrategy)).supports.conclusion ->

 select(d |d.oclIsKindOf(Goal)).oclAsType(Goal) ->

 asSet() in indirectParents ->

union(directParents) ->

 -- Check that each parent's ASIL has been inherited correctly.

 -- 1) If the parent has no ASIL, then it is trivially true.

 -- 2) Otherwise, if the child has no ASIL (but the parent

 -- does), then it is trivially false.

 -- 3) Otherwise, the parent must have a stronger ASIL.

 forAll(g |

if g.asil = null then true

else if self.asil = null then false

 else

 g.asil.value = ASILLevel::QM or

 (g.asil.value.toString() <=

 self.asil.value.toString() and

 self.asil.value <> ASILLevel::QM)

 endif

endif);

Pass Case

Fail Case

16. ASIL Descendants (Implied by ISO 26262)

The two basic goals supporting an ASIL decomposition strategy cannot share any

common descendant goal or solution.

context ASILDecompositionStrategy inv:

let

-- Retrieve the basic goals supporting the strategy.

-- Returning a sequence (instead of a set) allows the

-- selection of a specific basic goal to operate on.

 goalSeq: Sequence(CoreElement) = self.supportedBy.premise ->

 select(p | p.oclIsTypeOf(BasicGoal)),

-- Retrieve all descendants of the first basic goal

-- (excluding itself).

 g1Descendants : Set(CoreElement) = goalSeq -> at(1) ->

 closure(c |

 if c.oclIsKindOf(DecomposableCoreElement) then

 c.oclAsType(DecomposableCoreElement).

 supportedBy.premise

 else

 null

 endif),

-- Retrieve all descendants of the second basic goal

-- (excluding itself).

 g2Descendants : Set(CoreElement) = goalSeq -> at(2) ->

 closure(c |

 if c.oclIsKindOf(DecomposableCoreElement) then

 c.oclAsType(DecomposableCoreElement).

 supportedBy.premise

 else

 null

 -- Check that there are no shared descendants.

 endif) in g1Descendants ->

 intersection(g2Descendants) = Set{};

Pass Case

(G11 and G12 are the basic goals of the

ASIL decomposition strategy S4)

Fail Case

(S1 is the ASIL decomposition strategy
while G2 and G3 are the basic goals)

3.5 State Validity

17. State Validity Inheritance (University of Toronto)

If the state of a parent goal is valid, then the states of all child goals and solutions must

also be valid (Current metamodel only supports AND decomposition.)

context Goal inv:

-- Proceed with check if goal's state is valid.

self.stateValidity = ValidityValue::Valid implies

-- Retrieve all stateful elements (i.e. goals and solutions)

-- that are directly supporting the goal in question.

 let directChildren : Set(StatefulElement) =

 self.supportedBy.premise ->

 select(d |d.oclIsKindOf(StatefulElement)).

 oclAsType(StatefulElement) -> asSet(),

-- Retrieve all stateful elements that indirectly support the

-- the goal in question via a strategy.

 indirectChildren : Set(StatefulElement) =

 self.supportedBy.premise ->

 select(d | d.oclIsKindOf(Strategy)).

 oclAsType(Strategy).supportedBy.premise.

 oclAsType(StatefulElement) -> asSet() in

-- Check that the states of all retrieved children are valid.

 indirectChildren ->

 union(directChildren) ->

 forAll(g |

 g.stateValidity =

 ValidityValue::Valid);

Pass Case

Fail Case

(All states are valid except G2 in the failed case)

4. Demo

The OCL constraints were incorporated into the safety case metamodel by using the

OCLinEcore editor in Eclipse, a screenshot of which is shown in Figure 2 below. In particular,

this figure illustrates how the four constraints on goals were added to the Goal class in the

metamodel, namely Goal Supporter (Check 1), Goal Context (Check 5), ASIL Inheritance

(Check 15) and State Validity Inheritance (Check 17).

Figure 3 shows how one can validate a safety case based on the implemented constraints. In

this case, the Sirius editor for safety cases is being used to validate the LMS safety case, and

this is achieved by right-clicking the diagram and selecting “Validate diagram” from the menu.

No constraints were violated by the LMS safety case, but if there were, each violation will be

reported as an error, and the corresponding model elements will be flagged with a small red

cross. An example is shown in Figure 4, in which strategy S1 violates the constraint Strategy

Supporter (Check 2).

Figure 2. The OCLinEcore Editor in Eclipse

Figure 3. Validation of the LMS Safety Case

Figure 4. Violation of an OCL Constraint

5. Discussion

The provided list of constraint checks can most certainly be augmented with others. In what

follows, we give a list of ideas that have been brought forward but not yet formalized or

checked. We expect examples of many of these checks will be implemented as part of the

Semantic Checks technical reports.

5.1 Other Possible Safety Case Checks

Here, we consider other safety case checks.

1. ASIL decomposition complies with ISO 26262.

That is, the ASIL of a parent node cannot be higher than the sum of ASIL levels of its children

nodes.

2. “Invalid” and “Undetermined” states are inherited correctly.

That is, if a node is invalid or undetermined, its parent should be marked as such as well.

3. Inheritance of state validity that accounts for OR-decomposition.

That is, all the current checks assume AND decomposition. The aim is to repeat them for OR

decomposition.

4. A goal should be supported by evidence type appropriate for the corresponding ASIL.

That is, the attached evidence, i.e., test coverage criteria, verification claims, etc., is what is

required by the ASIL. The aim is not to check the evidence itself but just the metadata capturing

its type.

As well as various process-related checks, the details of which are TBD.

5.2 Categorizing Constraint Checks

We have detailed constraint checks on safety cases in Sec. 3 and have described a more

general application of constraint checking in Sec. 5.1. As part of the research, we intend to

define a constraint check taxonomy to help practioners and tool developers work with them in a

systematic manner. There are many potential categories of constraint checks that can be

included in a taxonomy and we discuss some here with examples from this document.

All the constraints in Sec. 3 are intra-model checks as they are checked on a single model (the

safety case). On the other hand, inter-model constraints are those which rely on the existence of

traceability mappings between models. For example, a check such as “Is there a fault tree

analysis (FTA) conducted for all hazards that are ASIL B and above?” While the constraint

checking tooling described in this technical report is limited to intra-model checks, options to

support inter-model constraint checking are under investigation.

Some constraints deal with the content of artifacts while others with the process to create them.

For example, the product constraints in Sec. 3.1, 3.2, and 3.3 are well-formedness checks to

ensure that a GSN safety case is meaningful. These are clearly syntactic checks. Semantic

product constraints can check a broader range of properties, e.g., the consistency between

artifacts (e.g., “Are all system functions comprehended in the Hazard Analysis?”). In contrast, a

check like “Is there a FTA conducted for all hazards that are ASIL B and above? “is a process

constraint that ensures that a particular artifact (in this case, FTA) is produced.

Other kinds of distinctions that are relevant to a taxonomy include: constraints to check

correctness vs. completeness, constraints that are necessary vs. sufficient conditions,

existential vs. universal constraints, etc. The criteria for including a category in the final

taxonomy will be based on how it is relevant to supporting the safety process.

Appendix

A. Safety Case for Lane Management System

	1. Introduction
	2. Background
	2.1 Safety Case Metamodel
	2.2 Object Constraint Language (OCL)

	3. Syntactic Checks
	3.1 Supported-By Relations
	3.2 In-Context-Of Relations
	3.3 Overall Structure
	3.4 ASIL Decomposition
	3.5 State Validity

	4. Demo
	5. Discussion
	5.1 Other Possible Safety Case Checks
	5.2 Categorizing Constraint Checks

	Appendix
	A. Safety Case for Lane Management System

