Technical Report:
Syntactic Checks for Safety Cases

Software Engineering Group, Department of Computer Science,
University of Toronto, Toronto, Canada

November 2019

1. Introduction 1
2. Background 2
2.1 Safety Case Metamodel 2
2.2 Object Constraint Language (OCL) 2
3. Syntactic Checks 4
3.1 Supported-By Relations 4
3.2 In-Context-Of Relations 7
3.3 Overall Structure 9
3.4 ASIL Decomposition 12
3.5 State Validity 15
4. Demo 17
5. Discussion 19
5.1 Other Possible Safety Case Checks 19
5.2 Categorizing Constraint Checks 19
Appendix 21
A. Safety Case for Lane Management System 21

1. Introduction

This technical report presents, by means of example, how syntactic checks on model instances
can be formulated using the Object Constraint Language (OCL) and executed using the Eclipse
IDE. In particular, this technical report focuses on syntactic checks for assurance cases (or
equivalently, safety cases) in the automotive domain, thus the checks are derived not only from
assurance case standards (namely, the GSN standard) but also from ISO 26262.

The remainder of this technical report is structured as follows. Since OCL constraints relate to
specific metamodels, the adopted safety case metamodel will be presented in Section 2
together with a short introduction to OCL. This is followed by the list of implemented checks in

Section 3, and in Section 4, its implementation and execution in Eclipse will be shown using
screenshots. Finally, the technical report concludes with a discussion on other possible types of
constraint checks.

2. Background

2.1 Safety Case Metamodel

Figure 1 shows the adopted safety case metamodel, which is based on the GSN standard. Thus
as expected, a safety case is modelled to contain goals, strategies, solutions, contexts,
justifications and assumptions, all of which are connected to each other by either supported-by
relations or in-context-of relations. However, it is extended for the automotive domain to include
ASILs as well as independence goals and ASIL decomposition strategies. To support impact
assessment, safety case nodes also contain validity attributes and can be associated with
impact annotations.

2.2 Object Constraint Language (OCL)

OCL is a formal language for specifying expressions on models. These expressions do not have
side effects and are generally used for querying models or specifying constraints over them, the
latter of which is the purpose of using OCL in this technical report. Typically, an OCL constraint
is as follows (ignoring comments which start with -- and continue to the end of the line):

context Goal inv:
self.supportedBy ->
forAll (s |
s.premise.oclIsKindOf (Goal) or
s.premise.oclIsKindOf (Strategy) or
s.premise.oclIsKindOf (Solution));

context Goal inv: specifies that the accompanying OCL expression is an invariant that
applies to all instances of Goal, thus self in the subsequent line refers to the goal model
element being checked. self.supportedBy traverses the supportedBy relation in goals,
which in this case results in a set of SupportedBy model elements (see Figure 1). The
collection operator -> and forAll iterator causes an iteration to be performed on the
SupportedBy model elements, returning true if they all satisfy the condition specified inside
the forall iterator. In this case, the condition is that the premise of the SupportedBy element
conforms to type Goal, Strategy or Solution.

E BasicGoal

[1.1] target

[0..1] asil

H SafetyCase

[0.*] goals

[0.*] strategies

H Goal
B Strategy

[0.*] sojutions

H Solution

[0.*] justifiations

[0.*] contpxts

[0.*] assumptions

& Assumption

B Justification

E BasicStrategy

E ASILDecompositionStrategy

H Context

-1

5 StatefulElement

= stateValidity : Validity\alue = Invalid

.

& &

rﬁ DecomposableCoreElement|

[0.*] inContextOf

[1..1] contextOf

[1..1] conclusion

B asiL

T value : ASiLLevel = D

[1.*] supportedBy

[0.1] status.

5 ImpactAnnotation

T type : ImpactType = Revise

= source : EString

[1..*] cohtextOf

E InContextOf

.1] context

&

H Argumenttlement

H CoreElement
[1.1] premise
& SupportedBy
[0.7] supports
[0.1] status T id: EString

= contentvalidity

= description : EString

:ValidityValue = Invalid

Figure 1. The adopted safety case metamodel

2 ASILLevel

- D
-C
- B
-A
- aMm

2 Validityvalue

= Invalid
- valid
~ Undetermined

2 ImpactType

~ Revise

- RecheckContent
= RecheckState

~ Reuse

3. Syntactic Checks

In total, 17 syntactic checks have been identified and formalized in OCL. 12 are derived from
the GSN standard and therefore relate to safety cases in general, while 4 are derived from ISO
26262 and relate to ASIL decomposition and inheritance. The last syntactic check relates to the
validity states of goals and solutions and is specific to the adopted metamodel.

For ease of presentation, this section is divided into five different sub-sections, with each check
documented as follows:

Check No. Check name (Source of check, e.g. GSN standard, 1ISO 26262, etc.).
(E.g. 13) Description of syntactic check (in natural language).
Implementation of check in OCL

Pass Case Fail Case

Fragment of the safety case for the lane Example safety case that fails the
management system (LMS) that syntactic check. If the check is enforced
illustrates the constraint. If no such automatically by the implemented
fragment exists, then a contrived example metamodel, then no such model can be
will be used instead. The complete safety instantiated. Model elements that violate
case can be found in Appendix A. the check will be indicated by a cross.

3.1 Supported-By Relations

1. Goal Supporter (GSN Standard)
Goals can only be supported by goals, strategies and solutions.
context Goal inv:
-— Retrieve the supported-by relations of the goal
self.supportedBy ->

-—- Check that the premise of each supported-by relation
-- 1s either a goal, strategy or solution.
forAll (s | s.premise.oclIsKindOf (Goal) or
s.premise.oclIsKindOf (Strategy) or
S.premise.oclIsKindOf (Solution));

Pass Case Fail Case
N/A

GO The LMS
System Safety
oals are satisfied

S0/Loverage over gl
safety goals

G3 LMS always G1 The set of G2 The LMS

allows user to safety goals is system notifies

wverride and take complete driver if it fails
=

2. Strategy Supporter (GSN Standard)
Strategies can only be supported by goals and solutions.
context Strategy inv:
-— Retrieve the supported-by relations of the strategy
self.supportedBy ->

—-— Check that the premise of each supported-by relation
-- 1s either a goal or solution (i.e. not a strategy).
forAll (s |
S.premise.oclIsKindOf (Goal) or
S.premise.oclIsKindOf (Solution));

Pass Case Fail Case

51 pAZOP analysis By Syst ol
Failing
technical expep
diyer wh

®
G8 (Hominal s1
. G9 All override Fn0 HAZOP
Wode) Driver shal
[ases are covere
e able to manua.|
&}
G2 S2

S@ Coverage ove Y9 Inspection of
nofminal override céises syStem design mgdels

3. Solution Supporter (GSN Standard)
Solutions cannot be supported by any safety case element. (Solutions must be leaves)
context Solution inv:
-—- Check that the solution is not (more specifically,
-— cannot be cast into) a decomposable core element and can
-— therefore not be supported.
-— This is trivially true.
self.oclAsType (DecomposableCoreElement) .oclIsInvalid() ;

Pass Case Fail Case
N/A
20 System level
testing

Sn12

testing
esults

4. Contextual Element Supporter (GSN Standard)

Contextual elements cannot be supported by any safety case element.

context ContextualElement inv:
—-— Check that the contextual element 1is not (more
-- specifically, cannot be cast into) a decomposable
-— core element and can therefore not be supported.
-— This is trivially true.
self.oclAsType (DecomposableCoreElement) .oclIsInvalid() ;

Pass Case Fail Case
N/A

G3 LMS always
allows user to
verride and takel).

—

3.2 In-Context-Of Relations

5. Goal Context (GSN Standard)
Goals can be in the context of contexts, assumptions and/or justifications.

context Goal inv:
-— Retrieve the contextual elements connected to the goal.

self.inContextOf.context ->

—-— Check that each contextual element is either a context,
-—- assumption or justification.
forAll (c |
c.oclIsKindOf (Context) or
c.oclIsKindOf (Assumption) or
c.oclIsKindOf (Justification));

Pass Case Fail Case
N/A

G3 LMS always
allows user to
verride and takel).

r

1 System hazard,
LMS prevents
lver overriding ..

6. Strategy Context (GSN Standard)
Strategies can be in the context of contexts, assumptions and/or justifications.

context Strategy inv:
-— Retrieve the contextual elements of the strategy.

self.inContextOf.context ->

—-— Check that each contextual element is either a context,
-—- assumption or justification.
forAll (c |
c.oclIsKindOf (Context) or
c.oclIsKindOf (Assumption) or
c.oclIsKindOf (Justification)) ;

Pass Case Fail Case
N/A

G1

7. Solution Context (GSN Standard)
Solutions cannot be in the context of any safety case element.
context Solution inv:
—-— Check that the solution is not a decomposable core
-—- element and can therefore not be contextualised.
-—- This is trivially true.
self.oclAsType (DecomposableCoreElement) .oclIsInvalid() ;

Pass Case Fail Case

N/A
. " System level £0 System level
testing and verificagion
testing
of controller logic

testing
esults

8. Contextual Element Context (GSN Standard)
Contextual elements cannot be in the context of any safety case element.
context ContextualElement inv:
-—- Check that the contextual element is not a decomposable
-—- core element and can therefore not be contextualised.
-—- This 1is trivially true.
self.oclAsType (DecomposableCoreElement) .oclIsInvalid() ;

Pass Case Fail Case
N/A

G3 LMS always
allows user to
werride and take).

—

1 System hazard
LMS prevents
ver overriding 2.

3.3 Overall Structure

9. Support Cycle (Implied by GSN Standard)
There cannot be any supported-by cycles.
context DecomposableCoreElement inv:
-— Retrieve all supporting elements.
self.supportedBy.premise ->

-— Retrieve all their descendants (including themselves).
closure(p |
if p.oclIsKindOf (DecomposableCoreElement) then
p.oclAsType (DecomposableCoreElement) .
supportedBy.
premise
else p.oclAsSet ()
endif

—-— Check that none of the retrieved supporting elements 1is
-— the decomposable core element itself.
) —> excludes (self);

Pass Case Fail Case
S19/Argument over 4l fetfcaton x
Subsystems via mods! G3
T TR ——
7 / T
e / ~ —
—
v -y —
24 LCS TurnOff 22 LKA TurnOf G25 All G23 LDWS
funcions works functions works subsystems are Turnoffp
conget conectly covered in¢ions works ¢
B B B \ B
[&] (=" O [&] X
[\
/ \ G1
] x .
576 Unittesting o 574 Unittesting o 526 Inspection of e o
L{ZS TurnOff{) fungtion IS TumnOfi) fungilon spécification docupent - =
function
fn?\ /«r-uu /Bne
(Testng of " Software I’Taqmg of) x
\Tumart) quirement Tunof()
IWLQ/ kq\ir fica ‘Mnn p/ G2

10. Single Root (Implied by GSN Standard)

There can only be one root in an assurance case.

context SafetyCase inv:

-— Retrieve all core elements that are not supporting
-— any other (decomposable) core element.

CoreElement.allInstances ()
select (d |

d.supports.conclusion -> isEmpty ()

—-— Check that there is only one such core element.

y—-> size() = 1;

Pass Case

GO The LMS
System Safety
oals are satisfied

S0/Loverage over gl
safety goals

G3 LMS always G1 The set of G2 The LMS

allows user to safety goals is system notifies
wverride and take complete driver if it fails
st

11. Goal Root (Implied by GSN Standard)

The root of an assurance case must be a “basic” goal.

context CoreElement inv:

Fail Case

Gl

X

51

G2

G3

-— Retrieve the element supported by the core element.

self.supports.conclusion ->

-—- If the core element is not supporting anything,
-—- it is the root and must therefore be the goal.
isEmpty () implies self.oclIsTypeOf (BasicGoal);

Pass Case Fail Case

GO The LMS
System Safety
oals are satisfied

S0/Loverage over gl
safety goals

G1

G3 LMS always G1 The set of G2 The LMS

allows user to safety goals is system notifies
wverride and take complete driver if it fails
=

12. Non-Decomposable Leaves (Implied by GSN Standard)
The leaves of an assurance case must be solutions, not goals nor strategies.
Context DecomposableCoreElement inv:
—-— The decomposable core element (i.e. goal or strategy)
-—- must be supported by a (non-null) safety case element.
self.supportedBy.premise -> size() > 0 and
self.supportedBy.premise -> excludes (null);

Pass Case Fail Case
' 1 System_ I_eve_l 20 System level
testing and verification)
testing
of controller logic

Sni2

G1

S1

testing

25Ut x
G2

3.4 ASIL Decomposition

13. ASIL Decomposition Independence (Implied by ISO 26262)
An ASIL decomposition strategy must be supported by one “independence goal”.
context ASILDecompositionStrategy inv:
-— Retrieve the independence goals supporting the strategy
self.supportedBy.premise ->
selectByType (IndependenceGoal) ->

-—- Check that there is exactly one such goal.
size() = 1;

Pass Case Fail Case

G4 If the LMS
fails, prior to
ghutting off, it wil.,.

G1

S4/Decompose ovgr S1 ; !
user alerts
1G10 Audibl d
G12 Visual alerts J0Audibean 511 Audible alerty
" N visual alerts are . .
available to drive N available to drive
independent G2 G3
ord 2] 2]

(S4 is the ASIL decomposition strategy
and G10 the independence goal)

(S1is the ASIL decomposition strategy
while G2 and G3 are both basic goals)

14. ASIL Decomposition Components (Implied by 1ISO 26262)
An ASIL decomposition strategy must be supported by two “basic” goals
context ASILDecompositionStrategy inv:
-— Retrieve the basic goals supporting the strategy
self.supportedBy.premise ->
selectByType (BasicGoal) ->

—-— Check that there are exactly two such goals.
size() = 2;

Pass Case Fail Case

G4 If the LMS
fails, prior to
fhutting off, it wil.).

S4/ecompose ovgr
user alerts

G12 Visual alerts G:I 0 Audible and 511 Audible alerty
" . visual alerts are . .
available to driver . available to driver
independent G2 G1

ol / (2] (4]

(S4 is the ASIL decomposition strategy
while G11 and G12 are the basic goals)

G1

S1

(S1is the ASIL decomposition strategy
and G2 the only basic goal)

15. ASIL Inheritance (ISO 26262)

Any child goal that support a parent goal directly or via a “basic” strategy must have the

same ASIL or stronger as the parent goal (if any).

context Goal inv:

let
-- Retrieve all parent goals of the goal in question.
directParents : Set(Goal) = self.supports.conclusion ->

select (d |d.oclIsKindOf (Goal)) .oclAsType (Goal) -> asSet(),

-— Retrieve all "indirect" goals by retrieving:
-—- 1) All basic strategies supported by the goal
-—- 2) All goals supported by those strategies.
indirectParents : Set (Goal) = self.supports.conclusion ->
select (d |d.oclIsTypeOf (BasicStrategy)) .supports.conclusion ->
select(d |d.oclIsKindOf (Goal)) .oclAsType (Goal) ->
asSet () in indirectParents ->
union (directParents) ->

—-— Check that each parent's ASIL has been inherited correctly.
-- 1) If the parent has no ASIL, then it is trivially true.

-- 2) Otherwise, if the child has no ASIL (but the parent

- does), then it is trivially false.

-- 3) Otherwise, the parent must have a stronger ASIL.

forAll (g |
if g.asil = null then true
else if self.asil = null then false
else
g.asil.value = ASILLevel::QM or
(g.asil.value.toString() <=
self.asil.value.toString() and
self.asil.value <> ASILLevel: :QM)

endif
endif) ;
Pass Case Fail Case

r i G1

(Detected G8 (No.mlnal 69 All override w0
lure Mode) Node) Driver shall

X Lases are covere Vit
a is able to o). e able to manual. e Iil

Le] e}
o s1
'scomposition S@ Coverage ove Inspectior
ocedure (dejéct
nofminal override cases syStem design r

shutdown ghd

- - G3 x
20 (Intentional) G19 (Unintended)|
G21 All cases are
[System shall not System shall not d
interfere with the.,. nterfere with dri., covers G s

=\

G2

16. ASIL Descendants (Implied by ISO 26262)
The two basic goals supporting an ASIL decomposition strategy cannot share any
common descendant goal or solution.
context ASILDecompositionStrategy inv:
let
-—- Retrieve the basic goals supporting the strategy.
-—- Returning a sequence (instead of a set) allows the
-- selection of a specific basic goal to operate on.
goalSeqg: Sequence (CoreElement) = self.supportedBy.premise ->
select(p | p.oclIsTypeOf (BasicGoal)),

-— Retrieve all descendants of the first basic goal
-- (excluding itself).
glDescendants : Set (CoreElement) = goalSeq -> at(l) ->
closure(c |
if c.o0clIsKindOf (DecomposableCoreElement) then

c.oclAsType (DecomposableCoreElement) .
supportedBy.premise
else
null
endif),

-— Retrieve all descendants of the second basic goal
-—- (excluding itself).
g2Descendants : Set (CoreElement) = goalSeq -> at(2) ->
closure (c |
if c.o0clIsKindOf (DecomposableCoreElement) then
c.oclAsType (DecomposableCoreElement) .
supportedBy.premise
else
null

—-— Check that there are no shared descendants.

endif) in glDescendants ->
intersection (g2Descendants) = Set{};

Pass Case Fail Case

S4/O0ecompose ovgr
user alerts

G12 Visual alerts G:I 0 Audible and 11 Audible alerty x
.) visual alerts are . N S1
available to drives . available to drives
independent
QM/ A /\A
G3

\/azresting of visy SH1 Verification of 0 Bxpert S1%/Testing of G1 G
alerts system desig Xpertopiny alerts

2
n5 Tes K
Sné Test n3 Expert results of
(G11 and G12 are the basic goals of the

ASIL decomposition strategy S4) (S1is the ASIL decomposition strategy
while G2 and G3 are the basic goals)

G1

3.5 State Validity

17. State Validity Inheritance (University of Toronto)
If the state of a parent goal is valid, then the states of all child goals and solutions must
also be valid (Current metamodel only supports AND decomposition.)

context Goal inv:
-— Proceed with check if goal's state is valid.
self.stateValidity = ValidityValue::Valid implies

-— Retrieve all stateful elements (i.e. goals and solutions)
-— that are directly supporting the goal in question.
let directChildren : Set(StatefulElement) =
self.supportedBy.premise ->
select(d |d.oclIsKindOf (StatefulElement)).
oclAsType (StatefulElement) -> asSet(),

-— Retrieve all stateful elements that indirectly support the
-— the goal in question via a strategy.
indirectChildren : Set(StatefulElement) =
self.supportedBy.premise ->
select(d | d.oclIsKindOf (Strategy)).
oclAsType (Strategy) .supportedBy.premise.
oclAsType (StatefulElement) -> asSet() in

—-— Check that the states of all retrieved children are valid.
indirectChildren ->
union (directChildren) ->
forAll (g |
g.statevValidity =
ValidityValue::Valid);

Pass Case Fail Case
P v S
h24 LCS TurnOff(h22 LKA TurnOff(] G25 All
functions works tunctions works subsystems are Gl x
correctly correctly covered

51

G3 G2

(All states are valid except G2 in the failed case)

4. Demo

The OCL constraints were incorporated into the safety case metamodel by using the
OCLinEcore editor in Eclipse, a screenshot of which is shown in Figure 2 below. In particular,
this figure illustrates how the four constraints on goals were added to the Goal class in the
metamodel, namely Goal Supporter (Check 1), Goal Context (Check 5), ASIL Inheritance
(Check 15) and State Validity Inheritance (Check 17).

Figure 3 shows how one can validate a safety case based on the implemented constraints. In
this case, the Sirius editor for safety cases is being used to validate the LMS safety case, and
this is achieved by right-clicking the diagram and selecting “Validate diagram” from the menu.
No constraints were violated by the LMS safety case, but if there were, each violation will be
reported as an error, and the corresponding model elements will be flagged with a small red
cross. An example is shown in Figure 4, in which strategy S1 violates the constraint Strategy
Supporter (Check 2).

=] MMINT-Develop - edu.toronto.cs.se.modelepedia.safetycase/model/safetycase.ecore - Eclipse IDE — O X
File Edit Navigate Search Project Run Window Help

Ny R @ity Avia s vilvHv ooy vidid |Quick Access|{| = | [+ &

% Model Explorer & =% Y7 U @safetycase.ecore ¥ | B safetycase.genmodel & safetycase class diagram ==
type filter text 62 {)
63 property context#contextOf : ContextualElement[1];
& edu.toronto.cs.semodelepedia. A g4 property contextOf#inContextOf : DecomposableCoreE
v i edu.toronto.cs.se.modelepedia. 65
=i Project Dependencies 66°| abstract class Goal extends DecomposableCoreElement,St
= JRE System Library [JavaSE-1 £Z {
’ X 68 invariant GoalSupporter: self.supportedBy -> forAl
= Plug-in Dependencies 69 invariant GoalContext: self.inContextOf.context ->
&t src-gen i 7ee invariant ASILInheritance: let directParents : Set
& META-INF 7l indirectParents : Set(Goal) = self.supports.coi
v & model 72 in indirectParents -> union(directParents) -> :
P v | | 73e invariant StateValidityInheritance: self.stateVali
< > 745 let directChildren : Set(StatefulElement) = se
e - o 75 indirectChildren : Set(StatefulElement) = :
& Outline =10 = 76 in indirectChildren -> union(directChildren) -
v & platform:/resource/edu.toronto A 77 1 . 1 4 .
- bt 78 class BasicGoal extends Goal;
& safetycase : httpi//se.cstoro 79 class IndependenceGoal extends Goal; v
& SafetyCase -> OclElement < N

E ArgumentElement -> Ocll

E StatefulElement -> OclEle 2 Console =
& ASILfulElement -> OclEler No consoles to display at this time.

& CoreElement -> Argumen

v S w =0

& DecomposableCoreEleme
E ContextualElement -> Arc

= SupportedBy -> OclEleme ¥
< >

Writable Insert 66:1 i

Figure 2. The OCLinEcore Editor in Eclipse

< runtime-EclipseApplication - platform:/resource/LaneManagementSystem/representations.aird/new Saf.. — O X

File Edit Diagram Navigate Search Project Run MMINT Window Help
Tl @ vitiQ vig g vil v §lwa - o ow

= | & Ims_scsafetycase | & new SafetyCaseRepresentation &

% AvEv|¢Orw e B @al100% v|mE 2 Palette b
& / 2 ;
&= Navigate > L
@
‘Argument over all S1¢ s y
subsystems Z Edit ic goal
<" Refresh F5
Unsynchronized nce goal
@ Export diagram as image ic
22 LKA TurnOff(G25 All G23 LDWS # Show/Hide
functions works subsystems are TurnOff() %
correctly covered flinctions works -+ Select 4 L
9
8| (2] (2] * Layout ” Sition
Reset Origin Ctrl+Home
<
Validate diagram
Properties <> Interpreter B Problems # @ Error Log & ((==
- Find Ctrl+Alt+Shift+F | .
0 items Quick search Ctrl+O)
Description Profiles >
s Show EClass information
= Show References
OCL >
Remove from Context Ctrl+Alt+Shift+ Down
< >
% Synchronized diagram iy
Figure 3. Validation of the LMS Safety Case
£ runtime-EdipseApplication - platform:/resource/GsnSyntaxChecker/representations.aird/StrategySuppo... — O X

File Edit Diagram Navigate Search Project Run MMINT Window Help
Tl PvibiQvim S il viviooY o

e (& StrategySupporter_Fail

Eleviiv|elDrwrimet| B ~| 100% ~|mE
75'
=3
=
S1
G2 S2
Properties <> Interpreter 8l Problems & Error Log Console Validity\

1 error, 0 warnings, 0 others
Description
~ @ Errors (1 item)
a The 'StrategySupporter' constraint is violated on '<SafetyCase>::<BasicStrategy>"

<

Synchronized diagram

vk rces] 8 0 0

= 0
= Palette 4
"~ 3 N
-
=Tools @

“ Create basic goal

A Create
independence goal

“ Create basic
strategy

“ Create ASIL
decomposition

strategy
. -
rm... Model Validat = =

Figure 4. Violation of an OCL Constraint

5. Discussion

The provided list of constraint checks can most certainly be augmented with others. In what
follows, we give a list of ideas that have been brought forward but not yet formalized or
checked. We expect examples of many of these checks will be implemented as part of the
Semantic Checks technical reports.

5.1 Other Possible Safety Case Checks

Here, we consider other safety case checks.

1. ASIL decomposition complies with 1ISO 26262.
That is, the ASIL of a parent node cannot be higher than the sum of ASIL levels of its children
nodes.

2. “Invalid” and “Undetermined” states are inherited correctly.
That is, if a node is invalid or undetermined, its parent should be marked as such as well.

3. Inheritance of state validity that accounts for OR-decomposition.
That is, all the current checks assume AND decomposition. The aim is to repeat them for OR
decomposition.

4, A goal should be supported by evidence type appropriate for the corresponding ASIL.
That is, the attached evidence, i.e., test coverage criteria, verification claims, etc., is what is
required by the ASIL. The aim is not to check the evidence itself but just the metadata capturing
its type.

As well as various process-related checks, the details of which are TBD.

5.2 Categorizing Constraint Checks

We have detailed constraint checks on safety cases in Sec. 3 and have described a more
general application of constraint checking in Sec. 5.1. As part of the research, we intend to
define a constraint check taxonomy to help practioners and tool developers work with them in a
systematic manner. There are many potential categories of constraint checks that can be
included in a taxonomy and we discuss some here with examples from this document.

All the constraints in Sec. 3 are intra-model checks as they are checked on a single model (the
safety case). On the other hand, inter-model constraints are those which rely on the existence of
traceability mappings between models. For example, a check such as “Is there a fault tree
analysis (FTA) conducted for all hazards that are ASIL B and above?” While the constraint
checking tooling described in this technical report is limited to intra-model checks, options to
support inter-model constraint checking are under investigation.

Some constraints deal with the content of artifacts while others with the process to create them.
For example, the product constraints in Sec. 3.1, 3.2, and 3.3 are well-formedness checks to
ensure that a GSN safety case is meaningful. These are clearly syntactic checks. Semantic
product constraints can check a broader range of properties, e.g., the consistency between
artifacts (e.g., “Are all system functions comprehended in the Hazard Analysis?”). In contrast, a
check like “Is there a FTA conducted for all hazards that are ASIL B and above? “is a process
constraint that ensures that a particular artifact (in this case, FTA) is produced.

Other kinds of distinctions that are relevant to a taxonomy include: constraints to check
correctness vs. completeness, constraints that are necessary vs. sufficient conditions,
existential vs. universal constraints, etc. The criteria for including a category in the final
taxonomy will be based on how it is relevant to supporting the safety process.

Appendix

Al i)

T U0

OING STTomN
e pauy (lpouny EE :Sss.
10 6unse] 10 6ugss, _u ugsaL, EEE
oL, als Slug Ll
S01 SMaT uom
sy 1o Bunsanun gls uogeayats waydhaop uogeoyzhs o) :s QSEE o 5 QSEE
\N?_ﬁm:;_: K \\ \Kms_mz wry K o uomeuen, ‘R _cw%mwm b L o uonscsu o \W qc_um:e: - @sm:e: m

\ [2]

PamioT

a1k sumisfsans

‘swaisisans
1140 wawnbiy 1.5

glale sy gnea
sjapne loudo :, o 1 synsal Guise
fosinse: Ex_m cug i’ 158 qu no) warsfg
81563 pUE
- zis
AP0 JEp0IR0 o
spsie :.aa :mn_ym o ,wmn welshs syse wsihoop uoneaypds Bunss) =a_ﬁu;:m,n=w mz . sHn
offipne o bumsayfis Si:cg s ws_o?a& Is sésaw;wum fana) wisists o o Wit urpalyd [apoiyhLs

/ g/\g

/=

(=]

s s ensin|
PUe 28PN O

14 G 3P
B 3P LI

A G P
sausnbuips

uomealon
s

TS e
P 01 e urampey 1map|
e s 21 s e e

ORI
spurLILO) puas
) Wshs g

Aoy
S3I0M suogIUN)

A. Safety Case for Lane Management System

siapbu ubisap weisls
1o uomedsu gé

apuwano (eunyby
fono sBesann g5

" n soud vy
S D

.m.:iniuﬁam
pavmapun) 99

.onus_ vs_an
PRl (O

P v
Aygou o Bune

" susnasd sy
Riezey weishs 15

fsisheue dOzvA 1S

STy e U
s15pob faajes o) Jasn swoje
10335 1 1y shewme S ED

PSS
fa—
ST 34109

YAQWL pue Y14 g5

	1. Introduction
	2. Background
	2.1 Safety Case Metamodel
	2.2 Object Constraint Language (OCL)

	3. Syntactic Checks
	3.1 Supported-By Relations
	3.2 In-Context-Of Relations
	3.3 Overall Structure
	3.4 ASIL Decomposition
	3.5 State Validity

	4. Demo
	5. Discussion
	5.1 Other Possible Safety Case Checks
	5.2 Categorizing Constraint Checks

	Appendix
	A. Safety Case for Lane Management System

