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�Abstract









An investigation was undertaken of the field of Genetic Programming, an offshoot of Genetic Algorithms. The GP system was implemented in Emacs Lisp. Study was undertaken of three alternative methods of GP – the original method, the Stack system and the Pygmy Algorithm. The implementation of the Stack system was shown to suffer from premature convergence; that of the Pygmy Algorithm was shown under certain conditions to be superior to the original method.

A novel problem, that of generating mazes, was implemented and shown to be capable of solution by the GP system and by the Pygmy Algorithm.
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�Review



1.1 Introduction to Genetic Programming



1.1.1 Overview



The field of Genetic Programming (GP) is a relatively new one, devised in 1989 by John Koza of Stanford University,� NOTEREF _Ref365186296 �16� and is an offshoot of Genetic Algorithms� NOTEREF _Ref365186256 �12� (GA). “Genetic Algorithms” describes a paradigm for machine learning, in which a population of chromosomes representing potential solutions to the problem in hand, is made to undergo simulated evolution. This includes such genetic processes as reproduction according to an individual’s fitness, recombination by “mating” of different individuals, and random mutation of an individual. Over many iterations of the genetic process, known as generations, the chromosomes come to model better and better solutions to the problem, and may solve it entirely.

The traditional GA chromosome, consisting of a fixed-length bit or character string, is rather restricted in the range of problems it can represent. In recent years a number of extensions to this have been made to make GAs more flexible, such as allowing variable-length strings (“messy GA”)� NOTEREF _Ref365186757 �10�, use of GAs on production rule systems (Genetic Classifiers)� NOTEREF _Ref365186782 �35� and hierarchical allocation of credit� NOTEREF _Ref365186789 �36�. Nevertheless, none of the solutions listed above are truly general. For a general approach that may be used to solve any problem the ideal, maximally flexible representation of a problem would be as a computer program� NOTEREF _Ref365186824 �20�.

Thus was born the field of Genetic Programming. In Genetic Programming a computer learns to program itself, and rather than evolving a solution to a problem, it evolves a program which, when executed, solves that problem. Rather than linear chromosomes, the individuals being evolved take the form of program trees (parse trees).

The GP Paradigm is summarised  in � REF _Ref366491182 \* MERGEFORMAT �Figure 1�. In more detail:–



Generate an initial population of random programs. These are put together by randomly selecting functions and terminals (see 1.1.5) from the set of these for each problem. There are various methods of doing this, such as the “full” method, in which for program trees of a given maximum depth (from root to furthest leaf node) all branches of each trees reach down to that depth; or the “grow” method, in which each branch is of a random size

�

� EMBED Word.Picture.6  ���

Figure � SEQ Figure \* ARABIC �1�. Summary of the Genetic Programming Paradigm

�and shape (“bushiness”) up to the maximum depth. The method Koza has shown� NOTEREF _Ref365186855 �17� to be most efficacious is the “ramped half-and-half” method, in which the program trees are spaced out evenly over the maximum size range (eg from 2 to 6). For each of these depths, half the trees are generated by the “full” method, and half by the “grow method”. The population generated should be large enough to represent the entire space of possible functions and terminals. Koza recommends using the largest population size computational resources allow� NOTEREF _Ref365186855 �17�.

Since this initial generation of random individuals is in effect a blind random search, there is the possibility of duplicate individuals (clones) arising. These create the semblance of a smaller population size, and are computationally useless, so it is customary to prevent the formation of clones in the initial population.



 Once this initial population is formed, the remaining steps are performed iteratively until the termination criterion is reached. Possible termination criteria are that the best individual in the population has come within a threshold of approximation to the correct solution, or that it has achieved the maximum number of hits, or that the maximum number of generations have been run. Upon terminating the best individual in the population is returned as the outcome of the evolution.



 For each generation a new population of programs is generated by applying the genetic operators to the old one, and determining the new programs’ fitness. These genetic operators generally consist of reproduction, recombination and mutation.



1.1.2 Reproduction



 A single program is copied unaltered to the new population. A certain proportion of the population is selected according to fitness to be reproduced.



1.1.3 Recombination.



Two programs are “mated”, producing two new programs which are inserted into the new population. A certain proportion of the population is selected according to fitness to be recombined. Recombination takes the form of “crossover” between the two parents. The original GA form of crossover is highly similar to that observed between chromosomes of DNA in biology, in that the two chromosomes are aligned along their length, and at certain points, called chiasmata, the strands of genetic material are exchanged between the two individuals. In the case of GP due to the programs’ non-linear nature, such alignment and swapping over is not possible. Instead a subtree is randomly chosen from each parent, and the two trees are swapped, as illustrated in � REF _Ref366644955 \* MERGEFORMAT �Figure 4�.

Unlike in GA, where an element’s position in the individual is important, crossover need not in GP be between homologous positions in the two individuals, nor need the two subtrees swapped be the same length. They must, however, be such that crossover preserves syntactic correctness and semantic validity in the program� NOTEREF _Ref365186942 �14�. As described in section 1.1.6, this is taken care of automatically; see also 1.2.4.5 and 1.3.1.
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Figure � SEQ Figure \* ARABIC �2�. Crossover in Genetic Programming





1.1.4 Mutation.



 A single individual is chosen and a random subtree in it is replaced with a new, freshly generated subtree, then that individual is placed in the new population.

Whilst in biological systems and GAs mutation is a necessary and essential part of the evolutionary process, studies have shown it not to play an important role in GP. This is because of GP’s non-homologous crossovers:– since crossing two identical individuals does not result in the same two individuals again there is no lexical convergence of the population. Consequently explicit mutation is often left out of the genetic operations. Implicit mutation remains, since crossover at the level of terminals effectively amounts to point mutation.



1.1.5 Terminal set and function set



The elements from which a program is selected are its functions and its terminals. The terminals are the elementary steps of the program, corresponding to the leaf nodes on � REF _Ref366311420 \* MERGEFORMAT �Figure 2�; the functions accept as inputs the outputs of functions or terminals, and process these to produce an output, corresponding to the internal nodes on � REF _Ref366311420 \* MERGEFORMAT �Figure 2�.

These must be chosen to be sufficient to solve the problem – all the operations and data needed to solve the problem must be included. This choice will also determine the nature of the solution. For instance, for geometric problems the functions and terminals could be based either on Cartesian or polar geometry. Both are capable of solving the problem of determining the equation for a circle, but they will give answers of different appearance. 

When GP is being put to use to solve problems (as opposed to academic testing of its limitations) it is advisable to choose the most powerful and useful functions available for that problem domain� NOTEREF _Ref365186942 �14�.



1.1.6 Closure



Due to the unrestricted nature of crossover in GP, the arguments of all functions may comprise any other functions and any terminals. For this reason it is necessary that the functions’ behaviour is well defined for all possible arguments, a concept known as “closure”. For instance in arithmetic problems the division function ‘/’ is undefined when presented with a denominator of zero. This is unacceptable in GP, so an alternative arithmetic must be used, one in which 1 ( 0 is not undefined. The normal way to do this is by use of the “protected division function” ‘%’, which returns 1 when given a zero denominator.



1.1.7 Fitness



The most important part of the GP system is the fitness measure that is used to select individuals for reproduction. This implements the concept of “survival of the fittest”� NOTEREF _Ref365186922 �7� and ensures the population becomes gradually fitter over the course of many generations. It is derived by running the problem for a series of predetermined fitness cases, being a representative selection of points from the problem space (which for most problems of any substance is too large to be tested in its entirety), along with the correct solutions to those problems. (Obviously then the fitness cases will be chosen such that the correct solutions are known for them.) The program will return a value, and the discrepancy (for example, the difference, though other methods are possible) between this value and the correct one is used to construct the raw fitness of the program for that fitness case.

A key concept in GP is that of partial credit� NOTEREF _Ref365186942 �14�. Genetically evolved programs never hit upon a correct answer immediately; they approach it gradually as they evolve, so it is essential that a program is rewarded for how close its solution is to the correct one. The fitness values from each of the fitness cases are combined into an overall raw fitness, which is the basis of determining whether to keep the program or reject it, so it is essential that the fitness cases are indicative of the problems the program will be faced with, and also that they are broadly distributed across the problem space, so that the program does not evolve to cope only with a narrow range of problems.

It is customary then to convert raw fitness into standardised fitness, in which lower values are better. This is then often converted first into adjusted fitness, where

adjusted fitness =                        1            

                               1+ standardised fitness

�which has the advantage of exaggerating the importance of small differences in the value of standardised fitness as the latter approaches zero, and thus staving off the Law of Diminishing Returns. This is itself often converted into normalised fitness:

normalised fitness =     adjusted fitness   

                              ( adjusted fitnesses

�which has the advantage of summing to 1 across the population.

Once this fitness measure is thus constructed, it is used to select individuals. This is done in a probabilistic manner, such that even the least fit individual stands a small, but finite chance of making it through to the next generation. A common method of selection is called the roulette wheel strategy, in which an imaginary roulette wheel is divided into sections like a pie chart according to each individual’s fitness. Thus the better the fitness, the higher the chance an individual has of being selected. If the fitness measure used for this is normalised fitness, this is called “fitness-proportionate selection”.



1.1.8 Parameters



The Genetic Programming system is controlled by various parameters. By far the most important of these are the population size and the duration, in generations, of each run of the system.

Other parameters include:

The fraction of the population which undergoes crossover, normally 90%.

The proportion of this fraction which undergoes internal crossover (ie not at terminals), normally 90%. Without this restriction, crossover becomes dominated by point mutation.

The fraction of the population which undergoes fitness proportionate reproduction, normally 10%.

The fraction of the population which undergoes mutation, normally 0%.

The maximum depth of tree allowed for individuals in the initial random population, normally 6.

The maximum depth of tree allowed for individuals generated by crossover, normally 17.

Koza lists a variety of other minor parameters controlling the system� NOTEREF _Ref365186855 �17�, some of which shall be considered below.



1.1.9 Robustness



GP systems tend to be robust in terms of bugs. Because of closure, even if an error occurs evolved programs are able to continue execution. If there are errors in the fitness function, evolution will still continue, but down a different line, which may not become apparent unless the progress of the system is studied closely.

Genetically evolved programs also tend to be robust as regards operation out of range – their efficacy does not fall off sharply.



1.1.10 Uses of Genetic Programming



Like any new field, Genetic Programming will take a while to be established as a means of solving practical problems. At just seven years since its creation, Genetic Programming still tends to be applied to small problems for the purposes of investigative research; nonetheless uses are beginning to emerge.

One use is in decision tree induction for disambiguation of natural language� NOTEREF _Ref365192208 �30�; another is in programming of neural networks, for which two different approaches have been suggested� NOTEREF _Ref365192189 �11�,� NOTEREF _Ref365186296 �16�. A third use is in handwriting recognition� NOTEREF _Ref366385924 �2�.

�1.2 Genetic Programming in Action



1.2.1 Structure of Genetically Produced Programs



Solutions to problems evolved by Genetic Programming are frequently considerably different from solutions a human would have written, and they often tackle the problem in a radically different manner.

They are also generally longwinded. They show little parsimony and go through long and tedious routes to the solution. (For example, the crossover given in � REF _Ref366311420 \* MERGEFORMAT �Figure 2� gives a 13-point tree which can be simplified to the three-point tree encoding 2x.) Furthermore they often include lines of code that are not executable at all, or which contribute nothing to the final solution.

Whilst it is possible to penalise excessive length as part of the fitness measure, or to devise an editor that will go through the problem and strip out redundant code, this is advised against, as the full code can contain ‘useless’ genetic material which might become active and useful in future generations, due to crossover. Once the GP system has run to completion the excess code may then be stripped out for tidiness of presentation.

This is similar to the situation in biology, where the genetic material, the genotype, contains stretches of DNA, called introns, that do not help to make up the final protein produced (phenotype). The DNA is transcribed onto mRNA, which is used as a template to construct the protein, but before protein production starts, the introns are spliced out. Yet there too they may become phenotypically active in future generations by means of recombination.

Genetically evolved programs show great inventiveness in attempting to overcome obstacles to their evolution. For algebraic (symbolic regression) problems, non-inclusion of numbers into the terminal set might seem a heavy blow, yet the system is able to evolve numerical constants, for example using (x/x) or cos(-x x) for 1. Koza� NOTEREF _Ref365186855 �17� cites an instance where a program managed to evolve a solution involving (, which was not included in the terminal set, by creating the constant (/2 as:

2 – sin( sin( sin( sin( sin( sin( sin( sin(1)) * sin( sin(1))))))))

Another interesting feature of genetically evolved programs is that since they are rewarded for getting the solution right most of the time, solutions often evolve of the form:

	If X (which occurs 90% of the time) do A

	Else if Y (which occurs 90% of the remainder of the time) do B

		Else if Z...



Such a type of program is known as a default hierarchy, since the program evolves a default way of proceeding then evolves exceptions to that default.



1.2.2 Comparison to other AI methods



GP is a weak method, which is to say it is domain independent� NOTEREF _Ref365186824 �20� – it has no knowledge of the structure of the problems it is solving. Consequently it is unable to compete with strong methods within their domains, but unlike them it can cope with a wider range of problems.

The simplest form of solving a problem is a blind random search. This may be easily compared to GP since it corresponds exactly to the initial generation of random programs in GP. For a problem of any real complexity, blind random search is not able to find a solution, even when processing tens of millions of individuals. It has been shown with abundant evidence� NOTEREF _Ref365186855 �17� that the GP Paradigm is capable of solving such problems with 99% probability after processing a thousandth of that amount.

But is this due to the means of representation of the program in GP? Perhaps the representation of the problem space alters in such a way as to make it smaller. This has been investigated and found not to be the case – in fact, with the GP style of representation it is in fact more difficult to find the solution to a problem by blind random search. However when the GP system is run with Automatically Defined Functions (see 1.2.4.5) this effect is reversed� NOTEREF _Ref365257653 �18� – it is easier for randomly generated programs to discover the correct solution with ADFs than without them. This phenomenon Koza calls the “Lens Effect”.

In comparison with other AI methods, the striking feature about GP is that it violates the principles of AI� NOTEREF _Ref365186855 �17�, notably

Correctness – almost always the best solution evolved by GP is an approximation; GP rarely except for problems of a highly discrete nature reaches a solution that is 100% correct.

Consistency – run with different seeds for the randomiser, GP will evolve different solutions to a problem.

Justifiability – rather than producing a solution through a process of reasoning, GP merely takes advantage of whatever is fittest, and may approach a correct solution through a route of entirely incorrect programs.

Certainty – since GP is a highly probabilistic process, there is no guarantee any run will actually produce a solution; and

Parsimony. As described above the solutions evolved by GP tend to be very longwinded.

Nonetheless, GP still manages by and large to deliver an acceptable solution to the problem. (See also section 4.2.3.)



1.2.3 Power of GP to work independently.



As described in 1.1.8, traditional GP requires a large number of parameters. However, if these parameters are left undefined, the GP system can evolve its own optimal values for them� NOTEREF _Ref365257653 �18�. For example, if each initial random program is supplied with a random probability of crossover, after several generations the only programs left will be those with a useful crossover rate. Similarly the system is able to evolve its own choice of terminals – to distinguish useful ones from “noise” – and to evolve the primitives constituting the terminals themselves. If the functions are allowed to produce :UNDEFINED as an output and accept it as an input, such that closure is not implemented, the system can manage without. If run with ADFs (1.2.4.5), the system is able to determine the optimal number of ADFs, and the optimal number of arguments each one takes. More impressively, Koza has demonstrated that the GP system is able to do all these together. The only thing that the GP system is not able to evolve (other than population size, which beyond a certain threshold is not important; and the maximum number of generations) is the fitness measure. Even so, it is possible for some problems to make the fitness measure implicit rather than explicit (see 1.3.3).

1.2.4 Variation in approaches to GP



1. Granularity of evolutionary time. The basic GP system as described above is what is called Generational GP – an entire generation is updated at once. This does not reflect the situation in real life for most organisms, where individuals are all the time being born, reproducing and dying. This is modelled in Steady State GP, in which the genetic processes take place one individual at a time, rather than across the whole population. Koza, the father of GP, prefers generational GP; other researchers prefer steady state.



2. Means of selection. There are means of selecting an individual for reproduction other than by fitness-proportionate selection� NOTEREF _Ref365186855 �17�. The most popular alternative is called tournament selection. This involves selecting a number of individuals, the tournament size being a parameter of the system, and choosing the best of them. The advantage of this is that it prevents domination of the population at an early stage by a “superfit” individual (premature convergence and “survival of the mediocre”).



3. Elitism. The basic GP strategy is non-elitist, in that all individuals are allowed to breed and reproduce (as is the case with, for instance, humans). An alternative scenario is one in which only the fittest individuals in the population are allowed to breed (as is the case with many types of animals which live in herds).



4. Other Genetic Operators. A variety of additional genetic operations have been suggested, such as hoist, which takes a function point within a program and elevates its subtree to the status of a new individual, thus helping to discourage growth of overlong programs; and create, which creates a new individual as in the initial random population� NOTEREF _Ref365260618 �13�.



5. Automatically Defined Functions. A powerful extension to GP is the use of Automatically Defined Functions (ADFs), in which programs have multiple branches: one or more function defining branches and one result-producing branch. Crossover is only permitted within compatible branches; the nodes which connect the branches are called invariant points.

� EMBED Word.Picture.6  ���

Figure � SEQ Figure \* ARABIC �3�. Structure of an ADF. The dotted line separates�invariant points (above) from variant points (below).

The ADF forms part of the function set of the result-producing branch, accepting arguments like any function; within the ADF the terminal set consists of the arguments to the ADF, for example arg0, arg1 and arg2.

It has been shown� NOTEREF _Ref365277811 �18� that the power of ADFs increases even further if the ADFs are allowed to call each other; but a strict hierarchy is maintained to prevent the possibility of recursive calls, which would not necessarily ever “bottom out”.

Complex problems cannot be solved by GP without the use of ADFs; but for problems beneath a certain threshold of complexity ADFs do not help – the problem is too simple.

�1.3 Current Research in the Field



1.3.1 Strongly Typed GP� NOTEREF _Ref365263328 �23�



By using data typing, and forcing each function to specify the types of its inputs and outputs, the genetic operators (and initial program creators) can be made to ensure that all program trees created are syntactically and semantically valid, thus obviating the need for closure and functions such as “%”.



1.3.2 Context Preserving Crossover



It has been postulated� NOTEREF _Ref365264416 �31� that useful subtrees (building blocks) tend to spread through a tree to protect themselves against destruction by crossover. A similar phenomenon of genes protecting themselves is observed in Biology� NOTEREF _Ref365264427 �8�. D’haeseleer� NOTEREF _Ref365263367 �9� claims that for certain problems this is highly disadvantageous, and that one of the advantages of ADFs is that with their restrictions on crossover they prevent this happening. Consequently he has proposed a system of “context preserving crossover” to keep crossed subtrees in the lexical environment from which they originated.



1.3.3 Competitive GP and dynamic fitness functions



Rather than explicitly stating the fitness function, it is for some problems possible to play programs off against one another, such that their fitness is measured not absolutely, but relatively (eg games playing programs)� NOTEREF _Ref365186855 �17�. This is useful in situations where the problem has not already been solved.

It has been reported� NOTEREF _Ref365263367 �9� that in such situations complex patterns of behavioural interplay have arisen similar to those observed in the field of Artificial Life� NOTEREF _Ref365265491 �26�.

An alternative strategy is to modify the fitness function as the evolution proceeds. Koza has reported� NOTEREF _Ref365186855 �17� that GP systems are able to cope with a change of fitness function in the midst of an evolution; Andrews and Prager� NOTEREF _Ref366647742 �3� go on to suggest that for complex problems a fitness measure relating to a simpler sub-problem should be used at the start and be replaced with the full fitness function once the programs in the population have achieved a good fitness according to that initial standard.



1.3.4 Modules versus ADFs



An alternative to the use of ADFs is that of Module Acquisition� NOTEREF _Ref365273322 �5�, � NOTEREF _Ref365273324 �6�, reviewed in � NOTEREF _Ref365270989 �4�. Unlike with ADFs no modules are present in the initial population, and unlike ADFs they cannot evolve. They are produced by a new genetic operator, compress, which takes a random subtree and makes it into a module in a central library, accessible to all programs, removing the subtree from the original program. There are two ways to do this – either to make the sub-branches of that subtree beyond a given depth arguments, or to make all leaf nodes arguments.

�



�

Figure � SEQ Figure \* ARABIC �4�. The two methods of encapsulation.�Top: Depth compression – all subtrees of the program (left) beyond�a given depth become arguments to the module (right).�Bottom: Leaf compression – all terminals become arguments to the module.

There is a second new genetic operator, expand, which does the opposite.

Kim Kinnear compares ADFs to MA� NOTEREF _Ref365273537 �15�, concluding heavily in ADFs’ favour. Angeline� NOTEREF _Ref365270989 �4� responds by saying that MA, being more general, is therefore less powerful than a specific method such as using ADFs. However, I do not agree with Kinnear’s conclusions. He states that the comparison between the normal forms of the two methods is invalid, not being between two likes, and goes on to give a variety of ways in which the comparison could be made fairer. In each case, he either downgrades ADFs or upgrades MA and gives test results. Nonetheless, the paper in question does not give an example of MA with all these separate improvements tried in unison, and until that is done I would not be willing to definitively accept the inferiority of MA.



1.3.5 Demes



The basic GP paradigm is Panmictic in that all individuals are able to breed with all other individuals. However in nature many organisms breed within communities largely isolated from each other; this is what gives rise to speciation. This idea has been implemented in GP by the inclusion of Demes� NOTEREF _Ref365274518 �32�, which similarly limit breeding of individuals. This allows very large populations, otherwise difficult to handle, to be implemented on parallel machines, each population evolving on its own with a small amount of migration between the demes. Whilst completely isolated small populations are not genetically viable, the demes method has been shown to maintain genetic diversity.



1.3.6 State Memory



The basic GP model does not allow for any state memory within the virtual machine on which evolved programs run, save perhaps for a variable or two to specify the problem. Teller� NOTEREF _Ref365275798 �33� puts forward a method for including indexed memory within the system. This improves the problem-solving ability and makes the virtual machine Turing-complete. He shows that the use of indirection (eg read (read (x))) makes data structures simple enough to be evolvable.

He then goes further� NOTEREF _Ref365275898 �34� and claims that the addition of indexed memory and iteration upgrades evolved programs from functions to algorithms, which are immensely more powerful, but bring with them a series of new problems, such as the lack of certainty that the algorithm will ever stop executing (the Halting Problem), and the difficulty of predicting the effects on the phenotype (execution of the program) of the genetic operators, which operate on the genotype (program). He proposes methods to solve these difficulties; the “Popcorn method” and “Anytime procedure”  for the former, and a re-mapping of the algorithm space for the latter.

1.3.7 Use of Noise



One problem with GP is the possibility of evolving brittle solutions, ones which work very well for the fitness cases on which they are trained, but do not work with other input data. It has been shown� NOTEREF _Ref365276836 �27� that the use of noisy data discourages such easy-to-evolve solutions, but makes the fitness measure noisy (and thence stochastic), slowing the process of evolution.

�1.4 Areas covered in this study



1.4.1 Stack-based GP



A major difference between GAs and GP is that in the former the chromosomes are linear, as in Biology, whereas in GP they are tree-shaped. Perkis� NOTEREF _Ref365279051 �25� proposes an alternative Genetic Programming system, with linear chromosomes. In this system functions have no lexical arguments; they take their input from a numerical stack, and return values by pushing them onto the stack. Terminals are merely functions with output and no input. Calculations are performed in postfix (Reverse Polish) notation. In this system, closure is satisfied by ensuring that functions only execute if their arity is satisfied, ie if there are sufficient items on the stack for all the function’s arguments.

Perkis claims to have achieved results with this system greatly bettering Koza’s results for the same problems; in this study I shall attempt to replicate this.



1.4.2 The Pygmy Algorithm



A common problem in Genetic Systems is one of premature convergence, in which the population fails to solve the problem. Various ways have been suggested to overcome this; these include elitism (section 1.2.4.3), breeding for secondary characteristics, and disallowing clones. The problem with this last is that it requires a lot of computational resources. One way around this difficulty is to combine it with elitism. Ryan� NOTEREF _Ref365279557 �28� does this, incorporating also breeding for secondary characteristics, in his “Pygmy Algorithm”.

The Pygmy Algorithm implements the principle of disassortive mating, the breeding of phenotypically different parents. This is a common technique in artificial selection (eg plant breeding) – to obtain a tomato that is large and tasty you might breed a large but flavourless tomato with a small but tasty one. In successive generations you would choose the tastiest of the large tomatoes, and breed them repeatedly with the small tomato until you achieved one that is both large and tasty.

In the Pygmy Algorithm there are two breeding pools, the Pygmies and Civil Servants, each constituting 10% of the population. The Pygmies are short but not so efficient; the Civil Servants are efficient but bulky. Each of these two breeding pools is kept free of clones, the rest of the population is not.

Each new individual (Ryan uses Steady state GP) is tested for membership of the Civil Service on the grounds of its fitness; if it fails to gain entry it then has a chance at Pygmy status, tested on the grounds of its fitness and its length.

Fitness-proportionate reproduction is implicit, as the breeding pools are kept between generations; crossover always takes place between a Pygmy and a Civil Servant. This is what helps avoid premature convergence, as an individual’s two parents will always be different. The result is that the Civil Servants keep the Pygmies fit, whilst the Pygmies keep the Civil Servants short.

Ryan developed the Pygmy Algorithm for use in both GAs and GP, but in his paper only applied it to the simplest version of the GP paradigm.

In this study I shall attempt to construct a version of the Pygmy Algorithm.



�Design



2.1 Choice of system and language



Most work on Genetic Programming has taken place in Lisp. This is because the traditional GP Paradigm operates upon programs in the form of parse trees. The programs of most languages do not take this form, but all languages produce it as an intermediary stage in interpretation or compilation. In Lisp, however, the native code is a parse tree. Furthermore since in Lisp there is no distinction made between program and data, programs can easily be manipulated as the latter and run as the former. For this the EVAL function of Lisp is invaluable.

Almost all work on GP is done in Lisp or C. C is faster, and many of the features developed in Lisp are later rewritten in C. However, since it would require not only familiarising myself with the language and approach to GP, but also laboriously emulating the advantages of Lisp listed above, it was decided, given the scope and duration of the project, not to carry it out in C.

There are a wide variety of dialects of Lisp. Of these the most widespread is Common Lisp. Since Genetic Programming is computationally intensive work, it was desired that the language chosen for this project would operate on the Sun Sparc workstations available in this institution, but no version of Common Lisp is implemented on these machines. Consequently after having given the matter some thought it was resolved to carry out the project in Emacs Lisp. An advantage of Emacs Lisp is that it is closely related to Common Lisp; a disadvantage is that compilation is not possible in it. Instead code can be byte-compiled, producing object code that is not as fast as compiled code, but is machine-independent. Whilst this is so, it is to be remembered that even Common Lisp would produce code considerably slower than C. A GP system has been described in which the evolved programs are in machine code, but since the intention of this project is to investigate GP rather than to optimise it, Emacs Lisp seemed a suitable medium in which to carry it out.



�2.2 Overall Design of code



In his books John Koza provides the Common Lisp code for a complete GP system. Since the purpose of this project is not to reinvent the wheel, it was decided to use this code as the basis of the project. Consequently the first task to be carried out was the translation of this code from Common Lisp to Emacs Lisp.

Koza has organised this code into two parts; a kernel providing the routines common to all problems, and a series of problem-specific files providing the detailed specification of each problem. The system is executed by calling the kernel function run-genetic-programming-system with as arguments the name of the problem function (which provides the names of the other problem-specific functions), the number of generations, the size of the population and the seed for the randomiser. (This last is necessary for reproducibility of the experiments.)

Since the code as provided by Koza forms a functional GP system, it has been used as the basis for all GP systems implemented in this study. Extra problem-specific files were created according to the model described above; and for the various different GP models, Koza’s kernel was used as a basis for making new kernels, changing only those parts which needed altering.

In addition to the above, a user front-end was designed for the purposes of demonstration.

As described in section 1.2.1, GP tends to produce large, verbose solutions which may be shortened by means of an editor for presentation. Since the purpose of such an editor is primarily an æsthethic one, an editor has not been included in this study.

�2.3 Design of new code



2.3.1 The Pygmy Algorithm



In Ryan’s description of the Pygmy Algorithm, the fitness of a Pygmy, henceforth referred to as an individual’s Pygmy fitness, is calculated direct from that individual’s raw fitness as

reward + ((maxsize – size) * sf)

�where sf, the scaling factor, was 20% of the total fitness.

My initial implementation of the Pygmy Algorithm, hereafter referred to as the In-kernel Pygmy Algorithm, calculated Pygmy fitness instead from standardised fitness:

0.8 * standardised fitness  +  0.2 * size

This way the Pygmy Algorithm could use the same problem-specific files as Koza’s system; relieving the necessity of making new versions of all the problem-specific files. Later I returned and implemented the Pygmy Algorithm as described by Ryan. This was not done for all problems due to the difficulty of rendering every problems’ raw fitness into the form of a reward. For the Symbolic Regression problem fitness was measured in terms of a discrepancy of unlimited size; how might this be converted into a reward? One possibility was to invert it, taking the reciprocal of  the discrepancy, but this would have the effect of changing a linear fitness measure into a hyperbolic one, with concomitant effects upon the evolution of the programs, rendering any comparison invalid. Consequently it was decided to limit the use of this version of the Pygmy Algorithm to problems that could readily be codified to express fitness as a reward.

In the Pygmy Algorithm, every individual rejected by the Civil Service has a chance of becoming a Pygmy instead, but when a new Civil Servant is accepted, an old one at the bottom of the breeding pool must be lost to keep the Civil Service of a constant size. This is equivalent to that individual being rejected by the Civil Service, yet it is not offered a application for Pygmy status. Being at the bottom of the Civil Service, it would not enhance the Pygmies greatly by its presence, and is likely to be an old individual, not representing the latest state of the population; yet over the course of a run a large number of these ‘lost’ Civil Servants would amass, which taken together might have a sufficient effect in raising the fitness of the Pygmies to bring the problem to an earlier solution. This hypothesis was tested by recoding the Pygmy Algorithm to allow Civil Servants the chance to go into ‘semi-retirement’.

The intention of this part of the study was to apply the Pygmy Algorithm to Koza’s basic GP system, to the system with ADFs, and also to the Stack GP system.



2.3.2 The Maze Problem



As part of this study into GP, it was resolved to solve an original problem. 

A challenge was undertaken to use the GP system to evolve a maze generator. The generator would take the form of an automaton navigating around the interior of a maze consisting of a rectilinear grid of locations, laying down walls (though not itself constrained by them).

Koza has shown� NOTEREF _Ref365186855 �17� that for difficult problems, the more powerful the functions and terminals available to the system, the higher the likelihood of the system being able to solve the problem. Consequently, since the difficulty of the problem was not known, the terminals and functions for the maze problem were designed to be as powerful as possible. If the problem proved to be trivial with these operations they could be replaced with more elementary operations, to give a more demanding challenge to the GP system.

The system specification was as follows:–



1. Terminal Set.

Four movement operations:

turn-left

turn-right

U-turn

move



Whilst only two of these were necessary – a turn and move – all were included to save the system from the necessity of having to evolve, for instance,

turn-left turn-left turn-left

every time the automaton needed to turn right. Or, to put it another way, any mazes evolved with only the turn-left rotator would end up having a decidedly anticlockwise bent to them.

move returns the number of moves made since the last change of direction, to give the program control over the length of structures it is building.

Three wall-making operations:

make-wall-left

make-wall-right

make-wall-ahead



Again, only one of these was needed; but it was felt that mazes with corridors would be unlikely to arise if the system needed to execute

turn-left make-wall turn-right turn-right make-wall turn-left move



rather than

make-wall-left make-wall-right move



for each location of the corridor.

Since the point of a maze-generator is to be able to generate a different maze every time it is run, it would need run-time access to random numbers, rather than having random constants embedded in it by means of (, the Ephemeral Random Constant (which is replaced at the time of program creation by a new random number every time it is encountered). Consequently the terminal set was designed to include:

runtime-rnd-constant



which delivers a random number (up to the larger of the two dimensions of the maze). 

The remaining terminals consisted of

size-of-maze and

( (range -5.0 to 5.0)



2. Function Set.



After considerable experimentation, the function set settled on for the rest of the runs consisted of the following:

Sequence:

This was provided by three progns, accepting 2, 3 and 4 arguments respectively (though again only one was strictly necessary).

Selection:

The original selection scheme consisted of one conditional,

	if* <test-argument> <action-argument>

and a variety of tests it could be given in the form of both functions and predicate terminals. For the same reason given in selecting the terminals above, a second series of experiments was performed with the ‘if-’ tacked onto the front of the tests, giving selection operators of the form if-test <test-substrate(s)> <action-argument>.

Five maze navigation predicates:

if-top

if-right

if-left

if-bottom

if-wall



The last of these tested whether the automaton was currently facing either a wall or the boundary of the maze; the others operated irrespective of direction.

One arithmetical test:

if<

Five Boolean tests:

if-AND2

if-AND3

if-OR2

if-OR3

if-NOT



Iteration:

Two alternatives presented themselves – either treating the entire maze program as one cycle of an iteration, returning a predicate for continuation; or including an iterative operator. Since the program in the former case would be less stand-alone it was decided to utilise the latter. This was provided by Koza’s operator du, (do-until), modified a little. This would execute its second argument, until either:

– Its first argument was true, or

– It had exceeded a maximum number of repetitions, or

– The total number of iterations in the program so far had exceeded a maximum value.

Commands

Interesting mazes generally contain a number of domains within the maze. In order to help this phenomenon evolve, the operator jump was provided. This had the effect of moving the automaton to the coordinates of its arguments, modulo the size of the maze. These coordinates were made absolute rather than relative to prevent the automaton wedging itself into corners.



3. The Fitness Function.

Consideration of what constituted a good maze revealed the following criteria:

Completeness – there are no parts of it that are not filled with walls and corridors.

Traversability – there are no parts that are inaccessible to someone traversing the maze.

Interestingness – the maze has a reasonable degree of complexity.

A fitness function was designed to take these points into account. This took the form of a pseudo-automaton (see 3.3.3 for details) traversing the maze. Completeness was measured as the number of ‘holes’ (corners of cells with no walls radiating out in any direction), subtracted from the total and expressed as a fraction; traversability was measured as the fraction of the maze which the traversal automaton was able to reach. In measuring complexity it was reasoned that the chief dangers would be mazes which whilst complete and traversable, tended to lean towards one of the two below scenarios.

�        	�

Figure � SEQ Figure \* ARABIC �5�. Hand-constructed mazes showing either extreme of traversal reencounters.

Consequently complexity was measured by counting the number of occasions the traversal automaton reencountered cells it had already visited, and assessing fitness by the closeness of this figure to that determined empirically to give good mazes.

These three criteria were then combined thusly:–

	completeness-fraction	* completeness +

	traversability-fraction	* completeness * traversability +

	complexity-fraction	* completeness * traversability * complexity

The idea behind this was that it would encourage the maze generators to first concentrate on evolving programs that would fill in the whole maze; then once this had happened they would switch to making mazes that were (complete and) traversable, then once this problem had been solved, they would make mazes that were also ‘interesting’. This thus represents a development of the idea outlined in 1.3.3.

Whilst this seemed satisfactory, the warning� NOTEREF _Ref365378123 �14� was borne in mind that no matter how carefully crafted, the fitness function would be likely to contain loopholes through which the evolving programs would with great ingenuity worm themselves.



4. The Fitness Cases.

It was desired that the evolved programs should be able to create mazes of different sizes. (If this were not so, the problem would be more suitable for GAs than GP.) Consequently the fitness cases consisted of different sized templates for mazes; to discourage the evolution of brittle programs.



�2.4 Tableaux



The tableaux below describe the problems tackled by the GP system, following the format used by Koza and others. ‘M’ denotes the size of the population; ‘G’ the number of generations.



Objective:�To find a function of one independent variable and one dependent variable, in symbolic form, that fits a given sample of data points.��Terminal Set:�X, (� range -5.0 to 5.0.

For the maze data problem, also y.

For the stack system, just (, X being pushed onto the stack at the start..��Function Set:�+, -, *, %��Fitness Cases:�(i) For the target function y = ½ x2, a sample of 10 data pairs (x,y) with x even spaced over the interval 0 to 1.

(ii) For the maze data problem, a sample of data points evenly distributed over the range (4, 4) to (15, 15) .��Raw Fitness:�Sum over the fitness cases of the absolute difference between  the value returned by the program (or left on top of the stack) and the target value from the fitness case.��Standardised fitness:�Same as raw fitness.��Hits:�Number of fitness cases for which the value returned comes within 0.01 of the target value.��Wrapper:�None.��Parameters:�(i)  M=200, G=31 (21 for stack system).

(ii) M=200, G=41.��Success Predicate:�A program scores 10 hits.��Table � SEQ Table \* ARABIC �1�. Tableau for symbolic regression problem



Objective:�To find a program capable of discovering a given function in Boolean algebra.

N-Majority-On – returns true if the majority of N inputs are true.

Even-N-Parity  – returns true if an even number of N inputs are true.��Terminal Set:�Sufficient variables to represent the input (d0, d1, d2 etc)��Function Set:�N-Majority-On: and/2, and/3, or, not.

Even-N-Parity: and, or, nand, nor.��Fitness Cases:�All possible combinations of the inputs, and the correct outputs for those inputs.��Raw Fitness:�Number of mismatches between the value returned (top of stack value) and the correct value for each of the fitness cases.��Standardised fitness:�Same as raw fitness.��Hits:�Number of matches between the value returned (top of stack value) and the correct value for each of the fitness cases.��Wrapper:�None.��Parameters:�Problem               M   G

3-Majority-On    100  21

Even-3-Parity     700  21

Even-4-Parity   1000  51

Even-5-Parity   4000  51��Success Predicate:�A program scores hits for all the fitness cases.��Table � SEQ Table \* ARABIC �2�. Tableau for the Boolean problems.



Objective:�To discover a control problem for a squad car moving in a discrete  (quantised) grid which catches an evader in minimal time.��Terminal Set:�goN, goE, goS, goW.��Function Set:�ifX, ifY (each with if-less-than, if-equal and if-greater arguments).��Fitness Cases:�Integral initial evader positions between (-5, -5) and (5, 5).��Raw Fitness:�Time taken to catch Evader. Fitness function includes a timeout.��Standardised fitness:�Same as raw fitness.��Hits:�Number of fitness cases on which the Evader is caught.��Wrapper:�None.��Parameters:�M = 100; G = 21.��Success Predicate:�A program catches all Evaders.���Table � SEQ Table \* ARABIC �3�. Tableau for the Discrete Non-Hamstrung Squad Car problem.





Objective:�To evolve a maze generator.��Terminal Set:�turn-left, turn-right, U-turn, move

make-wall-left, make-wall-right, make-wall-ahead

size-of-maze, ( range -5 to 5;

runtime-rnd-constant range 0 up to the larger dimension of the maze.��Function Set:�progns with 2, 3 and 4 arguments;

du;

jump;

if-AND2, if-AND3, if-OR2, if-OR3, if-NOT;

if-top, if-right, if-left, if-bottom, if-wall, if<.��Fitness Cases:�N fitness cases (where for all experiments N=2), specifying x and y dimensions of the maze. One fitness case is randomly generated with x and y between 7 and 17, the rest are prespecified; in this case (10,10).��Raw Fitness:�See text.��Standardised fitness:�100 – raw fitness.��Hits:�Irrelevant.��Wrapper:�Traverses a maze and derives the raw fitness.��Parameters:�M = either 700 or 1500; G = 31 (but rarely reached).��Success Predicate:�External to the system; runs are terminated by all generations being completed.��Table � SEQ Table \* ARABIC �4�. Tableau for the Maze problem.



�Implementation





3.1 GP Kernel



The implementation may be summarised as follows:– 



� EMBED Word.Picture.6  ���

Figure � SEQ Figure \* ARABIC �6�. Summary of GP implementation.



3.1.1 Koza’s Basic GP System



Top Level

Variable, constant and structure declarations.



run-genetic-programming-system

Takes as arguments the problem function, number of generations, size of population and the global randomiser seed.

Gets  and executes the problem-specific functions from the problem-specific file.

Sets up, defines and initialises population (Pygmy Algorithm: and breeding pools), terminal and function sets, parameters and fitness cases.

Calls execute-generations.

Finally prints out a report.



create-population

Picks individuals from the seeded individuals until these are exhausted, then creates new programs according to the chosen means (full, grow, or ramped-half-and-half), by calling create-individual-program.

Each new program is checked (except in the Pygmy Algorithm) for uniqueness by means of a hash table (for speed).



create-individual-program and create-arguments-for-function

In the case of the Stack GP system, uses a simple loop to build a list of random elements; otherwise recursively builds up the program according to the chosen means.



execute-generations (not for Stack GP)

Executes generations iteratively until the termination predicate is true:–

Breeds the new population (except generation 0).

Measures the fitness of each individual.

Sorts the population by fitness (except in the Pygmy Algorithm where instead the breeding pools are updated).

Keeps track of best-of-run individual.

Print out the results for this generation (average standardised fitness and hits; and best standardised fitness, hits and program.)



breed-new-population (not for the Pygmy Algorithm or Stack GP)

Builds up the new population by looping through all individuals and executing the various genetic operations for the appropriate fractions of the population.



find-individual-using-tournament-selection (not for Stack GP)

Picks k individuals from the population at random and returns the best one. For the original version, k=2; for the version with ADFs k is a parameter of the system.



find-fitness-proportionate-individual (not for Stack GP)

Counts along through the (sorted) population adding up the fitnesses until it’s reached an individual in the specified population whose normalised fitness is greater than the specified value and returns it.



crossover routines (crossover-at-any-points and crossover-at-function-points) (not for Stack GP)

Picks points in the respective trees on which to perform the crossover, making sure if ADFs are used that the points are chosen in compatible branches of the program.

Copies the trees. (Reselection is allowed in the original population, so not copying would cause the individuals in the old population to be modified.)

Gets the pointers to the roots of the subtrees to be crossed.

Modifies the new individuals by smashing in the (copied) subtree from the old individual.

Makes sure that the new individuals aren’t too big.



mutate (not present in Pygmy Algorithm; this version not for Stack GP)

Inserts at the mutation point a new subtree as per creation of original individuals.



The Park-Miller Congruential Randomiser:

It is impossible for deterministic computers to generate truly random numbers. Lisp comes with a built-in pseudo-random number generator, but the randomness of its numbers, as measured by their entropy, depends on the application for which it is used. Koza claims that the entropy of the native randomiser is not high enough for the purpose of GP, so he provides a different randomiser as a replacement.



3.1.2 New Functions for the Pygmy Algorithm:



These routines comprise original code.



breed-new-population

Discards old population and builds up new one by repeatedly choosing a pygmy and a civil servant and crossing them to produce two offspring. Since the breeding pools are kept between generations this amounts to implicit reproduction of the fitter individuals, though not in a probabilistic (roulette-wheel) manner. There is no mutation.



update-breeding-pool

Loops through the new population and attempts to insert each individual into the Civil Service, or if that fails, the Pygmies, by:–

First comparing to the least-fit member of the breeding pool according to the relevant fitness criterion (standardised fitness or pygmy fitness).

If the new individual is more fit than that breeder, checks it is not a clone of a member of the breeding pool, using a hash table to do so.

Inserts new individual into breeding pool, keeping it in order of fitness, and boots out last member of breeding pool to maintain breeding pool’s size. Updates hash-table.





3.1.3 New Functions for the Stack GP system:



These routines comprise original code modelled upon Koza’s originals.



execute-generations

This is done using Steady State GP (1.2.4.1). At the end of each generation-equivalent, the generation’s results are printed out and the termination predicate is checked.

Selection for reproduction is done by tournament (1.2.4.2) with a tournament size of 3. For each individual in turn:–

Three individuals are selected and sorted into order of fitness.

The least fit of these is replaced with the offspring of the better two.

With the chosen probability this individual is mutated.

The fitness of the new individual is evaluated.



crossover

Replaces a segment of (a copy of) one parent’s chromosome with a segment, of independent size, of the other’s, and makes sure the new chromosome is not too big.



mutate

According to the chosen probabilities; either

Replaces a random element in the individual with a different random element (point mutation); or:

Inverts a piece of the chromosome (inversion mutation).



The kernel file also defines the stack manipulation operations spush, spop.

�3.2 Problem-Specific Files



The top level of these files defines terminals and functions, and anything else specific to the problem not mentioned below.

If ADFs are used, the mechanism for storing them is implemented here.

The central function to these files, which is passed as an argument to the kernel, is a function with the same name as the problem, returning the names of the following functions:

define-terminal-set-for-<PROBLEM-NAME>, which lists the terminals.

define-function-set-for-<PROBLEM-NAME>, which lists the functions and their arities.

For the Stack system these two functions are one as there is no distinction between terminals and functions.

If ADFs used, different versions of each are needed for each of the three branches of the program – adf0, adf1 and the result-producing branch rpb0.

define-fitness-cases-for-<PROBLEM-NAME>, which returns as an array the fitness cases, each comprising a ‘structure’ of the independent variable(s) and the target result.

<PROBLEM-NAME>-wrapper, which, given the result from the program, post-processes it. For many problems this function does nothing. In the Stack system, this function takes no argument; it produces the result from program by popping the first (or more if appropriate) value from the stack.

define-parameters-for-<PROBLEM-NAME>, which assigns values to the GP parameters.

define-termination-criterion-for-<PROBLEM-NAME>

evaluate-standardised-fitness-for-<PROBLEM-NAME>

This does the following:–

Sets raw-fitness and hits to zero, then for each fitness case:

Sets the independent variable(s). If ADFs are used, sets up the ADFs. For the Stack system, ensures the stack is empty. For some problems pushes independent variable(s) onto the stack instead of placing them into the terminal set.

Executes the problem.

Converts result into a raw fitness (see 1.1.7).

If the result falls within a certain threshold, scores it as a hit.

Converts combined raw fitnesses to standardised fitness.

Returns standardised fitness and hits.

Once imported into the kernel, these functions are given different names, as given in � REF _Ref366659040 \* MERGEFORMAT �Figure 6�.

�3.3 The Maze Problem:



3.3.1 Layout of the program and maze:-



True and False are represented by 1 and -1 respectively, for the sake of closure.

“Left” and “down” are represented as pseudo-enumeration values evaluating to 0 and 1 respectively.

The maze is represented by a 2D array, each element being an array of two pseudo-Boolean values showing the presence or absence of a wall respectively left of and down from the cell.

The borders are extrinsic to the maze. For a maze of size (xx,yy) the top-left element is (0,0) and the bottom-right ((xx - 1),  (yy - 1)).

The “inner” cap on du’s iterations (q.v.) was chosen to be the number of cells in the maze; and the “outer” to be twenty times the number of cells in the maze.



3.3.2 Genetic Programming Primitives.



Terminal set – see 2.3.2.1.

Function set – see 2.3.2.2.

Fitness cases – see 2.3.2.4.

Termination criteria – see Table 3.

evaluate-standardised-fitness-for-MAZE: In addition to the functions outlined in 3.2, this creates an empty maze for each fitness case, places the maze-generating automaton in it at a random location, facing left, and sets the various counters to zero before executing a program.

Wrapper – this function is handed the result from the program, which, being completely irrelevant, is discarded. As a “side-effect” the program has created a maze, which is converted into raw fitness (on a scale from 0 (poor) to 100 (good)) by calling by calling traverse-maze.



3.3.3 The fitness function.



traverse-maze



Traverses a maze, evaluating its fitness:–

Creates a 2D array of the same size of the maze, to mark which locations have been traversed.

Creates a stack, containing initially a list of a random location and 'left.

Resets the various counters to zero.

Loops until stack empty:

Pops a value off stack and dismembers it into a location and a direction.

If that location has not already been traversed, traverses it (see below) else increments reencounters.

If the fraction of the maze covered is less than 50%, the traversal algorithm may have been started off in a small enclosed cell, so tries again up to 4 more times, and returns the best result.

Calculates fitness (see 2.3.2.3).

The “complexity” aspect of the fitness is derived from reencounters by dividing it into its maximum value, then processing that to bias the fitness with respect to an optimal complexity.

�

Figure � SEQ Figure \* ARABIC �7�. Complexity biasing function.

Both of these two functions,  the maximum number of reencounters for a given maze size and the biasing function, are stored in look-up tables for speed. The first of these was derived by feeding empirically observed data into the symbolic regression Genetic Programming system. Whilst the equation could probably be simplified (see 1.2.1), this is not necessary since this subroutine is only evaluated once (see also 2.2). 

The biasing function is a derivative of the normal distribution, such that programs are rewarded for partial success.



traverse-cell



For each direction (except the one from which the traversal automaton has come), if that direction is clear, the function does the following:

If the next cell in that direction is already on the stack (ie is awaiting traversal), it increments reencounters.

Otherwise it pushes the location and its direction onto the stack.

Tags the current location as traversed and increments traversed-counter.

If the current location forms a ‘hole’ (see 2.3.2.3), it increments illegalities.



�Results

4.1 Implementation



4.1.1 Basic GP System



Koza’s code was converted to Emacs Lisp with fairly minimal change since the two dialects of Lisp are not dissimilar. However, there were certain changes in the underlying virtual machine, such as where Common Lisp and Emacs Lisp keywords had different meanings, or where structures were stored differently, that had to be checked carefully to ensure the same effect was produced.

Some particular examples of this include:

Koza’s included the instruction

(coerce (- (random-floating-point-number 10.0) 5.0) 'single-float)

 Use of single-precision floating point numbers increased speed of evaluation, and there was no need for double-precision here. However, Emacs Lisp does not support this type, and it was judged to be beyond the scope of this project to implement a single-precision floating point type in Emacs Lisp.

The underlying randomiser used double-precision arithmetic. It was tested by setting the seed to 1.0 and calling the randomiser 10 000 times. As predicted, the final result was 1043618065.0; this shows the randomiser survived the translation to Emacs Lisp without alteration, an important point given that the production of random numbers lies at the heart of selecting individuals. (Koza had not used the aboriginal randomiser, claiming that its degree of randomness was biased depending on the application for which it was used).

Koza provides an efficient routine for sorting the population, but Emacs Lisp cannot tolerate this as it recurses too deeply. Emacs Lisp prefers iteration to recursion, so the native sort function was used instead.

Koza’s original code uses the difficult-to-understand do loop to cater for implementations of Common Lisp that do not include the more flexible loop macro. Rather than rewrite what was known to work, these have been left as such, but the loop macro has been used in new code. It would appear Koza has done the same, since the version of his code with ADFs uses the loop macro for new routines.



4.1.2 Stack GP



The Stack GP system was implemented by rewriting such routines of the basic system as were necessary, following as precisely as possible the specifications given by Perkis� NOTEREF _Ref365279051 �25�. Perkis lists the results he has achieved, which in many cases better those of Koza; but I was unable to replicate these in my implementation. The system showed premature convergence – that is, evolution proceeded extremely quickly but ceased after just a few generations. On occasion (two runs out of eleven) this sufficed to solve the problem, but given that the simple test problems being used could occasionally be solved by blind random search, it was considered unlikely that more complex problems would be amenable to solution by this method.

Kinnear has warned� NOTEREF _Ref365378123 �14� that in setting up any GP system a lot of “parameter twiddling” is necessary to get the system to converge upon an answer to the problem, so each of the parameters of the system other than those Perkis had stated (for which his values were retained) was altered to attempt to improve the results.

One possible location of the dysfunction was in the selection routine. Preventing reselection of individuals for mating was investigated, but this failed to solve the problem.

Since the problem remained insoluble within the bounds of Perkis’ parameters, experimentation was undertaken a little outside these bounds. An inversion mutation operator was introduced and the frequency of mutation increased, to slow convergence of the population, but this resulted in the population not converging at all. Another experiment was undertaken with the three individuals selected not being ranked by fitness all of the time, but this did not work either.

These various methods were tried in combination with each other and with different values for the various parameters, and an optimal configuration appeared for the system, in which premature convergence was counterbalanced with mutation to give the best results. Unfortunately these results were still not good enough to solve the problem. Having thus tried all apparent alternatives, it was resolved to discontinue work on this system.



4.1.3 The Pygmy Algorithm



The Pygmy Algorithm was implemented in two forms as described in 2.3.1; each of these was subsequently extended to include ADFs. Also the “Pygmy Algorithm with Semi-Retiring Civil-Servants” was implemented. Due to the problems with Stack GP, the Pygmy Algorithm was not implemented for that system.

�4.2 Genetic Programming Results



4.2.1 Results



The results are presented below in the form of tables. Each table shows the average results for each problem as attempted by a variety of GP environments. “Koza” means the basic GP system as devised by John Koza; “In-kernel Pygmy” and “Ryan’s Pygmy” refer to the Pygmy Algorithm with the two different implementations of “pygmy fitness” as described in 2.3.1. “Success rate” refers to the fraction of runs that evolved a program satisfying the termination criteria (ie that solved the problem) within the generations available; “average generation of success” takes into account those runs which have failed to find a solution, counting them as having run for the maximum number of generations.

Most of the runs were done using as random number seeds the series 0.1, 0.2... 1.0; and also 0.01, 0.04... 1.0*, though the use of individual test runs, and runs which for any reason failed to reach completion means that the sample size is not uniform. Since the larger the sample size, the higher its results’ statistical significance, any extra runs were included rather than being left out to give the samples a uniform size.

The problems detailed below are all standard problems used in evaluating GP systems.



Problem�Generations�Size of Population��Symbolic Regrn�31�200��Kernel�ADFs�Success rate�Average generation

of success�Size of sample��Koza�N�64%�17.2�42��Koza�Y�5%�29.8�42��In-kernel Pygmy�N�71%�18.7�42��In-kernel Pygmy�Y�9%�28.6�42��

This problem illustrates the concept of a complexity threshold for use of ADFs – the problem is so simple that GP with ADFs cannot solve this problem. As an extension to the GP system, the Pygmy Algorithm fares greatly better than the addition of ADFs, but is not able to better the solution much. Use of the two in conjunction gives results little better than for ADFs alone.

See 2.3.1 for the reason why Ryan’s Pygmy Algorithm was not tried on this problem.



Problem�Generations�Size of Population��Squad Car�21�100��Kernel�ADFs�Success rate�Average generation

of success�Size of sample��Koza�N�93%�8.2�42��In-kernel Pygmy�N�98%�6.3�42��Ryan’s Pygmy�N�100%�4.9�16��Ryan’s Pygmy w/ Semi-Retirement�N�100%�4.4�32��

This problem being even simpler than the last, ADFs were not even attempted on it. The Pygmy Algorithm outdoes Koza’s kernel here. The use of semi-retiring Civil Servants makes little difference.



Problem�Generations�Size of Population��Boolean

3-Majority-On�21�100��Kernel�ADFs�Success rate�Average generation

of success�Size of sample��Koza�N�91%�8.9�43��In-kernel Pygmy�N�57%�13.8�42��Ryan’s Pygmy�N�50%�15.0�42��Ryan’s Pygmy w/ Semi-Retirement�N�33%�16.3�42��

For this problem, use of the Pygmy Algorithm does not help. Why might this be so? It is not because the problem is too simple for the use of the Pygmy Algorithm, as it is less simple than the Squad Car problem.

The answer possibly lies in the complexity not of the problem but of the solution. The Pygmies here might be too short to be of help in solving the problem, and thus would be a hindrance to the Civil Servants. The Squad Car problem does not suffer from this phenomenon because though the problem is simple, the solutions are frequently large.

A point of evidence supporting this is that the use of semi-retiring Civil Servants, intended to bolster the Pygmies, here has a detrimental effect – the only example where this kernel is significantly different from the basic (Ryan’s) Pygmy Algorithm.

In this experiment the In-Kernel Pygmy Algorithm performs better than Ryan’s Pygmy Algorithm.



Problem�Generations�Size of Population��Boolean Even-3-Parity�21�700��Kernel�ADFs�Success rate�Average generation

of success�Size of sample��Koza�N�24%�19.7�33��Koza�Y�88%�9.8�33��In-kernel Pygmy�N�77%�11.1�43��In-kernel Pygmy�Y�68%�10.0�41��Ryan’s Pygmy�N�79%�12.4�42��Ryan’s Pygmy�Y�79%�9.1�33��Ryan’s Pygmy w/ Semi-Retirement�N�81%�11.5�42��

This problem is more difficult than the last, and the basic system has little success in solving it. Use of ADFs or the Pygmy Algorithm greatly improves solving the problem. These two methods are roughly on par with each other (ADFs are slightly better). There is little difference between the three versions of the Pygmy Algorithm; and using the two methods together has no significant effect.



Problem�Generations�Size of Population��Boolean Even-4-Parity�31�1000��Kernel�ADFs�Success rate�Average generation

of success�Size of sample��Koza�N�0%�–�21��Koza�Y�60%�21.5�45��In-kernel Pygmy�N�0%�–�42��In-kernel Pygmy�Y�17%�27.5�42��Ryan’s Pygmy�N�6%�30.9�33��Ryan’s Pygmy�Y�61%�16.5�39��Ryan’s Pygmy w/ Semi-Retirement�N�6%�30.2�33��

This problem is harder still. The poor results deriving from my “guesstimate” of a suitable population size indicate that the population size should have been increased to obtain a better chance of success. However, given that the system is able to solve the next problem, which is even harder, and that upping the population size to 4000 would slow down the run to the extent of ruling out large number of runs, it was decided not to do this. Whilst use of a larger population would enable the problem to be solved with greater success, the point of this experiment was to compare the various techniques, and all that was needed for that was consistency.

Here the original kernel is not able to solve the problem at all; neither can the In-kernel Pygmy Algorithm. Ryan’s Pygmy Algorithm can, just; allowing semi-retirement makes no difference. In this case ADFs form a much better addition to the system than the Pygmy Algorithm, but the best results are obtained by using both together.



Problem�Generations�Size of Population��Boolean Even-5-Parity�51�4000��Kernel�ADFs�Success rate�Average generation

of success�Size of sample��Koza�Y�90%�19.8�10��In-kernel Pygmy�Y�45%�34.6�31��Ryan’s Pygmy�N�0%�–�28��Ryan’s Pygmy�Y�60%�26.2�35��

Since the basic GP system was not able to solve the Even-4-Parity problem, it was not tried for the Even-5-Parity problem. Here the Pygmy Algorithm cannot solve the problem on its own; and even with ADFs it cannot match the performance of ADFs alone.

4.2.3 Discussion



An important point when considering the results above is the sample sizes. Koza warns against generalising from a single run, and advocates the use of multiple runs to avoid premature convergence� NOTEREF _Ref365186855 �17�. But even with multiple runs the use of small sample sizes can deprive the results of any statistical significance. Kinnear� NOTEREF _Ref365378123 �14� says that a sample size of ten may be misleading and recommends using twenty.

There are also other caveats attached to interpretation of the results. Fitness functions that have a high granularity (only a few values) may not provide sufficient information for the evolutionary processes to operate efficiently� NOTEREF _Ref365378123 �14�; any results obtained will therefore have a high signal-to-noise ratio. It is my feeling that the Boolean-3 problems here – the 3-Majority-On and Even-3-Parity problems – might fall into this category.

Moreover, when as here doing academic research on simple problems for the purposes of comparing various methods, as opposed to putting GP to use on real problems, it is inevitable that the problems involved will have to be so simple (for the requirement of being run many times on different systems) that they will be untypically easy of problems the system has to solve, and may yield anomalous and misleading results� NOTEREF _Ref365710736 �22�. For example, one of the advantages of genetic methods is that they do not become trapped on local minima in the problem space; but Boolean problems, which are frequently used as test problems, have no non-global minima.

Consequently, whilst the results given are by no means invalid, emphasis should not be placed on small differences between individual results.

It was decided when comparing methods and results to do so by means of generations and individuals, not by wall-clock time. The latter, though a more intuitive measure, suffers from various problems:– The system runs at different rates on different machines, it varies depending on the number of processes running on a single machine, and it varies depending on the amount of garbage-collecting the system does. In general, the longer a run proceeds the more it garbage-collects, so the more dilated wall-clock time becomes. Lastly but not leastly, given that many of the problems run here are Boolean ones, it is worth remembering Lisp’s method of evaluating Boolean expressions – for an AND it will only evaluate arguments until it reaches one that evaluates to nil, whereupon it will return nil without evaluating further arguments; and similarly for or. Thus, for instance, (and nil t) will take less wall-clock time to evaluate than (and t nil).

The conclusions derivable from the results are:–

It is already known that ADFs have a complexity threshold beneath which they are less efficient than the basic GP system. This study has shown that a similar threshold exists for the Pygmy Algorithm, at the level of extremely simple problems. It was also shown that the Pygmy Algorithm has an upper threshold too.

At complexities where use of either the Pygmy Algorithm or ADFs does not help to solve the problem, use of the two methods together is similar to the worse of the two, but at a point a little above where the two complexity curves cross, here corresponding to the Even-4-Parity problem, the two methods act in synergy, giving better results when used in conjunction than either of them separately.

This pattern of behaviour appears to be shifted towards easier problems for the In-Kernel Pygmy Algorithm than for Ryan’s Pygmy Algorithm, such that it outcompetes Ryan’s version for extremely simple problems. For problems of intermediate complexity the two perform similarly, and for complex problems the In-Kernel Pygmy Algorithm is the first of the two to fall by the wayside.

Since the only problems for which the In-Kernel Pygmy Algorithm outperforms Ryan’s Pygmy Algorithm are those for which the basic GP system outcompetes both, there is therefore no situation for which use of the In-Kernel Pygmy Algorithm is logically justifiable.

With one exception, the reason for which is explained above, allowing Civil Servants semi-retirement makes no significant difference to the Pygmy Algorithm’s performance.

�4.3 The Maze Problem



4.3.1 The Basic System



As stated above� NOTEREF _Ref365378123 �14�, any  attempt at setting up a GP system will require lots of “parameter twiddling” to get to work to satisfaction, and this maze problem was no exception. During the course of the experimentation the terminal and function sets, fitness function, size of the population and GP environment were adjusted numerous times.

For instance, the early runs had a set of predicates and an if** operator to go with them; but experimentation revealed that the system was unable to realise (by means of evolution) that the predicates were intended to go after the conditional; so they were taken out of the function and terminal sets, and replaced with the combined conditionals detailed in 2.3.2.2.

Another example was the use of du. By removing the “cap” on the number of iterations and running the system, it was possible to gain an idea of how many iterations a successful and efficient program needed (there were, of course, also inefficient programs which would undergo tens of thousands of iterations).

Due to the extremely long run-time of this problem, all the experiments given below were terminated manually once it was seen that either good mazes had arisen, or that evolution had slowed to a near standstill.

Early results were poor (see � REF _Ref366946054 \* MERGEFORMAT �Figure 8�):–

The program generating the maze on the left has not figured out how to use iteration properly – all its loops execute only once – and that generating the one on the right, though it knows about iteration, does not use recursion to good effect. This maze was generated by:–

	(du (cNOT (du (jump (c< (make-wall-right) (left-p))

				  (du (U-turn) (turn-right)))

			  (progn

				(right-p)

				(du (runtime-rnd-integer) -1))))

	    (du (progn (move) (move) (top-p) (make-wall-left))

		  (make-wall-right))))

Like all programs produced by GP, this one is filled with introns, parts of the program that contribute nothing to the phenotype. For example the highlighted line merely causes the program to pause for an indeterminate period of time, then return a value which is not used.



�         	 �

Figure � SEQ Figure \* ARABIC �8�. Typical mazes generated before combination of the conditional and predicates.

The above results suggested to me that the basic GP system might be insufficiently powerful to solve the maze problem. Consequently ADFs were introduced to the maze problem; the fitness function was also modified.

The following was obtained on generation 3 of a run with a 4000-strong population:–

�

Figure � SEQ Figure \* ARABIC �9�

This is a much better maze as regards completeness, but lacks greatly in traversability.

Eventually the twiddling paid off. � REF _Ref365779000 \* MERGEFORMAT �Figure 10� was produced on generation 7 of a run with a population of 300. This represented experimentation with smaller sizes of population. It was found that large and small populations evolved at the same rate, as measured in wall-clock time – similar-looking mazes were produced after the same time interval in runs of 300- and 4000-strong populations; but after different numbers of generations – 10 for the small population and 4 for the large one. The advantage of using small populations is that end-of-generation reports come more frequently, so it can be determined earlier if the run is a failure; the disadvantage is that evolution plateaus off after a certain, not easily predictable, time. Continuing the evolution that produced the below maze further failed to better the maze much, so in future runs a population of 4000 was used. Eventually a compromise was reached, and most of the remaining runs used a population of 700.



�

(progn

 (defun ADF0 (arg0 arg1 arg2)

	 (if-OR3 arg0 arg2 arg2 arg2))

 (defun ADF1 (arg0 arg1 arg2)

	 (du (turn-right)

	     (if-AND3 arg0

			 (turn-right)

			 (turn-left)

			 (make-wall-ahead))))

 (progn

  (du (ADF1 (du (if-top (make-wall-right))

		    (jump

			 (runtime-rnd-integer)

			 (ADF1 size-of-maze

				 (make-wall-right)

				 (turn-left))))

		 size-of-maze

		 (make-wall-ahead))

	 (jump (runtime-rnd-integer)

		  (ADF1 size-if-maze

			  (make-wall-right)

			  (turn-left))))

  (make-wall-ahead))))





Figure � SEQ Figure \* ARABIC �10�



A point of note in this program is that ADF0 is not used at all! (See below for discussion of the ADFs further.) Also note that this program uses (runtime-rnd-integer) for the purpose of jumping to random new locations.

This program was evolved to generate 10 x 10 mazes but also had a second, varying, fitness case. Experimentation was therefore done generating mazes of a variety of shapes and sizes, and it was found that performance dropped off sharply for these out-of-range tests. 10 x 10 consistently gaves mazes like the one above, but most tests of sizes gave largely empty mazes. 15 x 15 produced a maze with five three-deep horizontal bars of structure, like the 10 x 10 maze depicted, with the extra vertical space taken up by empty rows between the bars. Most higher sizes produced more disjointed mazes, with short, separate walls – in effect an exploded view of the maze above. 18 x 18 produced three bars of structure; 17 x 17 produced a single bar so dense that all its walls were filled in, forming cells (like in � REF _Ref366946263 \* MERGEFORMAT �Figure 9�).

(progn

 (defun ADF0 (arg0 arg1 arg2)

     (if-wall arg0))

 (defun ADF1 (arg0 arg1 arg2)

     (if-AND3 (jump (runtime-rnd-integer)

			  (runtime-rnd-integer))

		  (ADF0 1 5 (make-wall-left))

		  (if-AND3 (turn-left)

			     (U-turn)

			     (move)

			     (turn-right))

		  (if-wall size-of-maze))

	(if-OR3 (if-top (turn-left))

		  (if-bottom

				(make-wall-right))

		  (if< -6

			 (jump -2

			      (make-wall-ahead))

			 (progn

			  (move)

			  (make-wall-right)))

		  (ADF1 (turn-left)

			  (make-wall-ahead)

			  -2))))

� REF _Ref365779715 \* MERGEFORMAT �Figure 11� was produced on Generation 4 of a 4000-individual run.

�



Figure � SEQ Figure \* ARABIC �11�

This program is not as brittle as the previous one, though it is evolved for the same maze sizes. It makes use of both ADF0 and ADF1, though not hierarchically. It always constructs the same number of wall elements, such that for larger mazes the walls are more spaced apart, and may form an ‘exploded view’, and for smaller mazes the walls are denser and form more closed cells. Unlike the previous program this one uses (runtime-rnd-integer) for both arguments to jump, resulting in its walls being distributed throughout the available space, not just in predetermined discrete regions.

It is informative to examine the evolution of the mazes, and the run that produced this program provides a good example. The best-of-generation individual for Generation 1 was:–

(progn

 (defun ADF0 (arg0 arg1 arg2)

     (if-bottom (if-OR2 (if-top arg1)

				(if-AND2

				  arg0 arg2 arg1)

				(progn arg2

					 arg0

					 arg0))))

 (defun ADF1 (arg0 arg1 arg2)

     (if-right (if-NOT (if-< (move)

					arg2

				     (turn-right))

			     (if-left arg1))))

 (du (ADF0 (if-NOT (turn-left)

			 (make-wall-left))

	     (if-AND3 (make-wall-left)

			  (move)

			  (runtime-rnd-integer)

			  (turn-left))

		(runtime-rnd-integer))

     (if-NOT (if< (turn-left)

			(move)

		      (move))

		 (if-OR2 (make-wall-ahead)

			   (make-wall-right)

			   (turn-left))))))

�
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This casts light upon the way these programs work. Subroutines such as corridor-making ADFs have not evolved – giving additional evidence that GPs derive solutions to problems by completely different routes to humans (section 1.2.1). Instead an individual has first evolved which has learned to construct a simple repeating domain, in this case due to its du loop – ADF1 is ignored and ADF0 used only as a PROGN.

This domain takes the form of a cross, and is repeated to form a double row moving down and to the left. When this row encounters the boundary of the maze, its behaviour is modified, becoming less obviously regular or repetitive, and gives the impression of a random maze.

In subsequent generations, this motif of small domains remains, but the domains interact with themselves and, like the domain interacting here with the wall, their separate identity is blurred and lost to the untrained eye. (See also � REF _Ref365782547 \* MERGEFORMAT �Figure 16� and the discussion accompanying it.)

This evolutionary emergence of complexity (and subdivision of tasks) out of simple repeating domains is highly reminiscent of the biological evolution of proteins� NOTEREF _Ref366413313 �1�.

As a consequence of this emergent non-linearity, there is no need for the programs to use runtime-rnd-integer as was envisaged for choosing non-determinately between different courses of action. See (1.2.1 and 2.3.2.1.)





A subsequent run (population 700) produced � REF _Ref366413493 \* MERGEFORMAT �Figure 13� on Generation 8 (program simplified by hand):–

�

(progn

 (defun ADF0 (arg0 arg1 arg2)

  (if-wall

   (if-AND2

    (if-bottom arg0)

    (if-AND3 (if-wall (if-top arg1)

	      (if-wall (if-OR2 arg2 arg1 arg1))

	      (if-OR2 arg0

		      (if-right arg1)

		      (if-top arg2))

	      (if-wall arg1))

    (if-NOT arg0 arg2))))

 (defun ADF1 (arg0 arg1 arg2)

  (if-OR2 (if-right (if-NOT (turn-left) arg2))

	  (if-NOT (if-left (turn-right))

		  (ADF0	 (turn-right)

			 (make-wall-right)

			 (U-turn)))

	  (if< (if-AND2 (make-wall-right)

			 arg1

			 (make-wall-right))

		(if-AND2 (move) arg0 arg1)

		(if-wall (turn-left)))))

 (du (if< (if-AND3 7

		   (runtime-rnd-integer)

		   (U-turn)

		   (runtime-rnd-integer))

	   (jump (runtime-rnd-integer)

		 (runtime-rnd-integer))

	   (turn-right)))

     (ADF1 (if-AND2 (turn-right)

		     (turn-left)

		     (runtime-rnd-integer)

	    (progn (turn-right) (make-wall-ahead))

	    (if-AND3 (runtime-rnd-integer)

		      (runtime-rnd-integer)

		      (U-turn)

		      (make-wall-ahead)))))



Figure � SEQ Figure \* ARABIC �13�



Note that though this program does use its ADFs hierarchically, no advantage is gained by doing so since each is called only once.

This program was tested at different maze sizes and, responding well, it was decided to see how well it performed very far out of range. � REF _Ref365785178 \* MERGEFORMAT �Figure 14� shows a 32 x 32 maze* generated by the same program. As can be seen this individual is not brittle at all, and performs well even this far out of range. The only degradation is one of complexity (it is relatively easier to navigate from one end of the 32 x 32 maze to the other than it is with the 10 x 10 maze); the reason for this is that the size of the domains making up the maze remains the same as it was for the 10 x 10 maze. The reason for this in turn is because this is not determined by the terminal size-of-maze, nor even by a constant which could be manually changed, but is ‘hard-wired’ deep in the structure of the program. And the reason for this is because of the low number of fitness cases – whilst this program performs well out of range, it still shows that it was evolved for generating a 10 x 10 maze. This could probably be alleviated by increasing the number of fitness cases.

�

Figure � SEQ Figure \* ARABIC �14�

Now that mazes were being evolved of reasonable quality, it was determined to leave runs going for longer, to explore the limit of the programs’ evolution. GP evolution proceeds monotonically, such that after a while the Law of Diminishing Returns sets in. Consequently all the above runs had been terminated once improvement began to fall off.

� REF _Ref366946399 \* MERGEFORMAT �Figure 15� shows such a maze produced by running the system for longer.

This type of maze was produced consistently. The explanation for it is that, as predicted (2.3.2.3),  the GP system was ruthlessly exploiting unforeseen loopholes in the fitness function. On a 31-generation run (with a population of 700), the best-of-generation individual was produced on generation 29 with a standardised fitness of 1.2 (down from 100), but on all runs once the fitness dropped beneath 11 (as happened here on generation 13), ‘jailbar’ mazes were produced instead. It would appear that beneath this fitness, ‘jailbar’ mazes are fitter than ‘labyrinthine’ mazes.

�
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After some thought had been given to this problem, it was decided that the best way to solve it would be by means of a modification to the fitness function. This was done by the addition of two new counters to the traversal algorithm, counting the number of horizontal and vertical wall segments respectively. The original fitness function was then multiplied by the lower of these divided into the higher. That way a maze with a perfectly balanced ratio would still have the same fitness as before, but a ‘jailbar’ maze would have a standardised fitness of 100.

It was anticipated that this would solve this problem, but also that at some point further into the evolution a new loophole would be discovered which would get around this solution.

The new fitness function was implemented and tested, and indeed no ‘jailbar’ maze generators were produced. However the system seemed unable to produce mazes appreciably better than the ones already considered (corresponding to a fitness of about 16 on the new scale).

The reason for this emerged when looking closely at the programs thus evolved and the mazes they generated. The fitness of one particular program was measured (as evolved) as 16. The program was then run for each of the randomiser seeds in tenths from 0.1 to 1.0, and the fitnesses observed. Most lay in between 20 and 26, but there were also fitnesses right up to 46. A selection of mazes generated by this technique are depicted in � REF _Ref365782547 \* MERGEFORMAT �Figure 16�. (These mazes were generated by a different program, but they illustrate the same point.)
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(As an aside, this sequence beautifully illustrates the emergence of complex non-repeating mazes from simple, repeating domains as described above – but within the activities of a single program!)

This answers the question of why the mazes were unable to evolve any further. Though appearing to have a fitness of 16 or so, it was impossible for the evolved mazes to score any better, since any program that scored well on one execution might well score poorly on the next execution, and thus not be selected for reproduction or crossover.

This is, then, essentially a problem of the granularity of the fitness function (section 4.2.3), but whereas what was described there was a fitness function with a discrete limit of resolution, here the limit of resolution is fuzzy and probabilistic (shown by the fact that whilst most of the executions of this program had a fitness of between 20 and 26, there were values further afield, and outliers at 16 and 46). At the resolution of the fitness function the evolved mazes have an effective standardised fitness of zero.

This problem could probably be solved – or at least, the resolution made more fine – by increasing the number of fitness cases, introducing more fitness cases of either the same or different maze sizes. However, this phenomenon is not without good consequences as it does indicate a big success in the aim of producing different mazes from the same program!

It will be observed that not all maze generators suffer from this problem, though presumably those that do have a fitness advantage and come to dominate the population towards the end of the run. Some programs (such as that discussed above producing � REF _Ref365779000 \* MERGEFORMAT �Figure 10�) produce mazes with similar fitnesses each time. This suggests that though the mazes produced by all the different programs above may look similar, the underlying programs are evolutionarily different kinds of maze-generators – they are, in biological terms, analogous (similar at the phenotype level) rather than homologous (similar at the genotype level). This is suggestive of the observation that species in the same niche tend to evolve into a similar physical shape regardless of their degree of evolutionary kinship, examples including the shark and the dolphin, or the cat and the marsupial cat.



4.3.2 Use of ADFs



In introducing ADFs into a Genetic Programming system it is normal for the ADF’s terminal set to comprise of its arguments. In this case, it was felt that it was necessary for the entire terminal set to be available to the ADFs for them to be useful as subroutines in maze construction. The complete terminal set was therefore made available to ADF1, and a subset of it to ADF0. In addition the ADFs were allowed to retain their normal terminal sets.

ADFs were introduced to this problem as it appeared that the GP system was unable to solve the problem without their help. However, a universal feature of the programs above is that the ADFs are not called multiple times in the code, and thus do not exploit the repetitive nature of the problem, that being the reason they were included. All multiple execution of subroutines is done instead by means of du.

This transpired to be the case, as it was later found that the system was capable of solving the maze problem without ADFs; the initial difficulties being caused not by the lack of ADFs but by other features which were since remedied.

One point which was not immediately obvious concerned the nature of the ADFs in this problem. In other problems, terminals are of a simple nature that can be correctly emulated when used as arguments to an ADF. Upon calling the ADF, each argument is evaluated once, at the start of the ADF’s execution. Ordinarily this simply evaluates to a number, which is sufficient for use within the ADF. In this instance, however, the main purpose of the terminals is their effect upon the automaton, which they achieve by means of side-effects executed when the terminal is evaluated; what is left after evaluation is merely the number. Thus when we see, for instance,

	(defun ADF0 (arg0 arg1 arg2) (if-wall arg0))

	...

	(ADF0 (move) (turn-left) (make-wall-ahead))

�the net effect is not, as might be thought, to execute

	(if-wall (move))

�but to execute

	(progn (move)

		 (turn-left)

		 (make-wall-ahead)

		 (if-wall <value of move-counter>))



As a result of this the only real role the arguments to the ADFs play after their initial evaluation is to affect functions with behaviour dependent on numbers (conditionals, du and jump), both within and outside the ADF. Consequently the sole remaining advantage of the ADFs is their ease of multiple usage – which is not taken advantage of.

If it was desired to rewrite the system such that the ADFs were not subject to this limitation, it would have to be done by replacing all the terminals with macros. However, since the system is able to solve the problem without taking recourse to this, it was decided not to undertake this step.



4.3.3 The Pygmy Algorithm



Investigation was carried out to determine whether the Pygmy Algorithm was capable of solving the maze problem.

It is, I think, worth considering briefly the maze generator given in � REF _Ref365811145 \* MERGEFORMAT �Figure 17�, produced before the Pygmy Algorithm was fully debugged. Whilst the maze is perhaps not quite as complete as some of the examples considered in 4.3.1, the program is worthy of note on account of its small size, most unusual in programs evolved by genetic systems. Furthermore, if the introns in the program are stripped out by hand, the program simplifies to just:–

	(du

	 (progn

	   (make-wall-left)

	   (jump (progn (turn-right) (runtime-rnd-integer))

	   (if-OR2	(runtime-rnd-integer) (U-turn)

			(turn-right)))

 	 (turn-right)



�

(du

  (progn

    (make-wall-left)

    (jump (progn

		(progn

		  (progn

		     (turn-right)

		     (runtime-rnd-integer))

		  (runtime-rnd-integer))

		(runtime-rnd-integer))

    (if-OR2	(runtime-rnd-integer)

		(U-turn)

		(turn-right)))

  (if-AND2 2

	    (progn -2 (turn-right)) 

	    (runtime-rnd-integer)))















Figure � SEQ Figure \* ARABIC �17�



In subsequent experiments it was found that Ryan’s implementation of the Pygmy Algorithm was able to solve the maze problem without undue difficulty. However, the In-kernel Pygmy Algorithm was unable to do this. After a few generations all the pygmies became length six, fitness 100, at which point they became a hindrance rather than a help to the Civil Servants. The very best program evolved by this system is that used to generate the mazes in � REF _Ref365782547 \* MERGEFORMAT �Figure 16�; the program itself is:–

	(progn

	  (defun ADF0 (arg0 arg1 arg2)

		(if-NOT arg0 (if-bottom (if-top arg2))))

	  (defun ADF1 (arg0 arg1 arg2)

		(if< 	arg0

			(if-right (if-bottom arg0))

			(if-top (if-bottom (U-turn)))))

	  (du (ADF0 (if-AND2 (runtime-rnd-integer) (move) (turn-right))

			(ADF1 (move) (runtime-rnd-integer) size-of-maze)

			(move))

		(ADF1	(if-AND2 (turn-right) (turn-right) (turn-left))

			(make-wall-left)

			(if-OR3 (turn-left) (make-wall-right) size-of-maze

				  (turn-left)))))











�Conclusions



5.1 Summary



The Genetic Programming Paradigm was successfully implemented into Emacs Lisp and demonstrated with a number of problems.

The Stack GP system was implemented, but failed to show successful evolution.

The Pygmy Algorithm was implemented in three different forms; it was shown that Ryan’s implementation of it was superior to my own for more complex problems, and that allowing Civil Servants the chance of semi-retirement as Pygmies had no effect. It was also shown that the Pygmy Algorithm worked best between certain limits of complexity of the problem; and that at the optimum of this range it was superior to the original kernel and worked in synergy with the use of ADFs.

The Maze problem was implemented and successfully solved. It was shown that the Pygmy Algorithm also possessed sufficient power to solve this problem, but that my interpretation of it did not.



5.2 Limitations of the work



The major limitation of the work was the language in which it was carried out. Emacs Lisp cannot be compiled completely, and takes a very long time to run problems. Moreover, as time passes it begins to spend more and more time garbage-collecting. On machines without large memories it can eventually spend more time doing this than processing.



�5.3 Future Work



There is large scope in this field for future work; some of the possibilities available are suggested below.

5.3.1 GP Kernel



For the reasons outlined in section 2.1, any future work on GP would probably be done in C; so the first stage would be to convert the GP system into C.

A possibility for a future study would be a comparison of the techniques of ADFs and Module Acquisition, as detailed in section 1.3.4.



5.3.2 Stack System



Further future work could also include refining the stack GP system to duplicate the results Perkis has given. Once this is done, the Pygmy Algorithm could then be applied to the Stack system and the performances of the original kernel, the Pygmy Algorithm, the Stack system and both in combination could be compared.

Another possibility is to implement ADFs for the Stack system, and compare these to the performance of the original kernel with and without ADFs, and with and without the Pygmy Algorithm.



5.3.3 The Pygmy Algorithm



The Pygmy Algorithm investigates the practice of outbreeding. In a subsequent paper� NOTEREF _Ref365865045 �29�, Ryan measures the performance of GAs on a scale of “Racial Preference” between inbreeding (normal) and outbreeding (the Pygmy Algorithm). His findings are that the optimum level is impossible to predict in advance, but that it always lies somewhere between these two extremes. He goes on to apply meta-GA to each individual’s own Racial Preference Factor in order for the system to find its own optimum.

Applying this work to the field of Genetic Programming was considered to be beyond the scope of this project; it would, however, make an interesting subject for future study.



5.3.4 The Maze Problem



Possible future extensions to the work on the maze problem could include the following:–

Seeing whether the system is able to solve the problem with more elementary terminals and functions (section 2.3.2.0).

Increasing the number of fitness cases (section 4.3.1). If the system were re-implemented into C (section 5.3.1) then the extra runtime would not be a problem since the system would be running much faster anyway.

Tinkering with the complexity-biasing function (section 3.3.3). The shape of this function was based on manual observation of the number of reencounters of a few mazes, and may not be optimal. Other values could be investigated, and perhaps a meta-GA could be used for the system to discover its own optimum.

It was observed that the completeness and traversal parts of the fitness function were derived by dividing linear terms into square ones. Whilst not mathematically sound, this appeared to work for the data given, but is likely to prejudice evolution, making small mazes easier to evolve than large mazes. If future work were to include evolution of larger mazes, the effect of this phenomenon could be measured, or the fitness function could be altered to avoid it.





�Glossary





Automatically Defined Function (ADF). A subroutine of an evolved program. The overall structure of an ADF is specified by the system, but within those bounds the ADF evolves along with the rest of the program. The ADF is placed in the terminal set of the result-producing branch (q.v.); the ADF’s own terminal set consists of its arguments.

Chromosome. The structure in which an individual program is encoded. The term is taken from biology, in which the ‘programs’ (genes) are encoded in a linear double-helix of deoxyribonucleic acid (DNA). In Stack GP the chromosome consists of a linear sequence of program elements; in conventional GP it consists of a parse tree with functions at each node and terminals at each leaf.

Clone. A term describing two or more genetically identical individuals.

Closure. The practice of ensuring that all values returned by all functions and terminals are valid inputs for all other functions and terminals; and that no function may return an undefined value.

Elitism. The restriction of the ability to reproduce to the most fit individuals in the population.

Fitness. The degree of success of a program at solving the problem for which it has evolved; this is used in determining whether the program survives in the long run by the process of selection.

Fitness Proportionate Selection. A method of selecting individuals for reproduction according to their adjusted fitness in a probabilistic manner. See further section 1.1.7.

Genetic Algorithm. An AI technique for solving problems, in which genetic operators are applied to a population of potential solutions to the problem, normally consisting of linear bit strings.

Genetic Programming. A modification of GAs, in which the evolved population consists of computer programs which, once run, produce a solution to the problem.

Genotype. The actual code of a program, upon which the genetic operators act. Cf. phenotype.

Intron. A part of a program that is not evaluated or contributes nothing to the final result.

Module (Acquisition). An alternative to ADFs for the genetic production of subroutines. See section 1.3.4 for a description.

Phenotype. The result derived by evaluating a program, as distinct from its genotype (q.v.).

Pygmy Algorithm. A form of GP comprising an elitist strategy with two breeding pools, the Pygmies and Civil Servants. See  section 1.4.2 for a description.

Result Producing Branch (rpb). The main branch of a program with ADFs (q.v.), which calls the ADFs and delivers the final result.

Stack GP. An alternative model for GP, in which programs consist of linear sequences of program elements, which execute by means of adding and removing values from a numerical first-in-last-out stack. See section 1.4.1 for a full description.

Tournament Selection. An alternative to fitness proportionate selection for selecting individuals for reproduction, in which a given number of individuals are randomly selected from the population and compete against each other in terms of fitness, the fittest one (or more) being chosen. See further section 1.2.4.2.





�References

� The Ephemeral Random Constant.

� Note that this is different to Koza’s specification of this problem so the two cannot be compared. He uses generational timeout as the termination criterion; for reasons of time I have changed this.

* Due to the limitations of floating-point arithmetic the two series’ values only coincide at 0.1. For example, the constant 0.3 evaluates to 0.29999999999999999; but the loop generating the first series delivers 0.30000000000000004. Both output this number as 0.300000, though.

* The native if macro could not of course be used as it would not recognise 1 and -1 as True and False.

* The largest that could be fitted onto the screen.
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