Bibliography

Works consulted but not referenced above include:–

Reynolds, C.W. (1994) “Competition, Coevolution and the Game of Tag”, in Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems, ed. Brooks, R.A. and Maes, P.; MIT Press.

Rosca, J.P. (1995) “An Analysis of Hierarchical Genetic Programming”, University of Rochester Technical report 566, available at ftp://ftp.cs.rochester.edu/ pub/u/rosca/gp/95.tr566.ps.gz.

Rosca, J.P. (1996) “Generality Versus Size in Genetic Programming”, in Proceedings of the Genetic Programming 1996 Conference, eds. Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L.; MIT Press.

Rosca, J.P. and Ballard, D.H. (1994) “Hierarchical Self-Organisation in Genetic Programming”, in Proceedings of the Eleventh International Conference on Machine Learning; Morgan Kaufmann.

Rosca, J.P. and Ballard, D.H. (1996) “Evolution-based Discovery of Hierarchical Behaviours”, in Proceedings of the Thirteenth National Conference on Artificial Intelligence; AAAI Press / MIT Press.

�Appendices

A.1 User Instructions

Since this project is primarily one of academic investigation, little emphasis has been placed on a user front-end; and since GP itself is still a matter of research rather than being used for solving real problems, it is anticipated that all serious users of this system will be conversant in Emacs Lisp and probably also the mechanisms of this system.
A user interface has been constructed for the purposes of demonstration, but since this project is not a graphical one, efforts have not been made to make it foolproof to invalid input. If the master program aborts with an error as a result of this, it may be run again with the command:
	META-x runner

The Genetic Programming system is located in the directory ~grantms/genetic on Helios; the relevant files will have been made group-readable for this purpose. To run the demonstration, enter the desktop environment of your choice (use either csx or openwin to do so) and type:
	demo

The system will initialise itself, and after a few seconds the title screen will appear. Upon pressing a key, the window will present a choice of GP kernels. Make your selection using the cursor up and down arrow keys, then press return. You will now be invited to choose the problem to be solved, by the same means.
The following screen will ask you to choose the number of generations, the size of the population, and the random number seed. Sensible values for the first two of these are indicated in the tableaux in section 2.4 and the results tables in section 4.2.1. For the last of these, entering a value between 0 and 1 will set that as the randomiser seed; a larger value will initiate a sequence of thirty-three runs using the seeds from 0.01 to 1.0 in steps of 0.03. If this is chosen you will then be asked for a filename for the results to be spooled into. This file will be located in the directory ~grantms/genetic/examples.
When the GP system runs, you will see a frame with three windows, as shown below:

�

The top one of these windows shows the parameters for this run of the GP system; the middle one shows during the run the latest best-of-generation individual and its various statistics, and at the end of the run the best-of-run individual, its statistics and the generation on which it was found. The bottom window show an audit trail of all the best-of-generation individuals so far.
A deficiency of Emacs is that it does not keep the screen refreshed whilst it is busy. I have programmed this system to refresh the screen every generation, but sometimes Emacs ignores this, and if you change desktops, for example, you will have to wait to the next generation to see what is going on.
A way around this, and also a useful way of examining the detailed state of the system during the middle of a run and of changing the parameters, if necessary, is to use the debugger. I have set the system to enter the debugger upon quitting from the program. This may be done by pressing CTRL-c; to return to program execution ensure the cursor (the square block, not the mouse pointer) is in the debugger window and press c (for continue).
The GP run will announce its completion with a triple beep. (In the long series, the triple-beeps at the end of each run are replaced by triple black flashes; the end of all runs is announced with nine beeps.) The master frame will now ask you whether you wish to browse the results. Doing so will release you from the program and allow you to scroll up and down the various windows, or save the buffers in them. Then press CTRL-META-c to return to the main program.
Finally the program will ask you whether you wish to execute this problem again, or if not, whether you wish to execute another problem. If the answers to both of these are no, the program will terminate and Emacs will quit itself.

�A.2 Annotated Listings

This code requires Emacs Lisp version 19.24 or above. The various footnotes explain features not suitable for inclusion in the comments. Each of these is footnoted only the first time it occurs.
A.2.1 Low-level support functions

1. CLify�

Native Emacs Lisp lacks many of the facilities of Common Lisp. These are provided for in a library package called cl. This is a what is termed a “named feature” – its code contains at the top level the line (provide 'cl). This allows it to be loaded into a file by use of the construct (require 'cl) provided the file cl.el (source code) or cl.elc (byte-compiled code) is located in one of the directories specified in the variable load-path.
The ability to do this is highly useful and is used several times in the rest of the code.
The following code was written to add some further features not included in cl.

;;; This package prepares Emacs Lisp to deal with some of the Common Lisp-isms
;;; in Koza's code that are not fully catered for by the feature 'cl.

(require 'cl)
(provide 'CLify)

;;; CL recognises keywords in defuns, but not defvars.
(defconst :unbound ':unbound)
(defconst :ramped-half-and-half ':ramped-half-and-half)
(defconst :fitness-proportionate ':fitness-proportionate)
(defconst :tournament ':tournament)
(defconst :otherwise ':otherwise)
(defvar *graphic* t)

(defun format* (bfr x &rest y)
 "An extension to 'format'. Common Lisp allows (format <buffer> <data>);
 Emacs Lisp does not, and 'print' in Emacs Lisp annoyingly inserts a
 linefeed both before and after the print string. This procedure fills
 the gap thus delineated."
 (let ((dest-bfr
	 (if *graphic*
	 (if (equal bfr 't)
		 (current-buffer)
	 bfr)
	 nil)))
 (princ (eval (`(format x (,@ y)))) dest-bfr)
 ;; Passes the arguments to 'format' without reevaluating them.
 (terpri dest-bfr)))
�2. GUI

;;; Package providing graphical user interface to the Genetic Programming
;;; system.

(require 'CLify)
(provide 'GUI)

(defvar *graphic* t
 "For use in debugging. If set to nil, the program will output in the
 current buffer without producing its normal three-window frame.")

(defvar *GP-frame* :unbound
 "The Genetic Programming System's frame")

(defvar GP-buffer1 :unbound
 "Buffer containing GP parameters")

(defvar GP-buffer2 :unbound
 "Buffer contains best individual of current generation.")

(defvar GP-buffer3 :unbound
 "Buffer contains best individuals of each generation.")

(defvar w :unbound
 "Top window of GP frame; contains GP-buffer1.")

(defvar w2 :unbound
 "Middle window of GP frame; contains GP-buffer2.")

(defvar w3 :unbound
 "Bottom window of GP frame; contains GP-buffer3.")

(defun GP-top ()
 "Selects top GP window, containing GP parameters."
 (set-buffer GP-buffer1))

(defun GP-middle ()
 "Selects middle GP window, containing best individual of
 current generation."
 (set-buffer GP-buffer2))

(defun GP-bottom ()
 "Selects bottom GP window, containing best individuals of each generation."
 (set-buffer GP-buffer3))

(defun setup-windows (problem-function)
 "Sets up the GP frame, windows and buffer."
 (ecase *graphic*
 ;; If *graphic* is nil, then do not set up windows or frame but set the
 ;; buffers to t, so they will default to the current buffer.
 (nil (setq GP-buffer1 t)
	 (setq GP-buffer2 t)
	 (setq GP-buffer3 t))
 (otherwise
 ;; First check whether the GUI is already set up from a previous run.
 (if (not (and (boundp '*GP-frame*)
		 (framep *GP-frame*)
		 (frame-live-p *GP-frame*)))
 (setq *GP-frame* (make-frame
			 `((name . ,(concat "Genetic Programming - "
					 (format "%s" problem-function)))
			 (height . 56)))))
 (select-frame *GP-frame*)
 (setq GP-buffer1 (switch-to-buffer (format "%s" problem-function)))
 (setq w (selected-window))
 ;; If the frame has not just been created, we need to avoid producing
 ;; supernumerary windows:
 (delete-other-windows)
 (setq w2 (split-window (selected-window) 16)) ; Splits after 16 lines.
 (select-window w2)
 (setq GP-buffer2
		(switch-to-buffer "Best individual of current generation"))
 (setq w3 (split-window))
 (select-window w3)
 (setq GP-buffer3 (switch-to-buffer "Audit trail"))
 ;; Erase buffers in case of material left from a previous run.
 (GP-bottom) (erase-buffer)
 (GP-middle) (erase-buffer)
 (GP-top) (erase-buffer))))

(defun set-point-at-end () "Puts the point at the end of the middle window."
 (if *graphic* (prog2 (select-window w2) (goto-char (point-max)))))

(defun cls () "Erases a buffer if and only if *graphic* is true."
 (if *graphic* (erase-buffer)))
�A.2.2 Genetic Programming Kernels

Production of the various kernels proceeded by copying the entire kernel file then making adjustments as necessary. The result was a number of files sharing the majority of their code�.
Koza’s original Common Lisp implementation includes the use of a fast-eval function to speed up evaluation of individual programs. This was implemented in Emacs Lisp, but offered no improvement. To gain an advantage from it would require a very deep knowledge of how Emacs Lisp actually works, which was judged to be beyond the scope of this project; consequently the normal Lisp eval was used instead.

1. Without ADFs: kernel

The following code is a straight translation into Emacs Lisp from Koza’s original Common Lisp. All code detailing with the user interface beyond a simple output of text is my own, as is anything specific to Emacs Lisp (for example, garbage collection).

;;; Kernel

(require 'CLify)
(require 'GUI)
(provide 'kernel)

(defvar *debug*)
;;; "*debug* causes the population to be returned at the end of a run.")
 (if (not (boundp '*debug*)) (setq *debug* nil))

(defstruct individual
 program
 (standardised-fitness 0)
 (adjusted-fitness 0)
 (normalised-fitness 0)
 (hits 0))

(defvar *number-of-fitness-cases* :unbound
 "The number of fitness cases")

(defvar *max-depth-for-new-individuals* :unbound
 "The maximum depth for individuals of the initial random generation")

(defvar *max-depth-for-individuals-after-crossover* :unbound
 "The maximum depth of new individuals created by crossover")

(defvar *fitness-proportionate-reproduction-fraction* :unbound
 "The fraction of the population that will experience fitness proportionate
 reproduction (with reselection) during each generation")

(defvar *crossover-at-any-point-fraction* :unbound
 "The fraction of the population that will experience crossover at any point
 in the tree (including terminals) during each generation")

(defvar *crossover-at-function-point-fraction* :unbound
 "The fraction of the population that will experience crossover at a function
 (internal) point in the tree during each generation.")

(defvar *max-depth-for-new-subtrees-in-mutants* :unbound
 "The maximum depth of new subtrees created by mutation")

(defvar *method-of-selection* :unbound
 "The method of selecting individuals in the population.
 Either :fitness-proportionate, :tournament or
 :fitness-proportionate-with-over-selection.")

(defvar *method-of-generation* :unbound
 "Can be any one of :grow, :full, :ramped-half-and-half")

(defvar *seed* :unbound
 "The seed for the Park-Miller congruential randomiser.")

(defvar *best-of-run-individual* :unbound
 "The best individual found during this run.")

(defvar *generation-of-best-of-run-individual* :unbound
 "The generation at which the best-of-run individual was found.")

(defun run-genetic-programming-system
 (problem-function
 seed
 maximum-generations
 size-of-population
 &rest seeded-programs)
 "Top level function running the entire genetic programming system."
;;; Check validity of some arguments
 (assert (and (integerp maximum-generations)
 (not (minusp maximum-generations)))
 (maximum-generations)
 "Maximum-generations must be a non-negative integer, not %S"
	 maximum-generations)
 (assert (and (integerp size-of-population)
 (plusp size-of-population))
 (size-of-population)
 "Size-Of-Population must be a positive integer, not %S"
	 size-of-population)
 (assert (and (symbolp problem-function)
 (fboundp problem-function))
 (problem-function)
 "Problem-Function must be a function.")
 (assert (numberp seed) (seed)
 "The randomiser seed must be a number")
;;; Arrange frequency of garbage collection
 (setq gc-cons-threshold 3000000)
 (garbage-collect)
 (message "Running Genetic Programming Paradigm...")
;;; Set up windows environment
 (save-excursion
 (setup-windows problem-function)
;;; Record initial time for display at the end.
 (let ((time (current-time-string)))
;;; Set the global randomiser seed.
 (setq *seed* (coerce seed 'float))
;;; Initialise best-of-run recording variables
 (setq *generation-of-best-of-run-individual* 0)
 (setq *best-of-run-individual* nil)
;;; Get the six problem-specific functions needed to specify this problem as
;;; returned by a call to problem-function
 (multiple-value-bind (function-set-creator
 terminal-set-creator
 fitness-cases-creator
 fitness-function
 parameter-definer
 termination-predicate)
 (funcall problem-function)
;;; Get the function set and its associated argument map
 (multiple-value-bind (function-set argument-map)
 (funcall function-set-creator)
;;; Set up the parameters using parameter-definer
 (funcall parameter-definer)
;;; Print out parameters report
 (describe-parameters-for-run
 maximum-generations size-of-population)
;;; Set up the terminal-set using terminal-set-creator
 (let ((terminal-set (funcall terminal-set-creator)))
;;; Create the population
 (let ((population
 (create-population
 size-of-population function-set argument-map
 terminal-set seeded-programs)))
;;; Define the fitness cases using the fitness-cases-creator function
 (let ((fitness-cases (funcall fitness-cases-creator))
 ;; New-Programs is used in the breeding of the new
 ;; population. Create it here to reduce consing.
 (new-programs (make-vector size-of-population nil)))
		(GP-middle)
;;; Now run the Genetic Programming Paradigm using the fitness-function
;;; and termination-predicate provided
 (execute-generations
 population new-programs fitness-cases
 maximum-generations fitness-function
 termination-predicate function-set
 argument-map terminal-set)
;;; Finally print out a report
 (report-on-run)
		(set-point-at-end)
		(format* t time)
		(format* t (current-time-string))
		(message "Finished!") (beep) (beep) (beep)
;;; Use of a triple beep prevents confusion with any other application.
		(if *debug* population)))))))))

(defun report-on-run ()
 "Prints out the best-of-run individual."
 (GP-middle) (cls)
 (when (not *graphic*) (format* t "\n\n\n\n"))
 (format* t
"The best-of-run individual program for this run was found on
generation %d and had a standardised fitness measure of %g and %d hit(s).
It was:
"
 generation-of-best-of-run-individual
 (individual-standardised-fitness *best-of-run-individual*)
 (individual-hits *best-of-run-individual*))
;;; "cl-prettyprint" is an undocumented function. The nearest documented
;;; equivalent is cl-prettyexpand, but that expands macros, which is not
;;; wanted here.
 (cl-prettyprint (individual-program *best-of-run-individual*)))

(defun report-on-generation (generation-number population)
 "Prints out the best individual at the end of each generation"
 (let ((best-individual (aref population 0))
 (size-of-population (length population))
 (sum 0.0)
	(printstring "\nGeneration %d: Average standardised-fitness = %g.
The best individual program of the population had a standardised fitness measure of %g and %d hit(s).
It was:
"))
 ;; Add up all of the standardised fitnesses to get average
 (dotimes (index size-of-population)
 (incf sum (individual-standardised-fitness
 (aref population index))))
 (GP-middle)(cls)
 (if *graphic*
;;; If *graphic* two reports are needed, one in the best-of-generation window
;;; and one in the audit trail window.
 (prog2 (format* t printstring
		 generation-number (/ sum (length population))
		 (individual-standardised-fitness best-individual)
		 (individual-hits best-individual))
	 (cl-prettyprint (individual-program best-individual))))
 (GP-bottom)
 (format* t printstring
 generation-number (/ sum (length population))
 (individual-standardised-fitness best-individual)
 (individual-hits best-individual))
 (cl-prettyprint (individual-program best-individual)))
 (sit-for 0))
 ;; In theory (sit-for 0) pauses to allow the screen to redisplay. In
 ;; practice Emacs often appears to ignore it, for reasons of its own.

(defun print-population (population)
 "Given a population, prints it out (for debugging) "
 (dotimes (index (length population))
 (let ((individual (aref population index)))
 (format* t "%s"
 ;; I have not made format* sufficiently complex to be able to deal
 ;; with "(individual-program individual)" without evaluating it either
 ;; too many or two few times. This nested "format" syntax I consider to
 ;; be preferable to the syntactic jungle necessary to achieve this
 ;; effect using format* alone.
	 (format "\n%d %g %s"
		 index
		 (individual-standardised-fitness individual)
		 (individual-program individual))))))

(defun describe-parameters-for-run
 (maximum-generations size-of-population)
 "Lists the parameter settings for this run."
 (GP-top)
 (format* t "\nParameters used for this run.\n=============================")
 (format* t "%-50s%d" "Maximum number of Generations:" maximum-generations)
 (format* t "%-50s%d" "Size of Population:" size-of-population)
 (format* t "%-50s%d" "Maximum depth of new individuals:"
 max-depth-for-new-individuals)
 (format* t "%-50s%d" "Maximum depth of new subtrees for mutants:"
 max-depth-for-new-subtrees-in-mutants)
 (format* t "%-50s%d" "Maximum depth of individuals after crossover:"
 max-depth-for-individuals-after-crossover)
 (format* t "%-50s%g" "Fitness-proportionate reproduction fraction:"
 fitness-proportionate-reproduction-fraction)
 (format* t "%-50s%g" "Crossover at any point fraction:"
 crossover-at-any-point-fraction)
 (format* t "%-50s%g" "Crossover at function points fraction:"
 crossover-at-function-point-fraction)
 (format* t "%-50s%g" "Number of fitness cases:" *number-of-fitness-cases*)
 (format* t "%-50s%s" "Selection method:" *method-of-selection*)
 (format* t "%-50s%s" "Generation method:" *method-of-generation*)
 (format* t "%-50s%g" "Randomiser seed:" *seed*)
 (sit-for 0)) ; allows the screen to redisplay.

(defvar *generation-0-uniquifier-table*
 (make-hash-table :test (function equal))
 "Used to guarantee that all generation 0 individuals are unique")

(defun create-population (size-of-population function-set
 argument-map terminal-set
 seeded-programs)
 "Creates the population. This is an array of size size-of-population that
 is initialised to contain individual records. The Program slot of each
 individual is initialised to a suitable random program except for the
 first N programs, where N = (length seeded-programs). For these first N
 individuals the individual is initialised with the respective seeded
 program. This is very useful in debugging."
 (let ((population (make-vector size-of-population nil))
 (minimum-depth-of-trees 1)
 (attempts-at-this-individual 0)
 (full-cycle-p nil))
 (do ((individual-index 0))
 ((>= individual-index size-of-population))
 (when (zerop (mod individual-index
 (max 1 (- *max-depth-for-new-individuals*
 minimum-depth-of-trees))))
 (setq full-cycle-p (not full-cycle-p)))
 (let ((new-program
 (if (< individual-index (length seeded-programs))
 ;; Pick a seeded individual
 (nth individual-index seeded-programs)
 ;; Create a new random program.
 (create-individual-program
 function-set argument-map terminal-set
 (ecase *method-of-generation*
 ((:full :grow) *max-depth-for-new-individuals*)
 (:ramped-half-and-half
 (+ minimum-depth-of-trees
 (mod individual-index
 (- *max-depth-for-new-individuals*
 minimum-depth-of-trees)))))
 t
 (ecase *method-of-generation*
 (:full t)
 (:grow nil)
 (:ramped-half-and-half full-cycle-p))))))
 ;; Check if we have already created this program.
 ;; If not then store it and move on.
 ;; If we have then try again.
 (cond ((< individual-index (length seeded-programs))
 (aset population individual-index
 (make-individual :program new-program))
 (incf individual-index))
 ((not (gethash new-program
			 generation-0-uniquifier-table))
 (aset population individual-index
 (make-individual :program new-program))
 (setf (gethash new-program
			 generation-0-uniquifier-table)
 t)
 (setq attempts-at-this-individual 0)
 (incf individual-index))
 ((> attempts-at-this-individual 20)
 ;; Then this depth has probably filled up, so
 ;; bump the depth counter.
 (incf minimum-depth-of-trees)
 ;; Bump the max depth too to keep in line with new minimum.
 (setq *max-depth-for-new-individuals*
 (max *max-depth-for-new-individuals*
 minimum-depth-of-trees)))
 (:otherwise (incf attempts-at-this-individual)))))
 ;; Flush out uniquifier table to that no pointers
 ;; are kept to generation 0 individuals.
 (clrhash *generation-0-uniquifier-table*)
 ;; Return the population that we've just created.
 population))

(defun choose-from-terminal-set (terminal-set)
 "Chooses a random terminal from the terminal set. If the terminal chosen
 is the ephemeral :Floating-Point-Random-Constant, then a floating-point
 random constant is created in the range -5.0->5.0.
 If :Integer-Random-Constant is chosen then an integer random constant is
 generated in the range -10 to +10."
 (let ((choice (nth (random-integer (length terminal-set))
 terminal-set)))
 (case choice
 (:floating-point-random-constant
 ;; pick a random number in the range -5.0 ---> +5.0 and coerce it to
 ;; be floating-point. This is the place to modify if you need a range
 ;; other than -5.0 ---> +5.0.
 (coerce (- (random-floating-point-number 10.0) 5.0)
 'float))�
 (:integer-random-constant
 ;; pick a random integer in the range -10 ---> +10.
 (- (random-integer 21) 10))
 (otherwise choice))))

(defun create-individual-program
 (function-set argument-map terminal-set
 allowable-depth top-node-p full-p)
 "Creates a program recursively using the specified functions and terminals.
 Argument map is used to determine how many arguments each function in the
 function set is supposed to have if it is selected. Allowable depth is
 the remaining depth of the tree we can create, when we hit zero we will
 only select terminals. Top-node-p is true only when we are being called
 as the top node in the tree. This allows us to make sure that we always
 put a function at the top of the tree. Full-p indicates whether this
 individual is to be maximally bushy or not."
 (cond ((<= allowable-depth 0)
 ;; We've reached maxdepth, so just pack a terminal.
 (choose-from-terminal-set terminal-set))
 ((or full-p top-node-p)
 ;; We are the top node or are a full tree, so pick only a function.
 (let ((choice (random-integer (length function-set))))
 (let ((function (nth choice function-set))
 (number-of-arguments
 (nth choice argument-map)))
 (cons function
 (create-arguments-for-function
 number-of-arguments function-set
 argument-map terminal-set
 (- allowable-depth 1) full-p)))))
 (:otherwise
 ;; choose one from the bag of functions and terminals.
 (let ((choice (random-integer
 (+ (length terminal-set)
 (length function-set)))))
 (if (< choice (length function-set))
 ;; We chose a function, so pick it out and go
 ;; on creating the tree down from here.
 (let ((function (nth choice function-set))
 (number-of-arguments
 (nth choice argument-map)))
 (cons function
 (create-arguments-for-function
 number-of-arguments function-set
 argument-map terminal-set
 (- allowable-depth 1) full-p)))
 ;; We chose an atom, so pick it out.
 (choose-from-terminal-set terminal-set))))))

(defun create-arguments-for-function
 (number-of-arguments function-set
 argument-map terminal-set allowable-depth
 full-p)
 "Creates the argument list for a node in the tree. Number-Of-Arguments is
 the number of arguments still remaining to be created. Each argument is
 created in the normal way using Create-Individual-Program."
 (if (= number-of-arguments 0)
 nil
 (cons (create-individual-program
 function-set argument-map terminal-set
 allowable-depth nil full-p)
 (create-arguments-for-function
 (- number-of-arguments 1) function-set
 argument-map terminal-set
 allowable-depth full-p))))

(defun execute-generations
 (population new-programs fitness-cases maximum-generations
 fitness-function termination-predicate function-set
 argument-map terminal-set)
 "Loops until the user's termination predicate says to stop."
 (do ((current-generation 0 (+ 1 current-generation)))
 ;; loop incrementing current generation until
 ;; termination-predicate succeeds.
 ((let ((best-of-generation (aref population 0)))
 (funcall
 termination-predicate current-generation
 maximum-generations
 (individual-standardised-fitness best-of-generation)
 (individual-hits best-of-generation))))
 (when (> current-generation 0)
 ;; Breed the new population to use on this generation
 ;; (except gen 0, of course).
 (breed-new-population population new-programs function-set
 argument-map terminal-set))
 ;; Clean out the fitness measures.
 (zeroise-fitness-measures-of-population population)
 ;; Measure the fitness of each individual. Fitness values
 ;; are stored in the individuals themselves.
 (evaluate-fitness-of-population
 population fitness-cases fitness-function)
 ;; Normalise fitness in preparation for crossover, etc.
 (normalise-fitness-of-population population)
 ;; Sort the population so that the roulette wheel is easy.
 (sort-population-by-fitness population)
 ;; Keep track of best-of-run individual
 (let ((best-of-generation (aref population 0)))
 (when (or (not *best-of-run-individual*)
 (> (individual-standardised-fitness *best-of-run-individual*)
 (individual-standardised-fitness best-of-generation)))
	(setq *best-of-run-individual* (copy-individual best-of-generation))
 (setq *generation-of-best-of-run-individual* current-generation)))
 ;; Print out the results for this generation.
 (report-on-generation current-generation population)))

(defun zeroise-fitness-measures-of-population (population)
 "Clean out the statistics in each individual in the population. This is not
 strictly necessary, but it helps to avoid confusion that might be caused
 if, for some reason, we land in the debugger and there are fitness values
 associated with the individual records that actually matched the program
 that used to occupy this individual record."
 (dotimes (individual-index (length population))
 (let ((individual (aref population individual-index)))
 (setf (individual-standardised-fitness individual) 0.0)
 (setf (individual-adjusted-fitness individual) 0.0)
 (setf (individual-normalised-fitness individual) 0.0)
 (setf (individual-hits individual) 0))))

(defun evaluate-fitness-of-population (population fitness-cases
 fitness-function)
 "Loops over the individuals in the population evaluating and
 recording the fitness and hits."
 (dotimes (individual-index (length population))
 (let ((individual (aref population individual-index)))
 (multiple-value-bind (standardised-fitness hits)
 (funcall fitness-function
 (individual-program individual)
 fitness-cases)
 ;; Record fitness and hits for this individual.
 (setf (individual-standardised-fitness individual)
 standardised-fitness)
 (setf (individual-hits individual) hits)))))

(defun normalise-fitness-of-population (population)
 "Computes the normalised and adjusted fitness of each
 individual in the population."
 (let ((sum-of-adjusted-fitnesses 0.0))
 (dotimes (individual-index (length population))
 (let ((individual (aref population individual-index)))
 ;; Set the adjusted fitness.
 (setf (individual-adjusted-fitness individual)
 (/ 1.0 (+ 1.0 (individual-standardised-fitness
 individual))))
 ;; Add up the adjusted fitnesses so that we can normalise them.
 (incf sum-of-adjusted-fitnesses
 (individual-adjusted-fitness individual))))
 ;; Loop through population normalising the adjusted fitness.
 (dotimes (individual-index (length population))
 (let ((individual (aref population individual-index)))
 (setf (individual-normalised-fitness individual)
 (/ (individual-adjusted-fitness individual)
 sum-of-adjusted-fitnesses))))))

(defun sort-population-by-fitness (population)
 "Sorts the population according to normalised fitness.
 The population array is destructively modified."
 (setq population
	(stable-sort population
		 '>
		 :key 'individual-normalised-fitness)))

;;; The "setq" is needed because "population" would continue to point to the
;;; same cons cell, which might not now be at the head of the list.

(defun breed-new-population
 (population new-programs function-set
 argument-map terminal-set)
 "Controls the actual breeding of the new population. Loops through the
 population executing each operation (e.g., crossover, fitness-proportionate
 reproduction, mutation) until it has reached the specified fraction. The
 new programs that are created are stashed in new-programs until we have
 exhausted the population, then we copy the new individuals into the old
 ones, thus avoiding consing a new bunch of individuals."
 (let ((population-size (length population)))
 (do ((index 0)
 (fraction 0 (/ index population-size)))
 ((>= index population-size))
 (let ((individual-1
 (find-individual population)))
 (cond ((and (< index (- population-size 1))
 (< fraction
 (+ *crossover-at-function-point-fraction*
 crossover-at-any-point-fraction)))
 (multiple-value-bind (new-male new-female)
 (funcall
 (if (< fraction
 crossover-at-function-point-fraction)
 'crossover-at-function-points
 'crossover-at-any-points)
 individual-1
 (find-individual population))
 (setf (aref new-programs index) new-male)
 (setf (aref new-programs (+ 1 index))
 new-female))
 (incf index 2))
 ((< fraction
 (+ *fitness-proportionate-reproduction-fraction*
 crossover-at-function-point-fraction
 crossover-at-any-point-fraction))
 (setf (aref new-programs index) individual-1)
 (incf index 1))
 (:otherwise
	 (setf (aref new-programs index)
		 (mutate individual-1 function-set
			 argument-map terminal-set))
	 (incf index 1)))))
 (dotimes (index population-size)
 (setf (individual-program (aref population index))
 (aref new-programs index)))))

(defun find-individual (population)
 "Finds an individual in the population according to the
 defined selection method."
 (ecase *method-of-selection*
 (:tournament (find-individual-using-tournament-selection
 population))
 (:fitness-proportionate-with-over-selection
 (find-fitness-proportionate-individual
 (random-floating-point-number-with-over-selection
 population)
 population))
 (:fitness-proportionate
 (find-fitness-proportionate-individual
 (random-floating-point-number 1.0) population))))

(defun random-floating-point-number-with-over-selection (population)
 "Picks a random number between 0.0 and 1.0 biased using the
 over-selection method."
 (let ((pop-size (length population)))
 (when (< pop-size 1000)
 (error "A population size of %d is too small for over-selection."
	 pop-size))
 (let ((boundary (/ 320.0 pop-size)))
 ;; The boundary between the over and under selected parts.
 (if (< (random-floating-point-number 1.0) 0.8)
 ;; 80% are in the over-selected part
 (random-floating-point-number boundary)
 (+ boundary
	 (random-floating-point-number (- 1.0 boundary)))))))

(defun find-individual-using-tournament-selection (population)
 "Picks two individuals from the population at random and
 returns the better one."
 (let ((individual-a
 (aref population
 (random-integer (length population))))
 (individual-b
 (aref population
 (random-integer (length population)))))
 (if (< (individual-standardised-fitness individual-a)
 (individual-standardised-fitness individual-b))
 (individual-program individual-a)
 (individual-program individual-b))))

(defun find-fitness-proportionate-individual
 (after-this-fitness population)
 "Finds an individual in the specified population whose
 normalised fitness is greater than the specified value.
 All we need to do is count along the population from the
 beginning adding up the fitness until we get past the
 specified point."
 (let ((sum-of-fitness 0.0)
 (population-size (length population)))
 (let ((index-of-selected-individual
 (do ((index 0 (+ index 1)))
 ;; Exit condition
 ((or (>= index population-size)
 (>= sum-of-fitness after-this-fitness))
 (if (>= index population-size)
 (- (length population) 1)
 (- index 1)))
 ;; Body. Sum up the fitness values.
 (incf sum-of-fitness
 (individual-normalised-fitness
 (aref population index))))))
 (individual-program
 (aref population index-of-selected-individual)))))

(defun crossover-at-any-points (male female)
 "Performs crossover on the programs at any point in the trees."
 ;; Pick points in the respective trees on which to perform the crossover.
 (let ((male-point (random-integer (count-crossover-points male)))
 (female-point (random-integer (count-crossover-points female))))
 ;; First, copy the trees because we destructively modify the
 ;; new individuals to do the crossover. Reselection is
 ;; allowed in the original population. Not copying would
 ;; cause the individuals in the old population to be modified.
 (let ((new-male (list (copy-tree male)))
 (new-female (list (copy-tree female))))
 ;; Get the pointers to the subtrees indexed by male-point
 ;; and female-point
 (multiple-value-bind (male-subtree-pointer male-fragment)
 (get-subtree (first new-male) new-male male-point)
 (multiple-value-bind
 (female-subtree-pointer female-fragment)
 (get-subtree
 (first new-female) new-female female-point)
 ;; Modify the new individuals by smashing in the
 ;; (copied) subtree from the old individual.
 (setf (first male-subtree-pointer) female-fragment)
 (setf (first female-subtree-pointer) male-fragment)))
 ;; Make sure that the new individuals aren't too big.
 (validate-crossover male new-male female new-female))))

(defun count-crossover-points (program)
 "Counts the number of points in the tree (program).
 This includes functions as well as terminals."
 (if (consp program)
 (+ 1 (reduce '+ (mapcar 'count-crossover-points (rest program))))
 1))
;;; This would be worth rewriting iteratively for speed, but due to the
;;; inherent recursive nature of tree traversal, I have left all such
;;; functions unnaltered.

(defun max-depth-of-tree (tree)
 "Returns the depth of the deepest branch of the
 tree (program)."
 (if (consp tree)
 (+ 1 (if (rest tree)
 (apply 'max (mapcar 'max-depth-of-tree (rest tree)))
 0))
 1))

(defun get-subtree (tree pointer-to-tree index)
 "Given a tree or subtree, a pointer to that tree/subtree and
 an index return the component subtree that is numbered by
 Index. We number left to right, depth first."
 (if (= index 0)
 (values pointer-to-tree (copy-tree tree) index)
 (if (consp tree)
 (do* ((tail (rest tree) (rest tail))
 (argument (first tail) (first tail)))
 ((not tail) (values nil nil index))
 (multiple-value-bind
 (new-pointer new-tree new-index)
 (get-subtree argument tail (- index 1))
 (if (= new-index 0)
 (return
 (values new-pointer new-tree new-index))
 (setq index new-index))))
 (values nil nil index))))

(defun validate-crossover (male new-male female new-female)
 "Given the old and new males and females from a crossover
 operation check to see whether we have exceeded the maximum
 allowed depth. If either of the new individuals has exceeded
 the maxdepth then the old individual is used."
 (let ((male-depth (max-depth-of-tree (first new-male)))
 (female-depth (max-depth-of-tree (first new-female))))
 (values
 (if (or (= 1 male-depth)
 (> male-depth
 max-depth-for-individuals-after-crossover))
 male
 (first new-male))
 (if (or (= 1 female-depth)
 (> female-depth
 max-depth-for-individuals-after-crossover))
 female
 (first new-female)))))

(defun crossover-at-function-points (male female)
 "Performs crossover on the two programs at a function
 (internal) point in the trees."
 ;; Pick the function (internal) points in the respective trees
 ;; on which to perform the crossover.
 (let ((male-point
 (random-integer (count-function-points male)))
 (female-point
 (random-integer (count-function-points female))))
 ;; Copy the trees because we destructively modify the new
 ;; individuals to do the crossover and Reselection is
 ;; allowed in the original population. Not copying would
 ;; cause the individuals in the old population to
 ;; be modified.
 (let ((new-male (list (copy-tree male)))
 (new-female (list (copy-tree female))))
 ;; Get the pointers to the subtrees indexed by male-point
 ;; and female-point
 (multiple-value-bind (male-subtree-pointer male-fragment)
 (get-function-subtree
 (first new-male) new-male male-point)
 (multiple-value-bind
 (female-subtree-pointer female-fragment)
 (get-function-subtree
 (first new-female) new-female female-point)
 ;; Modify the new individuals by smashing in
 ;; the (copied) subtree from the old individual.
 (setf (first male-subtree-pointer) female-fragment)
 (setf (first female-subtree-pointer) male-fragment)))
 ;; Make sure that the new individuals aren't too big.
 (validate-crossover male new-male female new-female))))

(defun count-function-points (program)
 "Counts the number of function (internal) points in the program."
 (if (consp program)
 (+ 1 (reduce '+ (mapcar 'count-function-points
 (rest program))))
 0))

(defun get-function-subtree (tree pointer-to-tree index)
 "Given a tree or subtree, a pointer to that tree/subtree and
 an index return the component subtree that is labeled with
 an internal point that is numbered by Index. We number left
 to right, depth first."
 (if (= index 0)
 (values pointer-to-tree (copy-tree tree) index)
 (if (consp tree)
 (do* ((tail (rest tree) (rest tail))
 (argument (first tail) (first tail)))
 ((not tail) (values nil nil index))
 (multiple-value-bind
 (new-pointer new-tree new-index)
 (if (consp argument)
 (get-function-subtree
 argument tail (- index 1))
 (values nil nil index))
 (if (= new-index 0)
 (return
 (values new-pointer new-tree new-index))
 (setq index new-index))))
 (values nil nil index))))

(defun mutate (program function-set argument-map terminal-set)
 "Mutates the argument program by picking a random point in
 the tree and substituting in a brand new subtree created in
 the same way that we create the initial random population."
 ;; Pick the mutation point.
 (let ((mutation-point
 (random-integer (count-crossover-points program)))
 ;; Create a brand new subtree.
 (new-subtree
 (create-individual-program
 function-set argument-map terminal-set
 max-depth-for-new-subtrees-in-mutants t nil)))
 (let ((new-program (list (copy-tree program))))
 (multiple-value-bind (subtree-pointer fragment)
 ;; Get the pointer to the mutation point.
 (get-subtree (first new-program)
 new-program mutation-point)
 ;; Not interested in what we're snipping out.
 (declare (ignore fragment))�
 ;; Smash in the new subtree.
 (setf (first subtree-pointer) new-subtree))
 (values (first new-program) new-subtree))))

(defun park-miller-randomiser ()
 "The Park-Miller multiplicative congruential randomiser
 (CACM, October 88, Page 1195). Creates pseudo random floating
 point numbers in the range 0.0 < x <= 1.0. The seed value
 for this randomiser is called *seed*, so you should
 record/set this if you want to make your runs reproducible."
 (assert (not (zerop *seed*)) () "*seed* cannot be zero.")
 (let ((multiplier 16807.0);16807 is (expt 7 5)
 (modulus 2147483647.0))
 ;2147483647 is (- (expt 2 31) 1)
 (let ((temp (* multiplier *seed*)))
 (setq *seed* (mod temp modulus))
 ;;Produces floating-point number in the range 0.0 < x <= 1.0
 (progn (/ *seed* modulus)))))

(defun random-floating-point-number (n)
 "Returns a pseudo random floating-point number in range 0.0 <= number < n"
 (let ((random-number (park-miller-randomiser)))
 ;; We subtract the randomly generated number from 1.0
 ;; before scaling so that we end up in the range
 ;; 0.0 <= x < 1.0, not 0.0 < x <= 1.0
 (* n (- 1.0 random-number))))

(defun random-integer (n)
 "Returns a pseudo-random integer in the range 0 ---> n-1."
 (let ((random-number (random-floating-point-number 1.0)))
 (floor (* n random-number))))

�2. With ADFs: ADF-kernel
As before, all code except for user interface code and Emacs Lisp-specific material is a straight translation of Koza’s code.
;;; Kernel with ADFs.

(require 'CLify)
(require 'GUI)
(provide 'ADF-kernel)

(defstruct individual
 program
 (standardised-fitness 0)
 (adjusted-fitness 0)
 (normalised-fitness 0)
 (hits 0))

(defstruct ADF-program
 adf0
 adf1
 rpb0)

(defun full-lisp (adf-prog)
 "Converts an 'individual-program' from the internal representation to the
 style of normal lisp defuns."
;;; This is necessary since Emacs Lisp lacks the facility for structures to
;;; include their own print functions (which Common Lisp does have).
 (first (read-from-string (format
	;; This is necessary to avoid over-evaluation.
"(progn (defun ADF0 (arg0 arg1 arg2) %s)
(defun ADF1 (arg0 arg1 arg2) %s)
 %s)"
(ADF-program-adf0 adf-prog)
(ADF-program-adf1 adf-prog)
(ADF-program-rpb0 adf-prog)))))

(defvar *number-of-fitness-cases* :unbound
 "The number of fitness cases")

(defvar *max-depth-for-new-individuals* :unbound
 "The maximum depth for individuals of the initial
 random generation")

(defvar *max-depth-for-individuals-after-crossover* :unbound
 "The maximum depth of new individuals created by crossover")

(defvar *reproduction-fraction* :unbound
 "The fraction of the population that will experience fitness
 proportionate reproduction (with reselection)
 during each generation")

(defvar *crossover-at-any-point-fraction* :unbound
 "The fraction of the population that will experience
 crossover at any point in the tree (including terminals)
 during each generation")

(defvar *crossover-at-function-point-fraction* :unbound
 "The fraction of the population that will experience
 crossover at a function (internal) point in the tree
 during each generation.")

(defvar *max-depth-for-new-subtrees-in-mutants* :unbound
 "The maximum depth of new subtrees created by mutation")

(defvar *method-of-selection* :unbound
 "The method of selecting individuals in the population.
 Either :fitness-proportionate, :tournament or
 :fitness-proportionate-with-over-selection.")

(defvar *tournament-size* :unbound
 "The group size to use when doing tournament selection.")

(defvar *method-of-generation* :unbound
 "Can be any one of :grow, :full, :ramped-half-and-half")

(defvar *seed* :unbound
 "The seed for the Park-Miller congruential randomiser.")

(defvar *best-of-run-individual* :unbound
 "The best individual found during this run.")

(defvar *generation-of-best-of-run-individual* :unbound
 "The generation at which the best-of-run individual was found.")

(defun Run-GP-With-ADFs
 (problem-function
 seed
 maximum-generations
 size-of-population
 &rest seeded-programs)
 "Top level function running the entire genetic programming system.
 Includes Automatically Defined Functions."
;;; Check validity of some arguments
 (assert (and (integerp maximum-generations)
 (not (minusp maximum-generations)))
 (maximum-generations)
 "Maximum-generations must be a non-negative ~
 integer, not %S" maximum-generations)
 (assert (and (integerp size-of-population)
 (plusp size-of-population))
 (size-of-population)
 "Size-Of-Population must be a positive integer, ~
 not %S" size-of-population)
 (assert (and (symbolp problem-function)
 (fboundp problem-function))
 (problem-function)
 "Problem-Function must be a function.")
 (assert (numberp seed) (seed)
 "The randomiser seed must be a number")
;;; Arrange frequency of garbage collection
 (setq gc-cons-threshold 3000000)
 (garbage-collect)
 (message "Running Genetic Programming Paradigm...")
;;; Set up windows environment
 (save-excursion
 (setup-windows problem-function)
;;; Record initial time for display at the end.
 (let ((time (current-time-string)))
;;; Set the global randomiser seed.
 (setq *seed* (coerce seed 'float))
;;; Initialise best-of-run recording variables
 (setq *generation-of-best-of-run-individual* 0)
 (setq *best-of-run-individual* nil)
;;; Get the problem-specific functions needed to
;;; specify this problem as returned by a call to problem-function
 (multiple-value-bind (adf0-function-set-creator
 adf1-function-set-creator
 rpb0-function-set-creator
 adf0-terminal-set-creator
 adf1-terminal-set-creator
 rpb0-terminal-set-creator
 fitness-cases-creator
 fitness-function
 parameter-definer
 termination-predicate)
 (funcall problem-function)
;;; Get the function sets and associated argument maps
 (multiple-value-bind (adf0-function-set adf0-argument-map)
 (funcall adf0-function-set-creator)
 (multiple-value-bind (adf1-function-set adf1-argument-map)
 (funcall adf1-function-set-creator)
 (multiple-value-bind (rpb0-function-set rpb0-argument-map)
 (funcall rpb0-function-set-creator)
;;; Set up the parameters using parameter-definer
 (funcall parameter-definer)
;;; Print out parameters report
 (describe-parameters-for-run
 maximum-generations size-of-population)
;;; Set up the terminal-set using terminal-set-creator
 (let ((adf0-terminal-set
 (funcall adf0-terminal-set-creator))
 (adf1-terminal-set
 (funcall adf1-terminal-set-creator))
 (rpb0-terminal-set
 (funcall rpb0-terminal-set-creator)))
;;; Create the population
 (let ((population
 (create-population
 size-of-population
 adf0-function-set adf0-argument-map
 adf0-terminal-set
 adf1-function-set adf1-argument-map
 adf1-terminal-set
 rpb0-function-set rpb0-argument-map
 rpb0-terminal-set
 seeded-programs)))
;;; Define the fitness cases using the fitness-cases-creator function
 (let ((fitness-cases
 (funcall fitness-cases-creator))
 ;; New-Programs is used in the breeding of the new
 ;; population. Create it here to reduce consing
 (new-programs
 (make-vector size-of-population nil)))
		(GP-middle)
;;; Now run the Genetic Programming Paradigm using
;;; the fitness-function and termination-predicate provided
 (execute-generations
 population new-programs fitness-cases
 maximum-generations fitness-function
 termination-predicate
 adf0-function-set adf0-argument-map
 adf0-terminal-set
 adf1-function-set adf1-argument-map
 adf1-terminal-set
 rpb0-function-set rpb0-argument-map
 rpb0-terminal-set)
;;; Finally print out a report
 (report-on-run)
		(set-point-at-end)
		(format* t time)
		(format* t (current-time-string))
		(message "Finished!")(beep)(beep)(beep)
;;; Use of a triple beep prevents confusion with any other application.
		(if *debug* population)))))))))))

(defun report-on-run ()
 "Prints out the best-of-run individual."
 (GP-middle)(cls)
 (when (not *graphic*) (format* t "\n\n\n\n"))
 (format* t
"The best-of-run individual program for this run was found on
generation %d and had a standardised fitness measure of %g and %d hit(s).
It was:
"
 generation-of-best-of-run-individual
 (individual-standardised-fitness *best-of-run-individual*)
 (individual-hits *best-of-run-individual*))
;;; "cl-prettyprint" is an undocumented function. The nearest documented
;;; equivalent is cl-prettyexpand, but that expands macros, which is not
;;; wanted here.
 (cl-prettyprint (full-lisp (individual-program *best-of-run-individual*))))

(defun report-on-generation (generation-number population)
 "Prints out the best individual at the end of each generation"
 (let ((best-individual (aref population 0))
 (size-of-population (length population))
 (sum 0.0)
	(printstring "\n\nGeneration %d: Average standardised-fitness = %g.
The best individual program of the population had a standardised fitness measure of %g and %d hit(s).
It was:
"))
 ;; Add up all of the standardised fitnesses to get average
 (dotimes (index size-of-population)
 (incf sum (individual-standardised-fitness
 (aref population index))))
 (GP-middle)(cls)
 (if *graphic*
 (prog2 (format* t printstring
		 generation-number (/ sum (length population))
		 (individual-standardised-fitness best-individual)
		 (individual-hits best-individual))
	 (cl-prettyprint (full-lisp (individual-program best-individual)))))
 (GP-bottom)
 (format* t printstring
 generation-number (/ sum (length population))
 (individual-standardised-fitness best-individual)
 (individual-hits best-individual))
 (cl-prettyprint (full-lisp (individual-program best-individual))))
 ;; See under "report-on-run".
 (sit-for 0))
 ;; In theory (sit-for 0) pauses to allow the screen to redisplay. In
 ;; practice Emacs often appears to ignore it, for reasons of its own.

(defun print-population (population)
 "Given a population, this prints it out (for debugging) "
 (dotimes (index (length population))
 (let ((individual (aref population index)))
 (format* t "\n\n\n%d %g "
 index
 (individual-standardised-fitness individual))
 (cl-prettyprint (full-lisp (individual-program individual))))))
 ;; See under "report-on-run".

(defun describe-parameters-for-run
 (maximum-generations size-of-population)
 "Lists the parameter settings for this run."
 (GP-top)
 (format* t "\nParameters used for this run.\n=============================")
 (format* t "%-50s%d" "Maximum number of Generations:"
 maximum-generations)
 (format* t "%-50s%d" "Size of Population:" size-of-population)
 (format* t "%-50s%d" "Maximum depth of new individuals:"
 max-depth-for-new-individuals)
 (format* t "%-50s%d" "Maximum depth of new subtrees for mutants:"
 max-depth-for-new-subtrees-in-mutants)
 (format* t "%-50s%d"
 "Maximum depth of individuals after crossover:"
 max-depth-for-individuals-after-crossover)
 (format* t "%-50s%g" "Reproduction fraction:" *reproduction-fraction*)
 (format* t "%-50s%g" "Crossover at any point fraction:"
 crossover-at-any-point-fraction)
 (format* t "%-50s%g" "Crossover at function points fraction:"
 crossover-at-function-point-fraction)
 (format* t "%-50s%g" "Number of fitness cases:"
 number-of-fitness-cases)
 (format* t "%-50s%s" "Selection method:" *method-of-selection*)
 (format* t "%-50s%s" "Tournament size:" *tournament-size*)
 (format* t "%-50s%s" "Generation method:" *method-of-generation*)
 (format* t "%-50s%g" "Randomiser seed:" *seed*)
 (sit-for 0)) ; allows the screen to redisplay.

(defvar *generation-0-uniquifier-table*
 (make-hash-table :test (function equal))
 "Used to guarantee that all generation 0 individuals are unique")

(defun create-program-branch
 (function-set argument-map terminal-set
 minimum-depth-of-trees maximum-depth-of-trees
 individual-index full-cycle-p)
 "Creates a complete branch for an ADF-containing program."
 (create-individual-subtree
 function-set argument-map
 terminal-set
 (ecase *method-of-generation*
 ((:full :grow) maximum-depth-of-trees)
 (:ramped-half-and-half
 (+ minimum-depth-of-trees
 (mod individual-index
 (- maximum-depth-of-trees
 minimum-depth-of-trees)))))
 t
 (ecase *method-of-generation*
 (:full t)
 (:grow nil)
 (:ramped-half-and-half full-cycle-p))))

(defun create-new-program (individual-index full-cycle-p
 minimum-depth-of-trees
 maximum-depth-of-trees
 adf0-function-set adf0-argument-map
 adf0-terminal-set
 adf1-function-set adf1-argument-map
 adf1-terminal-set
 rpb0-function-set rpb0-argument-map
 rpb0-terminal-set)
 "Creates a new individual with ADF structure."
 (make-ADF-program
 :adf0
 (create-program-branch
 adf0-function-set adf0-argument-map
 adf0-terminal-set minimum-depth-of-trees
 maximum-depth-of-trees individual-index full-cycle-p)
 :adf1
 (create-program-branch
 adf1-function-set adf1-argument-map
 adf1-terminal-set minimum-depth-of-trees
 maximum-depth-of-trees individual-index full-cycle-p)
 :rpb0
 (create-program-branch
 rpb0-function-set rpb0-argument-map
 rpb0-terminal-set minimum-depth-of-trees
 maximum-depth-of-trees individual-index full-cycle-p)))

(defun create-population (size-of-population
 adf0-function-set adf0-argument-map
 adf0-terminal-set
 adf1-function-set adf1-argument-map
 adf1-terminal-set
 rpb0-function-set rpb0-argument-map
 rpb0-terminal-set
 seeded-programs)
 "Creates the population. This is an array of size
 size-of-population that is initialised to contain individual
 records. The Program slot of each individual is initialised
 to a suitable random program except for the first N programs,
 where N = (length seeded-programs). For these first N
 individuals the individual is initialised with the respective
 seeded program. This is very useful in debugging."
 (let ((population (make-vector size-of-population nil))
 (minimum-depth-of-trees 1)
 (attempts-at-this-individual 0)
 (full-cycle-p nil))
 (do ((individual-index 0))
 ((>= individual-index size-of-population))
 (when (zerop (mod individual-index
 (max 1 (- *max-depth-for-new-individuals*
 minimum-depth-of-trees))))
 (setq full-cycle-p (not full-cycle-p)))
 (let ((new-program
 (if (< individual-index (length seeded-programs))
 ;; Pick a seeded individual
 (nth individual-index seeded-programs)
 ;; Create a new random program.
 (create-new-program
 individual-index full-cycle-p
 minimum-depth-of-trees
 ;; We count one level of depth for the root
 ;; above all of the branches that get evolved.
 (- *max-depth-for-new-individuals* 1)
 adf0-function-set adf0-argument-map
 adf0-terminal-set
 adf1-function-set adf1-argument-map
 adf1-terminal-set
 rpb0-function-set rpb0-argument-map
 rpb0-terminal-set))))
 ;; Check if we have already created this program.
 ;; If not then store it and move on.
 ;; If we have then try again.
 (let ((program-as-list
 (list (ADF-program-adf0 new-program)
 (ADF-program-adf1 new-program)
 (ADF-program-rpb0 new-program))))
 ;; Turn the defstruct representation of the
 ;; program into a list so that it can be
 ;; compared using an EQUAL hash table.
 ;; defstruct instances have to be compared with EQUALP
 (cond ((< individual-index (length seeded-programs))
 (aset population individual-index
 (make-individual :program new-program))
 (incf individual-index))
 ((not (gethash program-as-list
 generation-0-uniquifier-table))
 (aset population individual-index
 (make-individual :program new-program))
 (setf (gethash program-as-list
 generation-0-uniquifier-table)
 t)
 (setq attempts-at-this-individual 0)
 (incf individual-index))
 ((> attempts-at-this-individual 20)
 ;; Then this depth has probably filled up, so
 ;; bump the depth counter.
 (incf minimum-depth-of-trees)
 ;; Bump the max depth too to keep in line with new minimum.
 (setq *max-depth-for-new-individuals*
 (max *max-depth-for-new-individuals*
 minimum-depth-of-trees)))
 (:otherwise (incf attempts-at-this-individual))))))
 ;; Flush out uniquifier table to that no pointers
 ;; are kept to generation 0 individuals.
 (clrhash *generation-0-uniquifier-table*)
 ;; Return the population that we've just created.
 population))

(defun choose-from-terminal-set (terminal-set)
 "Chooses a random terminal from the terminal set.
 If the terminal chosen is the ephemeral
 :Floating-Point-Random-Constant,
 then a floating-point random constant
 is created in the range -5.0->5.0.
 If :Integer-Random-Constant is chosen then an integer random
 constant is generated in the range -10 to +10."
 (let ((choice (nth (random-integer (length terminal-set))
 terminal-set)))
 (case choice
 (:floating-point-random-constant
 ;; pick a random number in the range -5.0 ---> +5.0 and coerce it to
 ;; be floating-point. This is the place to modify if you need a range
 ;; other than -5.0 ---> +5.0.
 (coerce (- (random-floating-point-number 10.0) 5.0)
 'float))
 (:integer-random-constant
 ;; pick a random integer in the range -10 ---> +10.
 (- (random-integer 21) 10))
 (otherwise choice))))

(defun create-individual-subtree
 (function-set argument-map terminal-set
 allowable-depth top-node-p full-p)
 "Creates a program recursively using the specified functions
 and terminals. Argument map is used to determine how many
 arguments each function in the function set is supposed to
 have if it is selected. Allowable depth is the remaining
 depth of the tree we can create, when we hit zero we will
 only select terminals. Top-node-p is true only when we
 are being called as the top node in the tree. This allows
 us to make sure that we always put a function at the top
 of the tree. Full-p indicates whether this individual
 is to be maximally bushy or not."
 (cond ((<= allowable-depth 0)
 ;; We've reached maxdepth, so just pack a terminal.
 (choose-from-terminal-set terminal-set))
 ((or full-p top-node-p)
 ;; We are the top node or are a full tree,
 ;; so pick only a function.
 (let ((choice (random-integer (length function-set))))
 (let ((function (nth choice function-set))
 (number-of-arguments
 (nth choice argument-map)))
 (cons function
 (create-arguments-for-function
 number-of-arguments function-set
 argument-map terminal-set
 (- allowable-depth 1) full-p)))))
 (:otherwise
 ;; choose one from the bag of functions and terminals.
 (let ((choice (random-integer
 (+ (length terminal-set)
 (length function-set)))))
 (if (< choice (length function-set))
 ;; We chose a function, so pick it out and go
 ;; on creating the tree down from here.
 (let ((function (nth choice function-set))
 (number-of-arguments
 (nth choice argument-map)))
 (cons function
 (create-arguments-for-function
 number-of-arguments function-set
 argument-map terminal-set
 (- allowable-depth 1) full-p)))
 ;; We chose an atom, so pick it out.
 (choose-from-terminal-set terminal-set))))))

(defun create-arguments-for-function
 (number-of-arguments function-set
 argument-map terminal-set allowable-depth
 full-p)
 "Creates the argument list for a node in the tree.
 Number-Of-Arguments is the number of arguments still
 remaining to be created. Each argument is created
 in the normal way using Create-Individual-Program."
 (if (= number-of-arguments 0)
 nil
 (cons (create-individual-subtree
 function-set argument-map terminal-set
 allowable-depth nil full-p)
 (create-arguments-for-function
 (- number-of-arguments 1) function-set
 argument-map terminal-set
 allowable-depth full-p))))

(defun execute-generations
 (population new-programs fitness-cases maximum-generations
 fitness-function termination-predicate
 adf0-function-set adf0-argument-map
 adf0-terminal-set
 adf1-function-set adf1-argument-map
 adf1-terminal-set
 rpb0-function-set rpb0-argument-map
 rpb0-terminal-set)
 "Loops until the user's termination predicate says to stop."
 (do ((current-generation 0 (+ 1 current-generation)))
 ;; loop incrementing current generation until
 ;; termination-predicate succeeds.
 ((let ((best-of-generation (aref population 0)))
 (funcall
 termination-predicate current-generation
 maximum-generations
 (individual-standardised-fitness best-of-generation)
 (individual-hits best-of-generation))))
 (when (> current-generation 0)
 ;; Breed the new population to use on this generation
 ;; (except gen 0, of course).
 (breed-new-population population new-programs
 adf0-function-set adf0-argument-map
 adf0-terminal-set
 adf1-function-set adf1-argument-map
 adf1-terminal-set
 rpb0-function-set rpb0-argument-map
 rpb0-terminal-set))
 ;; Clean out the fitness measures.
 (zeroise-fitness-measures-of-population population)
 ;; Measure the fitness of each individual. Fitness values
 ;; are stored in the individuals themselves.
 (evaluate-fitness-of-population
 population fitness-cases fitness-function)
 ;; Normalise fitness in preparation for crossover, etc.
 (normalise-fitness-of-population population)
 ;; Sort the population so that the roulette wheel is easy.
 (sort-population-by-fitness population)
 ;; Keep track of best-of-run individual
 (let ((best-of-generation (aref population 0)))
 (when (or (not *best-of-run-individual*)
 (> (individual-standardised-fitness *best-of-run-individual*)
 (individual-standardised-fitness best-of-generation)))
	(setq *best-of-run-individual* (copy-individual best-of-generation))
 (setq *generation-of-best-of-run-individual* current-generation)))
 ;; Print out the results for this generation.
 (report-on-generation current-generation population)))

(defun zeroise-fitness-measures-of-population (population)
 "Clean out the statistics in each individual in the
 population. This is not strictly necessary, but it helps to
 avoid confusion that might be caused if, for some reason, we
 land in the debugger and there are fitness values associated
 with the individual records that actually matched the program
 that used to occupy this individual record."
 (dotimes (individual-index (length population))
 (let ((individual (aref population individual-index)))
 (setf (individual-standardised-fitness individual) 0.0)
 (setf (individual-adjusted-fitness individual) 0.0)
 (setf (individual-normalised-fitness individual) 0.0)
 (setf (individual-hits individual) 0))))

(defun evaluate-fitness-of-population (population fitness-cases
 fitness-function)
 "Loops over the individuals in the population evaluating and
 recording the fitness and hits."
 (dotimes (individual-index (length population))
 (let ((individual (aref population individual-index)))
 (multiple-value-bind (standardised-fitness hits)
 (funcall fitness-function
 (individual-program individual)
 fitness-cases)
 ;; Record fitness and hits for this individual.
 (setf (individual-standardised-fitness individual)
 standardised-fitness)
 (setf (individual-hits individual) hits)))))

(defun normalise-fitness-of-population (population)
 "Computes the normalised and adjusted fitness of each
 individual in the population."
 (let ((sum-of-adjusted-fitnesses 0.0))
 (dotimes (individual-index (length population))
 (let ((individual (aref population individual-index)))
 ;; Set the adjusted fitness.
 (setf (individual-adjusted-fitness individual)
 (/ 1.0 (+ 1.0 (individual-standardised-fitness
 individual))))
 ;; Add up the adjusted fitnesses so that we can
 ;; normalise them.
 (incf sum-of-adjusted-fitnesses
 (individual-adjusted-fitness individual))))
 ;; Loop through population normalising the adjusted fitness.
 (dotimes (individual-index (length population))
 (let ((individual (aref population individual-index)))
 (setf (individual-normalised-fitness individual)
 (/ (individual-adjusted-fitness individual)
 sum-of-adjusted-fitnesses))))))

(defun sort-population-by-fitness (population)
 "Sorts the population according to normalised fitness.
 The population array is destructively modified."
 (setq population (stable-sort population
				'>
				:key 'individual-normalised-fitness)))

;;; The "setq" is needed because "population" would continue to point to the
;;; same cons cell, which might not now be at the head of the list.

(defun breed-new-population
 (population new-programs
 adf0-function-set adf0-argument-map adf0-terminal-set
 adf1-function-set adf1-argument-map adf1-terminal-set
 rpb0-function-set rpb0-argument-map rpb0-terminal-set)
 "Controls the actual breeding of the new population.
 Loops through the population executing each operation
 (e.g., crossover, fitness-proportionate reproduction,
 mutation) until it has reached the specified fraction.
 The new programs that are created are stashed in new-programs
 until we have exhausted the population, then we copy the new
 individuals into the old ones, thus avoiding consing a new
 bunch of individuals."
 (let ((population-size (length population)))
 (do ((index 0)
 (fraction 0 (/ index population-size)))
 ((>= index population-size))
 (let ((individual-1
 (find-individual population)))
 (cond ((and (< index (- population-size 1))
 (< fraction
 (+ *crossover-at-function-point-fraction*
 crossover-at-any-point-fraction)))
 (multiple-value-bind (new-male new-female)
 (funcall
 (if (< fraction
 crossover-at-function-point-fraction)
 'crossover-at-function-points
 'crossover-at-any-points)
 individual-1
 (find-individual population))
 (aset new-programs index new-male)
 (aset new-programs (+ 1 index) new-female))
 (incf index 2))
 ((< fraction
 (+ *reproduction-fraction*
 crossover-at-function-point-fraction
 crossover-at-any-point-fraction))
 (aset new-programs index individual-1)
 (incf index 1))
 (:otherwise
	 (aset new-programs index
		 (mutate individual-1
			 adf0-function-set adf0-argument-map
 adf0-terminal-set
 adf1-function-set adf1-argument-map
 adf1-terminal-set
 rpb0-function-set rpb0-argument-map
 rpb0-terminal-set))
	 (incf index 1)))))
 (dotimes (index population-size)
 (setf (individual-program (aref population index))
 (aref new-programs index)))))

(defun find-individual (population)
 "Finds an individual in the population according to the
 defined selection method."
 (ecase *method-of-selection*
 (:tournament (find-individual-using-tournament-selection
 population))
 (:fitness-proportionate-with-over-selection
 (find-fitness-proportionate-individual
 (random-floating-point-number-with-over-selection
 population)
 population))
 (:fitness-proportionate
 (find-fitness-proportionate-individual
 (random-floating-point-number 1.0) population))))

(defun random-floating-point-number-with-over-selection (population)
 "Picks a random number between 0.0 and 1.0 biased using the
 over-selection method."
 (let ((pop-size (length population)))
 (when (< pop-size 1000)
 (error "A population size of %d is too small ~
 for over-selection." pop-size))
 (let ((boundary (/ 320.0 pop-size)))
 ;; The boundary between the over and under selected parts.
 (if (< (random-floating-point-number 1.0) 0.8)
 ;; 80% are in the over-selected part
 (random-floating-point-number boundary)
 (+ boundary
	 (random-floating-point-number (- 1.0 boundary)))))))

(defun pick-k-random-individual-indices (k max)
 "Returns a list of K random numbers between 0 and (- max 1)."
 (let ((numbers nil))
 (loop for number = (random-integer max)
 unless (member* number numbers :test 'eql)
 do (push number numbers)
 until (= (length numbers) k))
 numbers))

(defun find-individual-using-tournament-selection (population)
 "Picks *tournament-size* individuals from the population at
 random and returns the best one."
 (let ((numbers (pick-k-random-individual-indices
 tournament-size (length population))))
 (loop with best = (aref population (first numbers))
 with best-fitness
 = (individual-standardised-fitness best)
 for number in (rest numbers)
 for individual = (aref population number)
 for this-fitness
 = (individual-standardised-fitness individual)
 when (< this-fitness best-fitness)
 do (setq best individual)
 (setq best-fitness this-fitness)
 finally (return (individual-program best)))))

(defun find-fitness-proportionate-individual
 (after-this-fitness population)
 "Finds an individual in the specified population whose
 normalised fitness is greater than the specified value.
 All we need to do is count along the population from the
 beginning adding up the fitness until we get past the
 specified point."
 (let ((sum-of-fitness 0.0)
 (population-size (length population)))
 (let ((index-of-selected-individual
 (do ((index 0 (+ index 1)))
 ;; Exit condition
 ((or (>= index population-size)
 (>= sum-of-fitness after-this-fitness))
 (if (>= index population-size)
 (- (length population) 1)
 (- index 1)))
 ;; Body. Sum up the fitness values.
 (incf sum-of-fitness
 (individual-normalised-fitness
 (aref population index))))))
 (individual-program
 (aref population index-of-selected-individual)))))

(defun select-branch (within-program)
 "Returns two values:
 - A keyword in {:ADF0, :ADF1, :RPB0} to denote a branch selected
 at random. The selection of the branch is biased according to
 the number of points in that branch.
 - The subtree for the branch selected."
 (let ((adf0 (ADF-program-adf0 within-program))
 (adf1 (ADF-program-adf1 within-program))
 (rpb0 (ADF-program-rpb0 within-program)))
 (let ((adf0-points (count-crossover-points adf0))
 (adf1-points (count-crossover-points adf1))
 (rpb0-points (count-crossover-points rpb0)))
 (let ((selected-point
 (random-integer
 (+ adf0-points adf1-points rpb0-points))))
 (cond ((< selected-point adf0-points) :adf0)�
 ((< selected-point (+ adf1-points adf0-points))
 :adf1)
 (t :rpb0))))))

(defun ADF-program-branch (branch program)
 "Returns a branch from Program selected by the keyword Branch."
 (ecase branch
 (:adf0 (ADF-program-adf0 program))
 (:adf1 (ADF-program-adf1 program))
 (:rpb0 (ADF-program-rpb0 program))))

(defun copy-individual-substituting-branch
 (branch new-branch-subtree program-to-copy)
 "Makes a copy of Program-To-Copy only substituting
 the branch selected by Branch with the new branch
 subtree created by crossover."
 (make-ADF-program
 :adf0 (if (eq :adf0 branch)
 new-branch-subtree
 (copy-tree (ADF-program-adf0 program-to-copy)))
 :adf1 (if (eq :adf1 branch)
 new-branch-subtree
 (copy-tree (ADF-program-adf1 program-to-copy)))
 :rpb0 (if (eq :rpb0 branch)
 new-branch-subtree
 (copy-tree (ADF-program-rpb0 program-to-copy)))))

(defun crossover-selecting-branch
 (how-to-crossover-function male female)
 "Performs crossover on the programs Male and Female by calling
 the function How-To-Crossover-Function, which will cause it
 to perform crossover at either function points or at any point.
 The crossover happens between a compatible pair of branches
 in the two parents.
 Once the crossover has happened the function returns two new
 individuals to insert into the next generation."
 (let ((branch (select-branch male)))
 (multiple-value-bind (new-male-branch new-female-branch)
 (funcall how-to-crossover-function
 (ADF-program-branch branch male)
 (ADF-program-branch branch female))
 (values (copy-individual-substituting-branch
 branch new-male-branch male)
 (copy-individual-substituting-branch
 branch new-female-branch female)))))

(defun crossover-at-any-points (male female)
 "Performs crossover on the programs at any point in the trees."
 (crossover-selecting-branch
 'crossover-at-any-points-within-branch male female))

(defun crossover-at-any-points-within-branch (male female)
 "Performs crossover on the program branches at any point in the subtrees."
 ;; Pick points in the respective trees on which to perform the crossover.
 (let ((male-point
 (random-integer (count-crossover-points male)))
 (female-point
 (random-integer (count-crossover-points female))))
 ;; First, copy the trees because we destructively modify the
 ;; new individuals to do the crossover. Reselection is
 ;; allowed in the original population. Not copying would
 ;; cause the individuals in the old population to
 ;; be modified.
 (let ((new-male (list (copy-tree male)))
 (new-female (list (copy-tree female))))
 ;; Get the pointers to the subtrees indexed by male-point
 ;; and female-point
 (multiple-value-bind (male-subtree-pointer male-fragment)
 (get-subtree (first new-male) new-male male-point)
 (multiple-value-bind
 (female-subtree-pointer female-fragment)
 (get-subtree
 (first new-female) new-female female-point)
 ;; Modify the new individuals by smashing in the
 ;; (copied) subtree from the old individual.
 (setf (first male-subtree-pointer) female-fragment)
 (setf (first female-subtree-pointer) male-fragment)))
 ;; Make sure that the new individuals aren't too big.
 (validate-crossover male new-male female new-female))))

(defun count-crossover-points (program)
 "Counts the number of points in the tree (program).
 This includes functions as well as terminals."
 (if (consp program)
 (+ 1 (reduce '+ (mapcar 'count-crossover-points (rest program))))
 1))
;;; This would be worth rewriting iteratively for speed, but due to the
;;; inherent recursive nature of tree traversal, I have left all such
;;; functions unnaltered.

(defun max-depth-of-tree (tree)
 "Returns the depth of the deepest branch of the
 tree (program)."
 (if (consp tree)
 (+ 1 (if (rest tree)
 (apply 'max (mapcar 'max-depth-of-tree (rest tree)))
 0))
 1))

(defun get-subtree (tree pointer-to-tree index)
 "Given a tree or subtree, a pointer to that tree/subtree and
 an index return the component subtree that is numbered by
 Index. We number left to right, depth first."
 (if (= index 0)
 (values pointer-to-tree (copy-tree tree) index)
 (if (consp tree)
 (do* ((tail (rest tree) (rest tail))
 (argument (first tail) (first tail)))
 ((not tail) (values nil nil index))
 (multiple-value-bind
 (new-pointer new-tree new-index)
 (get-subtree argument tail (- index 1))
 (if (= new-index 0)
 (return
 (values new-pointer new-tree new-index))
 (setq index new-index))))
 (values nil nil index))))

(defun validate-crossover (male new-male female new-female)
 "Given the old and new males and females from a crossover
 operation check to see whether we have exceeded the maximum
 allowed depth. If either of the new individuals has exceeded
 the maxdepth then the old individual is used."
 (let ((male-depth (max-depth-of-tree (first new-male)))
 (female-depth (max-depth-of-tree (first new-female))))
 (values
 (if (or (= 1 male-depth)
 (>= male-depth ;; >= counts 1 depth for root above
 ;; branches.
 max-depth-for-individuals-after-crossover))
 male
 (first new-male))
 (if (or (= 1 female-depth)
 (>= female-depth
 max-depth-for-individuals-after-crossover))
 female
 (first new-female)))))

(defun crossover-at-function-points (male female)
 "Performs crossover on the two programs at a function
 (internal) point in a randomly selected branch of the trees."
 (crossover-selecting-branch
 'crossover-at-function-points-within-branch male female))

(defun crossover-at-function-points-within-branch (male female)
 "Performs crossover on the two program branches at a function
 (internal) point in the trees."
 ;; Pick the function (internal) points in the respective trees
 ;; on which to perform the crossover.
 (let ((male-point
 (random-integer (count-function-points male)))
 (female-point
 (random-integer (count-function-points female))))
 ;; Copy the trees because we destructively modify the new
 ;; individuals to do the crossover and Reselection is
 ;; allowed in the original population. Not copying would
 ;; cause the individuals in the old population to
 ;; be modified.
 (let ((new-male (list (copy-tree male)))
 (new-female (list (copy-tree female))))
 ;; Get the pointers to the subtrees indexed by male-point
 ;; and female-point
 (multiple-value-bind (male-subtree-pointer male-fragment)
 (get-function-subtree
 (first new-male) new-male male-point)
 (multiple-value-bind
 (female-subtree-pointer female-fragment)
 (get-function-subtree
 (first new-female) new-female female-point)
 ;; Modify the new individuals by smashing in
 ;; the (copied) subtree from the old individual.
 (setf (first male-subtree-pointer) female-fragment)
 (setf (first female-subtree-pointer) male-fragment)))
 ;; Make sure that the new individuals aren't too big.
 (validate-crossover male new-male female new-female))))

(defun count-function-points (program)
 "Counts the number of function (internal) points
 in the program."
 (if (consp program)
 (+ 1 (reduce '+ (mapcar 'count-function-points
 (rest program))))
 0))

(defun get-function-subtree (tree pointer-to-tree index)
 "Given a tree or subtree, a pointer to that tree/subtree and
 an index return the component subtree that is labeled with
 an internal point that is numbered by Index. We number left
 to right, depth first."
 (if (= index 0)
 (values pointer-to-tree (copy-tree tree) index)
 (if (consp tree)
 (do* ((tail (rest tree) (rest tail))
 (argument (first tail) (first tail)))
 ((not tail) (values nil nil index))
 (multiple-value-bind
 (new-pointer new-tree new-index)
 (if (consp argument)
 (get-function-subtree
 argument tail (- index 1))
 (values nil nil index))
 (if (= new-index 0)
 (return
 (values new-pointer new-tree new-index))
 (setq index new-index))))
 (values nil nil index))))

(defun mutate (program
 adf0-function-set adf0-argument-map adf0-terminal-set
 adf1-function-set adf1-argument-map adf1-terminal-set
 rpb0-function-set rpb0-argument-map rpb0-terminal-set)
 "Mutates the argument program by picking a random point in
 the tree and substituting in a brand new subtree created in
 the same way that we create the initial random population."
 ;; Pick the mutation point.
 (multiple-value-bind (branch branch-tree)
 (select-branch program)
 (let ((mutation-point
 (random-integer (count-crossover-points branch-tree)))
 ;; Create a brand new subtree.
 (new-subtree
 (create-individual-subtree
 (case branch
 (:adf0 adf0-function-set)
 (:adf1 adf1-function-set)
 (:rpb0 rpb0-function-set))
 (case branch
 (:adf0 adf0-argument-map)
 (:adf1 adf1-argument-map)
 (:rpb0 rpb0-argument-map))
 (case branch
 (:adf0 adf0-terminal-set)
 (:adf1 adf1-terminal-set)
 (:rpb0 rpb0-terminal-set))
 max-depth-for-new-subtrees-in-mutants t nil)))
 (let ((new-branch (list (copy-tree branch-tree))))
 (multiple-value-bind (subtree-pointer fragment)
 ;; Get the pointer to the mutation point.
 (get-subtree (first new-branch)
 new-branch mutation-point)
 ;; Not interested in what we're snipping out.
 (declare (ignore fragment))
 ;; Smash in the new subtree.
 (setf (first subtree-pointer) new-subtree))
 (values (copy-individual-substituting-branch
 branch (first new-branch) program)
 new-subtree)))))

See A.2.2.1 for the code for the random-number generator.
�A.2.3 Problem Specific Code

The code for all problems except Even-4- and 5-Parity problems is a straight translation from Koza. I have written all programs, except for the Symbolic Regression one immediately below, in two forms; a file called <name>.el for use with the basic kernel and the In-kernel Pygmy Algorithm, and one called <name>.P.el for use with Ryan’s version of the Pygmy Algorithm. These two files differ in the following ways:–
<name>.el has the named feature

(require 'kernel)

<name>.P.el has instead:–

(require 'TruePygmy)
(defconst *max-size-of-individual* <max-size>)

where:–
Problem�Maximum Size
of Individuals��Squad-car�40��3-Majority-On�15��Even-3-Parity�30��Even-4-Parity�50��Even-4-Parity�100��
The files with ADFs are similar, except that <name>.P.A.el has the named feature:

(require 'TruePygmy.A)

The two files differ also in their fitness functions. The squad-car problem is dealt with separately; for the Boolean problems the “True Pygmy” version includes in the lets at the start of evaluate-standardised-fitness-for-<name> the local variables raw-pygmy-fitness and standardised-pygmy-fitness.
The basic version of this function in each file concludes with:–
(values standardised-fitness hits)))

whilst the “True Pygmy” version has instead:–

(setq raw-pygmy-fitness
	 (+ (* 0.8 raw-fitness)
	 (* 0.2 (- *max-size-of-individual*
 (count-crossover-points program)))))
(setq standardised-pygmy-fitness (- <2x> raw-pygmy-fitness))
 (values standardised-fitness
	 standardised-pygmy-fitness
	 hits)))

Where ‘x’ is the arity of the Boolean function – 3, 4 or 5 in these problems.
Finally, the <name>.P.el version of each file lacks the parameters *fitness-proportionate-reproduction-fraction*, *crossover-at-any-point-fraction* and *max-depth-for-new-subtrees-in-mutants*.
�1. Symbolic Regression.

(i) Without ADFs: regression
;;; Symbolic Regression Problem for 0.5x**2

(require 'CLify)
(require 'kernel)
(require 'fast-eval)
(defvar x)

(defun define-terminal-set-for-REGRESSION ()
 '(x :floating-point-random-constant))�

(defun define-function-set-for-REGRESSION ()
 (values '(+ - * %)
 '(2 2 2 2)))

(defun % (numerator denominator)
 "The Protected Division Function"
;;; Note that this overrides the built-in "rem" function. If needed,
;;; "mod" will have to be used instead.
 (if (= 0 denominator) 1 (/ numerator denominator)))

(defstruct REGRESSION-fitness-case
 independent-variable
 target)

(defun define-fitness-cases-for-REGRESSION ()
 (let (fitness-cases x this-fitness-case)
 (setq fitness-cases (make-vector *number-of-fitness-cases* nil))�
 (format* t "Fitness cases")	
 (dotimes (index *number-of-fitness-cases*)
 (setq x (/ (float index) *number-of-fitness-cases*))
 ;; Typecasting required otherwise integer division returns zero!
 (setq this-fitness-case (make-REGRESSION-fitness-case))
 (aset fitness-cases index this-fitness-case)
 (setf (REGRESSION-fitness-case-independent-variable
 this-fitness-case)
 x)
 (setf (REGRESSION-fitness-case-target
 this-fitness-case)
 (* 0.5 x x))
 (format* t " %-8d%-8g%-8g"
 index
 x
 (REGRESSION-fitness-case-target this-fitness-case)))
 fitness-cases))

(defun REGRESSION-wrapper (result-from-program)
 result-from-program)

(defun evaluate-standardised-fitness-for-REGRESSION
 (program fitness-cases)
 (let (raw-fitness hits standardised-fitness x target-value
 difference value-from-program this-fitness-case)
 (setq raw-fitness 0.0)
 (setq hits 0)
 (dotimes (index *number-of-fitness-cases*)
 (setq this-fitness-case (aref fitness-cases index))
 (setq x
 (REGRESSION-fitness-case-independent-variable
 this-fitness-case))
 (setq target-value
 (REGRESSION-fitness-case-target
 this-fitness-case))
 (setq value-from-program
 (REGRESSION-wrapper (eval program)))
 (setq difference (abs (- target-value
 value-from-program)))
 (incf raw-fitness difference)
 (when (< difference 0.01) (incf hits)))
 (setq standardised-fitness raw-fitness)
 (values standardised-fitness hits)))

(defun define-parameters-for-REGRESSION ()
 (setq *number-of-fitness-cases* 10)
 (setq *max-depth-for-new-individuals* 6)
 (setq *max-depth-for-individuals-after-crossover* 17)
 (setq *fitness-proportionate-reproduction-fraction* 0.1)
 (setq *crossover-at-any-point-fraction* 0.2)
 (setq *crossover-at-function-point-fraction* 0.7)
 (setq *max-depth-for-new-subtrees-in-mutants* 4)
 (setq *method-of-selection* :fitness-proportionate)
 (setq *method-of-generation* :ramped-half-and-half))

(defun define-termination-criterion-for-REGRESSION
 (current-generation
 maximum-generations
 best-standardised-fitness
 best-hits)
 (declare (ignore best-standardised-fitness));
 (or (>= current-generation maximum-generations)
 (>= best-hits *number-of-fitness-cases*)))

(defun REGRESSION ()
 (values 'define-function-set-for-REGRESSION
 'define-terminal-set-for-REGRESSION
 'define-fitness-cases-for-REGRESSION
 'evaluate-standardised-fitness-for-REGRESSION
 'define-parameters-for-REGRESSION
 'define-termination-criterion-for-REGRESSION))

�
(ii) With ADFs: regression.A

;;; Symbolic Regression Problem for 0.5x**2

(require 'CLify)
(require 'ADF-kernel)

(defvar x)
(defvar arg0)
(defvar arg1)
(defvar arg2)

(defun define-terminal-set-for-REGRESSION-adf0 ()
 '(arg0 arg1))

(defun define-function-set-for-REGRESSION-adf0 ()
 (values '(+ - * %)
 '(2 2 2 2)))

(defun define-terminal-set-for-REGRESSION-adf1 ()
 '(arg0 arg1 arg2))

(defun define-function-set-for-REGRESSION-adf1 ()
 (values '(+ - * % ADF0)
 '(2 2 2 2 2)))

(defun define-terminal-set-for-REGRESSION-rpb0 ()
 '(x :floating-point-random-constant))

(defun define-function-set-for-REGRESSION-rpb0 ()
 (values '(+ - * % ADF0 ADF1)
 '(2 2 2 2 2 3)))

(defvar *adf0*)

(defun ADF0 (arg0 arg1)
 (eval *adf0*))

(defvar *adf1*)

(defun ADF1 (arg0 arg1 arg2)
 (eval *adf1*))

The definitions of %, the structure REGRESSION-fitness-case, define-fitness-cases-for-REGRESSION and REGRESSION-wrapper are the same as in the version without ADFs.

(defun evaluate-standardised-fitness-for-REGRESSION
 (program fitness-cases)
 (let (raw-fitness hits standardised-fitness x target-value
 difference value-from-program this-fitness-case rpb0)
 (setq raw-fitness 0.0)
 (setq hits 0)
 (setq rpb0 (ADF-program-rpb0 program))
 (setq *adf0* (ADF-program-adf0 program))
 (setq *adf1* (ADF-program-adf1 program))
 (dotimes (index *number-of-fitness-cases*)
 (setq this-fitness-case (aref fitness-cases index))
 (setq x (REGRESSION-fitness-case-independent-variable
 this-fitness-case))
 (setq target-value (REGRESSION-fitness-case-target
 this-fitness-case))
 (setq value-from-program (REGRESSION-wrapper (eval rpb0)))
 (setq difference (abs (- target-value value-from-program)))
 (incf raw-fitness difference)
 (when (< difference 0.01) (incf hits)))
 (setq standardised-fitness raw-fitness)
 (values standardised-fitness hits)))

(defun define-parameters-for-REGRESSION ()
 (setq *number-of-fitness-cases* 10)
 (setq *max-depth-for-new-individuals* 6)
 (setq *max-depth-for-new-subtrees-in-mutants* 4)
 (setq *max-depth-for-individuals-after-crossover* 17)
 (setq *reproduction-fraction* 0.1)
 (setq *crossover-at-any-point-fraction* 0.2)
 (setq *crossover-at-function-point-fraction* 0.7)
 (setq *method-of-selection* :tournament)
 (setq *tournament-size* 7)
 (setq *method-of-generation* :ramped-half-and-half))

The definition for define-termination-criterion-for-REGRESSION is the same as in the version without ADFs.

(defun REGRESSION ()
 (values 'define-function-set-for-REGRESSION-adf0
 'define-function-set-for-REGRESSION-adf1
 'define-function-set-for-REGRESSION-rpb0
 'define-terminal-set-for-REGRESSION-adf0
 'define-terminal-set-for-REGRESSION-adf1
 'define-terminal-set-for-REGRESSION-rpb0
 'define-fitness-cases-for-REGRESSION
 'evaluate-standardised-fitness-for-REGRESSION
 'define-parameters-for-REGRESSION
 'define-termination-criterion-for-REGRESSION))
�2. The Discrete Non-Hamstrung Squad Car Problem: squadcar, squadcar.P

;;; Discrete non-hamstrung squadcar problem

(require 'CLify)
(require 'kernel)

(defconst :terminate-fitness-case-simulation
	 ':terminate-fitness-case-simulation)
(defconst :scored-a-hit ':scored-a-hit)

(defvar x)
(defvar y)

(defun define-terminal-set-for-NON-HAMSTRUNG-SQUAD-CAR ()
 '((goN) (goE) (goS) (goW)))

(defun define-function-set-for-NON-HAMSTRUNG-SQUAD-CAR ()
 (values '(ifX ifY)
 '(3 3)))

(defvar *speed-ratio* 2)

(defun goN () (setq y (- y *speed-ratio*)))
(defun goS () (setq y (+ y *speed-ratio*)))
(defun goE () (setq x (- x *speed-ratio*)))
(defun goW () (setq x (+ x *speed-ratio*)))

(defmacro ifX (lt-0-arg eq-0-arg gt-0-arg)
 `(cond ((>= x *speed-ratio*) (eval ',gt-0-arg))
 ((<= x (- *speed-ratio*)) (eval ',lt-0-arg))
 (t (eval ',eq-0-arg))))

(defmacro ifY (lt-0-arg eq-0-arg gt-0-arg)
 `(cond ((>= y *speed-ratio*) (eval ',gt-0-arg))
 ((<= y (- *speed-ratio*)) (eval ',lt-0-arg))
 (t (eval ',eq-0-arg))))

(defmacro ifX-evader (lt-0-arg eq-0-arg gt-0-arg)
 `(cond ((>= x 1) (eval ',gt-0-arg))
 ((<= x -1) (eval ',lt-0-arg))
 (t (eval ',eq-0-arg))))

(defmacro ifY-evader (lt-0-arg eq-0-arg gt-0-arg)
 `(cond ((>= y 1) (eval ',gt-0-arg))
 ((<= y -1) (eval ',lt-0-arg))
 (t (eval ',eq-0-arg))))

(defun goN-evader () (setq y (+ y 1)))
(defun goS-evader () (setq y (- y 1)))
(defun goE-evader () (setq x (+ x 1)))
(defun goW-evader () (setq x (- x 1)))

(defstruct NON-HAMSTRUNG-SQUAD-CAR-fitness-case
 x
 y)

(defun define-fitness-cases-for-NON-HAMSTRUNG-SQUAD-CAR ()
 (let (fitness-case fitness-cases index)
 (setq fitness-cases (make-vector *number-of-fitness-cases* nil))
 (format* t "Fitness cases")
 (setq index 0)
 (dolist (x '(-5 5))
 (dolist (y '(-5 5))
 (setq fitness-case
 (make-NON-HAMSTRUNG-SQUAD-CAR-fitness-case))
 (setf (NON-HAMSTRUNG-SQUAD-CAR-fitness-case-x fitness-case)
 x)
 (setf (NON-HAMSTRUNG-SQUAD-CAR-fitness-case-y fitness-case)
 y)
 (aset fitness-cases index fitness-case)
 (incf index)
 (format* t "%3d%10S%5S" index x y)))
 fitness-cases))

(defun NON-HAMSTRUNG-SQUAD-CAR-wrapper (argument)
 argument)

(defun evaluate-standardised-fitness-for-NON-HAMSTRUNG-SQUAD-CAR
 (program fitness-cases)
 (let (raw-fitness hits standardised-fitness
 e-delta-x e-delta-y p-delta-x p-delta-y
 time-tally old-x old-y
 criterion

squadcar.el continues:–

 (number-of-time-steps 50))

squadcar.P.el has instead:–

	 reward max-reward pygmy-fitness
 (number-of-time-steps 50))
 (setq max-reward (* *number-of-fitness-cases* number-of-time-steps))

Both files continue:–

 (setq criterion *speed-ratio*)
 (setq raw-fitness 0.0)
 (setq hits 0)
 (dotimes (icase *number-of-fitness-cases*)
 (setq x (NON-HAMSTRUNG-SQUAD-CAR-fitness-case-x
 (aref fitness-cases icase)))
 (setq y (NON-HAMSTRUNG-SQUAD-CAR-fitness-case-y
 (aref fitness-cases icase)))
 (setq time-tally 0.0)
 (catch :terminate-fitness-case-simulation
 (dotimes (istep number-of-time-steps)
 (setq old-x x)
 (setq old-y y)
 (when (and (<= (abs x) criterion)
 (<= (abs y) criterion))
 (incf hits)
 (throw :terminate-fitness-case-simulation
 :scored-a-hit))
 ;; Note: (x,y) is position of the Evader.
 ;; Changing the position of EVADER changes X and Y.
 ;; Execute evader player for this time step
 (eval '(ifY-evader
 (goS-evader)
 (ifX-evader (goW-evader)
 (goS-evader) (goE-evader))
 (goN-evader)))
 (setq e-delta-x (- old-x x))
 (setq e-delta-y (- old-y y))
 ;; Reset position for Pursuer player.
 (setq x old-x)
 (setq y old-y)
 (NON-HAMSTRUNG-SQUAD-CAR-wrapper (eval program))
 (setq p-delta-x (- old-x x))
 (setq p-delta-y (- old-y y))
 ;; Integrate x and y changes.
 (setq x (- old-x (+ p-delta-x e-delta-x)))
 (setq y (- old-y (+ p-delta-y e-delta-y)))
 (incf time-tally)))
 (incf raw-fitness time-tally))
 (setq standardised-fitness raw-fitness)

squadcar.el finishes the function with:–

 (values standardised-fitness hits)))

squadcar.P.el has instead:–

 (setq reward (- max-reward raw-fitness))
 (setq pygmy-fitness (+ (* 0.8 reward)
			 (* 0.2 (- *max-size-of-individual*
				 (count-crossover-points program)))))
 (values standardised-fitness pygmy-fitness hits)))

Both files continue:–

(defun define-parameters-for-NON-HAMSTRUNG-SQUAD-CAR ()
 (setq *number-of-fitness-cases* 4)
 (setq *max-depth-for-new-individuals* 6)
 (setq *max-depth-for-new-subtrees-in-mutants* 4)
 (setq *max-depth-for-individuals-after-crossover* 17)
 (setq *fitness-proportionate-reproduction-fraction* 0.1)
 (setq *crossover-at-any-point-fraction* 0.2)
 (setq *crossover-at-function-point-fraction* 0.7)
 (setq *method-of-selection* :fitness-proportionate)
 (setq *method-of-generation* :ramped-half-and-half))

(defun define-termination-criterion-for-NON-HAMSTRUNG-SQUAD-CAR
 (current-generation
 maximum-generations
 best-standardised-fitness
 best-hits)
 (declare (ignore best-hits best-standardised-fitness))
 (or (>= current-generation maximum-generations)
 (= best-hits *number-of-fitness-cases*)))
;;; To prevent runs from taking forever I have changed the termination
;;; criterion from running to completion to achieving the maximal number
;;; of hits.

(defun NON-HAMSTRUNG-SQUAD-CAR ()
 (values
 'define-function-set-for-NON-HAMSTRUNG-SQUAD-CAR
 'define-terminal-set-for-NON-HAMSTRUNG-SQUAD-CAR
 'define-fitness-cases-for-NON-HAMSTRUNG-SQUAD-CAR
 'evaluate-standardised-fitness-for-NON-HAMSTRUNG-SQUAD-CAR
 'define-parameters-for-NON-HAMSTRUNG-SQUAD-CAR
 'define-termination-criterion-for-NON-HAMSTRUNG-SQUAD-CAR))
�3. Boolean 3-Majority-On Problem: 3 maj on, 3 maj on.P

;;; Boolean 3-Majority-on Problem
(require 'CLify)
(require 'kernel)

(defvar d0)
(defvar d1)
(defvar d2)

(defun define-terminal-set-for-MAJORITY-ON ()
 '(d2 d1 d0))

(defun define-function-set-for-MAJORITY-ON ()
 (values '(and and or not)
 '(2 3 2 1)))

(defstruct MAJORITY-ON-fitness-case
 d0
 d1
 d2
 target)

(defun define-fitness-cases-for-MAJORITY-ON ()
 (let (fitness-case fitness-cases index)
 (setq fitness-cases (make-vector *number-of-fitness-cases* nil))
 (format* t "Fitness cases")
 (setq index 0)
 (dolist (d2 '(t nil))
 (dolist (d1 '(t nil))
 (dolist (d0 '(t nil))
 (setq fitness-case
 (make-MAJORITY-ON-fitness-case))
 (setf (MAJORITY-ON-fitness-case-d0 fitness-case) d0)
 (setf (MAJORITY-ON-fitness-case-d1 fitness-case) d1)
 (setf (MAJORITY-ON-fitness-case-d2 fitness-case) d2)
 (setf (MAJORITY-ON-fitness-case-target fitness-case)
 (or (and d2 d1 (not d0))
 (and d2 (not d1) d0)
 (or (and (not d2) d1 d0)
 (and d2 d1 d0))))
 (aset fitness-cases index fitness-case)
 (incf index)
 (format* t
 "%3d%6s%6s%6s%6s"
 index d2 d1 d0
 (MAJORITY-ON-fitness-case-target
 fitness-case)))))
 fitness-cases))

(defun MAJORITY-ON-wrapper (result-from-program)
 result-from-program)

(defun evaluate-standardised-fitness-for-MAJORITY-ON
 (program fitness-cases)
 (let (raw-fitness hits standardised-fitness target-value
 match-found value-from-program fitness-case)
 (setq raw-fitness 0.0)
 (setq hits 0)
 (dotimes (index *number-of-fitness-cases*)
 (setq fitness-case (aref fitness-cases index))
 (setq d0 (MAJORITY-ON-fitness-case-d0 fitness-case))
 (setq d1 (MAJORITY-ON-fitness-case-d1 fitness-case))
 (setq d2 (MAJORITY-ON-fitness-case-d2 fitness-case))
 (setq target-value
 (MAJORITY-ON-fitness-case-target fitness-case))
 (setq value-from-program
 (MAJORITY-ON-wrapper (eval program)))
 (setq match-found (eq target-value value-from-program))
 (incf raw-fitness (if match-found 1.0 0.0))
 (when match-found (incf hits)))
 (setq standardised-fitness (- 8 raw-fitness))
 (values standardised-fitness hits)))

(defun define-parameters-for-MAJORITY-ON ()
 (setq *number-of-fitness-cases* 8)
 (setq *max-depth-for-new-individuals* 6)
 (setq *max-depth-for-new-subtrees-in-mutants* 4)
 (setq *max-depth-for-individuals-after-crossover* 17)
 (setq *fitness-proportionate-reproduction-fraction* 0.1)
 (setq *crossover-at-any-point-fraction* 0.2)
 (setq *crossover-at-function-point-fraction* 0.7)
 (setq *method-of-selection* :fitness-proportionate)
 (setq *method-of-generation* :ramped-half-and-half))

(defun define-termination-criterion-for-MAJORITY-ON
 (current-generation
 maximum-generations
 best-standardised-fitness
 best-hits)
 (declare (ignore best-standardised-fitness))
 (or (>= current-generation maximum-generations)
 (>= best-hits *number-of-fitness-cases*)))

(defun MAJORITY-ON ()
 (values 'define-function-set-for-MAJORITY-ON
 'define-terminal-set-for-MAJORITY-ON
 'define-fitness-cases-for-MAJORITY-ON
 'evaluate-standardised-fitness-for-MAJORITY-ON
 'define-parameters-for-MAJORITY-ON
 'define-termination-criterion-for-MAJORITY-ON))
�4. Boolean Even-Parity Problems

The Even-5-Parity problem was a directly translation from Koza. The Even-3-Parity problem is given below; for reasons of space the Even-4-Parity and Even-5-Parity problems are omitted. The only differences between the three programs are the number of terminals involved (d0, d1, d2, &c) and consequently the number of nested loops that go with them; the value from which the raw fitness is subtracted to derive the standardised fitness (2x, where x is the arity of the problem); and the maximum size of individuals, given above in A.2.3.0.

(i). Without ADFs: even3, even3.P, even4, even4.P, even5, even5.P

;;; Boolean Even-3-Parity Problem

(require 'CLify)
(require 'kernel)

(defvar d0)
(defvar d1)
(defvar d2)

(defun nand (a b) (not (and a b)))

(defun nor (a b) (not (or a b)))

(defun define-terminal-set-for-EVEN-3-PARITY ()
 '(d2 d1 d0))

(defun define-function-set-for-EVEN-3-PARITY ()
 (values '(and or nand nor)
 '(2 2 2 2)))

(defstruct EVEN-3-PARITY-fitness-case
 d0
 d1
 d2
 target)

(defun xor (&rest args)
 (let ((result nil))
 (dolist (value args result)
 (when value (setq result (not result))))))

(defun define-fitness-cases-for-EVEN-3-PARITY ()
 (let (fitness-case fitness-cases index)
 (setq fitness-cases (make-vector *number-of-fitness-cases* nil))
 (format* t "Fitness cases")
 (setq index 0)
 (dolist (d2 '(t nil))
 (dolist (d1 '(t nil))
 (dolist (d0 '(t nil))
 (setq fitness-case
 (make-EVEN-3-PARITY-fitness-case))
 (setf (EVEN-3-PARITY-fitness-case-d0 fitness-case) d0)
 (setf (EVEN-3-PARITY-fitness-case-d1 fitness-case) d1)
 (setf (EVEN-3-PARITY-fitness-case-d2 fitness-case) d2)
 (setf (EVEN-3-PARITY-fitness-case-target fitness-case)
 (not (xor d2 d1 d0)))
 (setf (aref fitness-cases index) fitness-case)
 (incf index)
 (format* t
 " %3d %110s%10s%10s%15s"
 index d2 d1 d0
 (EVEN-3-PARITY-fitness-case-target
 fitness-case)))))
 fitness-cases))

(defun EVEN-3-PARITY-wrapper (result-from-program)
 result-from-program)

(defun evaluate-standardised-fitness-for-EVEN-3-PARITY
 (program fitness-cases)
 (let (raw-fitness hits standardised-fitness target-value
 match-found value-from-program fitness-case)
 (setq raw-fitness 0.0)
 (setq hits 0)
 (dotimes (index *number-of-fitness-cases*)
 (setq fitness-case (aref fitness-cases index))
 (setf d0 (EVEN-3-PARITY-fitness-case-d0 fitness-case))
 (setf d1 (EVEN-3-PARITY-fitness-case-d1 fitness-case))
 (setf d2 (EVEN-3-PARITY-fitness-case-d2 fitness-case))
 (setq target-value
 (EVEN-3-PARITY-fitness-case-target fitness-case))
 (setq value-from-program
 (EVEN-3-PARITY-wrapper (eval program)))
 (setq match-found (eq target-value value-from-program))
 (incf raw-fitness (if match-found 1.0 0.0))
 (when match-found (incf hits)))
 (setq standardised-fitness (- 8 raw-fitness))
 (values standardised-fitness hits)))

(defun define-parameters-for-EVEN-3-PARITY ()
 (setq *number-of-fitness-cases* 8)
 (setq *max-depth-for-new-individuals* 5)
 (setq *max-depth-for-new-subtrees-in-mutants* 4)
 (setq *max-depth-for-individuals-after-crossover* 17)
 (setq *fitness-proportionate-reproduction-fraction* 0.1)
 (setq *crossover-at-any-point-fraction* 0.2)
 (setq *crossover-at-function-point-fraction* 0.7)
 (setq *method-of-selection* :tournament)
 (setq *method-of-generation* :ramped-half-and-half))

(defun define-termination-criterion-for-EVEN-3-PARITY
 (current-generation
 maximum-generations
 best-standardised-fitness
 best-hits)
 (declare (ignore best-standardised-fitness))
 (or (>= current-generation maximum-generations)
 (>= best-hits *number-of-fitness-cases*)))

(defun EVEN-3-PARITY ()
 (values 'define-function-set-for-EVEN-3-PARITY
 'define-terminal-set-for-EVEN-3-PARITY
 'define-fitness-cases-for-EVEN-3-PARITY
 'evaluate-standardised-fitness-for-EVEN-3-PARITY
 'define-parameters-for-EVEN-3-PARITY
 'define-termination-criterion-for-EVEN-3-PARITY))
�(ii) With ADFs. even3.A, even3.P.A, even4.A, even4.P.A, even5.A, even5.P.A

;;; Boolean even-3-Parity Problem with ADFs.

(require 'CLify)
(require 'ADF-kernel)

(defvar d0)
(defvar d1)
(defvar d2)
(defvar arg0)
(defvar arg1)
(defvar arg2)

(defun nand (a b) (not (and a b)))

(defun nor (a b) (not (or a b)))

(defun define-terminal-set-for-EVEN-3-PARITY-adf0 ()
 '(arg0 arg1 arg2))

(defun define-function-set-for-EVEN-3-PARITY-adf0 ()
 (values '(and or nand nor)
 '(2 2 2 2)))

(defun define-terminal-set-for-EVEN-3-PARITY-adf1 ()
 '(arg0 arg1 arg2))

(defun define-function-set-for-EVEN-3-PARITY-adf1 ()
 (values '(and or nand nor ADF0)
 '(2 2 2 2 3)))

(defun define-terminal-set-for-EVEN-3-PARITY-rpb0 ()
 '(d2 d1 d0))

(defun define-function-set-for-EVEN-3-PARITY-rpb0 ()
 (values '(and or nand nor ADF0 ADF1)
 '(2 2 2 2 3 3)))

(defvar *adf0*)

(defun ADF0 (arg0 arg1 arg2)
 (eval *adf0*))

(defvar *adf1*)

(defun ADF1 (arg0 arg1 arg2)
 (eval *adf1*))

(defstruct
 d0
 d1
 d2
 target)

See A.2.3.4.i for the definitions of EVEN-3-PARITY-fitness-case, xor, define-fitness-cases-for-EVEN-3-PARITY and EVEN-3-PARITY-wrapper.

(defun evaluate-standardised-fitness-for-EVEN-3-PARITY
 (program fitness-cases)
 (let (raw-fitness hits standardised-fitness target-value
 match-found value-from-program fitness-case rpb0)
 (setq raw-fitness 0.0)
 (setq hits 0)
 (setq rpb0 (ADF-program-rpb0 program))
 (setq *adf0* (ADF-program-adf0 program))
 (setq *adf1* (ADF-program-adf1 program))
 (dotimes (index *number-of-fitness-cases*)
 (setq fitness-case (aref fitness-cases index))
 (setf d0 (EVEN-3-PARITY-fitness-case-d0 fitness-case))
 (setf d1 (EVEN-3-PARITY-fitness-case-d1 fitness-case))
 (setf d2 (EVEN-3-PARITY-fitness-case-d2 fitness-case))
 (setq target-value
 (EVEN-3-PARITY-fitness-case-target fitness-case))
 (setq value-from-program
 (EVEN-3-PARITY-wrapper (eval rpb0)))
 (setq match-found (eq target-value value-from-program))
 (incf raw-fitness (if match-found 1.0 0.0))
 (when match-found (incf hits)))
 (setq standardised-fitness (- 8 raw-fitness))
 (values standardised-fitness hits)))

(defun define-parameters-for-EVEN-3-PARITY ()
 (setq *number-of-fitness-cases* 8)
 (setq *max-depth-for-new-individuals* 5)
 (setq *max-depth-for-new-subtrees-in-mutants* 4)
 (setq *max-depth-for-individuals-after-crossover* 17)
 (setq *reproduction-fraction* 0.1)
 (setq *crossover-at-any-point-fraction* 0.2)
 (setq *crossover-at-function-point-fraction* 0.7)
 (setq *method-of-selection* :tournament)
 (setq *tournament-size* 7)
 (setq *method-of-generation* :ramped-half-and-half))

(defun define-termination-criterion-for-EVEN-3-PARITY same)

(defun EVEN-3-PARITY ()
 (values 'define-function-set-for-EVEN-3-PARITY-adf0
 'define-function-set-for-EVEN-3-PARITY-adf1
 'define-function-set-for-EVEN-3-PARITY-rpb0
 'define-terminal-set-for-EVEN-3-PARITY-adf0
 'define-terminal-set-for-EVEN-3-PARITY-adf1
 'define-terminal-set-for-EVEN-3-PARITY-rpb0
 'define-fitness-cases-for-EVEN-3-PARITY
 'evaluate-standardised-fitness-for-EVEN-3-PARITY
 'define-parameters-for-EVEN-3-PARITY
 'define-termination-criterion-for-EVEN-3-PARITY))

�A.2.4 The Pygmy Algorithm

These files were produced as offshoots of the original kernel files by rewriting whichever parts were necessary. Section 3.1.2 details which routines were written from scratch. (Subroutines of these routines, such as attempt-to-insert are also completely original.)

1. Without ADFs: pygmy, TruePygmy, Retirement

;;; Kernel with Pygmy Algorithm

(require 'CLify)
(require 'GUI)

The file pygmy.el, which contains the In-kernel Pygmy Algorithm, continues:–

(provide 'kernel)
;;; Note that both "kernel.el" and "pygmy.el" provide 'kernel,
;;; so the problem-specific files can be shared between them.
;;; To execute Koza GP, load a problem-specific file. To
;;; execute the Pygmy Algorithm, load this file first.

The files TruePygmy.el, which contains Ryan’s version of the Pygmy Algorithm, and Retirement.P.el have instead the line:–

(provide 'TruePygmy)

All files continue:–

(defvar *debug*)
;;; "*debug* causes the population to be returned at the end of a run.")
(if (not (boundp '*debug*)) (setq *debug* nil))

(defstruct individual
 program
 (standardised-fitness 134217727) ; largest integer
 (pygmy-fitness 134217727)
 (adjusted-fitness 0)
 (normalised-fitness 0)
 (hits 0))

(defvar *number-of-fitness-cases* :unbound
 "The number of fitness cases")

(defvar *max-depth-for-new-individuals* :unbound
 "The maximum depth for individuals of the initial
 random generation")

(defvar *max-depth-for-individuals-after-crossover* :unbound
 "The maximum depth of new individuals created by crossover")

The following three parameters are provided in the file Pygmy.el simply because that kernel uses the same problem-specific files as kernel.el, which provide values for these parameters. They are missing altogether from TruePygmy.el.

(defvar *max-depth-for-new-subtrees-in-mutants* :unbound "Not used.")
(defvar *fitness-proportionate-reproduction-fraction* :unbound "Not used.")
(defvar *crossover-at-any-point-fraction* :unbound "Not used.")

(defvar *crossover-at-function-point-fraction* :unbound
 "The fraction of the population that will experience
 crossover at a function (internal) point in the tree
 during each generation.")

 (defvar *method-of-selection* :unbound
 "The method of selecting individuals in the population.
 Either :fitness-proportionate, :tournament or
 :fitness-proportionate-with-over-selection.")

(defvar *method-of-generation* :unbound
 "Can be any one of :grow, :full, :ramped-half-and-half")

(defvar *seed* :unbound
 "The seed for the Park-Miller congruential randomiser.")

(defvar *best-of-run-individual* :unbound
 "The best individual found during this run.")

(defvar *generation-of-best-of-run-individual* :unbound
 "The generation at which the best-of-run individual was found.")

(defun run-pygmy-algorithm
 (problem-function
 seed
 maximum-generations
 size-of-population
 &rest seeded-programs)
"Top level function running the entire genetic programming system."
;;; Check validity of some arguments
 (assert (and (integerp maximum-generations)
 (not (minusp maximum-generations)))
 (maximum-generations)
 "Maximum-generations must be a non-negative integer, not %S"
	 maximum-generations)
 (assert (and (integerp size-of-population)
 (plusp size-of-population))
 (size-of-population)
 "Size-Of-Population must be a positive integer, not %S"
	 size-of-population)
 (assert (and (symbolp problem-function)
 (fboundp problem-function))
 (problem-function)
 "Problem-Function must be a function.")
 (assert (numberp seed) (seed)
 "The randomiser seed must be a number")
;;; Arrange frequency of garbage collection
 (setq gc-cons-threshold 3000000)
 (garbage-collect)
 (message "Running Genetic Programming Paradigm...")
;;; Set up windows environment
 (save-excursion
 (setup-windows problem-function)
;;; Record initial time for display at the end.
 (let ((time (current-time-string)))
;;; Set the global randomiser seed.
 (setq *seed* (coerce seed 'float))
;;; Initialise best-of-run recording variables
 (setq *generation-of-best-of-run-individual* 0)
 (setq *best-of-run-individual* nil)
;;; Get the six problem-specific functions needed to specify this problem as
;;; returned by a call to problem-function
 (multiple-value-bind (function-set-creator
 terminal-set-creator
 fitness-cases-creator
 fitness-function
 parameter-definer
 termination-predicate)
 (funcall problem-function)
;;; Get the function set and its associated argument map
 (multiple-value-bind (function-set argument-map)
 (funcall function-set-creator)
;;; Set up the parameters using parameter-definer
 (funcall parameter-definer)
;;; Print out parameters report
 (describe-parameters-for-run
 maximum-generations size-of-population)
;;; define the fitness cases using the fitness-cases-creator function
 (let ((terminal-set (funcall terminal-set-creator))
		(fitness-cases (funcall fitness-cases-creator)))
;;; Create the population and breeding pools and the latters' hash tables.
 (multiple-value-bind (new-programs pygmies civil-servants)
 (create-population
 size-of-population function-set argument-map
 terminal-set seeded-programs)
	 (let ((pygmy-hash (make-hash-table :test 'equal
						 :size (length pygmies)))
		 (civil-service-hash (make-hash-table :test 'equal
							 :size (length civil-servants))))
		(GP-middle)
;;; Now run the Pygmy Algorithm using
;;; the fitness-function and termination-predicate provided
 (execute-generations
 pygmies civil-servants
		 pygmy-hash civil-service-hash
		 new-programs fitness-cases
 maximum-generations fitness-function
 termination-predicate function-set
 argument-map terminal-set)
;;; Finally print out a report
 (report-on-run)
		(set-point-at-end)
		(format* t time)
		(format* t (current-time-string))
		(message "Finished!")(beep)(beep)(beep)
;;; Use of a triple beep prevents confusion with any other application.
		(if *debug* (values pygmies
				 civil-servants
				 new-programs))))))))))

See A.2.2.1 for report-on-run.

(defun sigma (population attribute)
 "Generalised summation function able to work on both arrays
 (new-programs) and lists (the breeding pools)."
 (loop for index from 0 to (1- (length population))
	sum (funcall attribute (elt population index)) into running-total
	finally return (/ running-total (length population))))

(defun report-on-generation (generation-number
			 new-programs
			 pygmies
			 civil-servants)
 "For each generation prints out various statistics and the best individual."
 (let* ((program-length
	 '(lambda (x) (count-crossover-points (individual-program x))))
	 (best-civil-servant (first civil-servants))
	 (best-pygmy (first pygmies))
	 (print-string (format "\n\nGeneration: %d
 Civil Servants Pygmies New-programs
Average:
 Fitness %15g%15g%15g
 Length	 %15d%15d%15d
Best individual's:
 Fitness %15g%15g
 Hits %15d%15d
 Length %15d%15d\n
Best Civil Servant:"

generation-number

(sigma civil-servants 'individual-standardised-fitness)
(sigma pygmies 'individual-standardised-fitness)
(sigma new-programs 'individual-standardised-fitness)

(sigma civil-servants program-length)
(sigma pygmies program-length)
(sigma new-programs program-length)

(individual-standardised-fitness best-civil-servant)
(individual-standardised-fitness best-pygmy)
(individual-hits best-civil-servant)
(individual-hits best-pygmy)
(funcall program-length best-civil-servant)
(funcall program-length best-pygmy))))
 (GP-middle)
 (cls)
 (if *graphic*
	 (prog2 (format* t print-string)
		 (cl-prettyprint (individual-program best-civil-servant))))
 (GP-bottom)
 (format* t print-string)
 (cl-prettyprint (individual-program best-civil-servant))
 (sit-for 0)))
 ;; In theory (sit-for 0) pauses to allow the screen to redisplay. In
 ;; practice Emacs often appears to ignore it, for reasons of its own.

Function print-population is the same as in A.2.2.1 except that all arefs are changed to elt, so the function can cope with both arrays (new-programs) and lists (pygmies and civil-servants).

(defun describe-parameters-for-run
 (maximum-generations size-of-population)
 "Lists the parameter settings for this run."
 (GP-top)
 (format* t "\nParameters used for this run.\n============================
=")
 (format* t "%-50s%d" "Maximum number of Generations:"
 maximum-generations)
 (format* t "%-50s%d" "Size of Population:" size-of-population)
 (format* t "%-50s%d" "Maximum depth of new individuals:"
 max-depth-for-new-individuals)
 (format* t "%-50s%d"
 "Maximum depth of individuals after crossover:"
 max-depth-for-individuals-after-crossover)
 (format* t "%-50s%s" "Size of breeding pools (predetermined):" "20%)�
 (format* t "%-50s%g" "Crossover at function points fraction:"
 crossover-at-function-point-fraction)
 (format* t "%-50s%g" "Number of fitness cases:"
 number-of-fitness-cases)
 (format* t "%-50s%s" "Selection method:" *method-of-selection*)
 (format* t "%-50s%s" "Generation method:" *method-of-generation*)
 (format* t "%-50s%g" "Randomiser seed:" *seed*)
 (sit-for 0)) ; allows the screen to redisplay.

(defun create-population (size-of-population function-set
 argument-map terminal-set
 seeded-programs)
 "Creates the population. This is an array of size
 size-of-population that is initialised to contain individual
 records. The Program slot of each individual is initialised
 to a suitable random program except for the first N programs,
 where N = (length seeded-programs). For these first N
 individuals the individual is initialised with the respective
 seeded program. This is very useful in debugging.
 Also created are the two breeding pools, each lists of size
 10% of the full population."
 (let ((new-programs (make-vector size-of-population nil))
 (full-cycle-p nil))
 (do ((individual-index 0))
 ((>= individual-index size-of-population))
 (when (zerop (mod individual-index
 (max 1 (- *max-depth-for-new-individuals*
 1)))) ; minimum-depth-of-trees
 (setq full-cycle-p (not full-cycle-p)))
 (let ((new-program
 (if (< individual-index (length seeded-programs))
 ;; Pick a seeded individual
 (nth individual-index seeded-programs)
 ;; Create a new random program.
 (create-individual-program
 function-set argument-map terminal-set
 (ecase *method-of-generation*
 ((:full :grow) *max-depth-for-new-individuals*)
 (:ramped-half-and-half
 (+ 1 ; minimum-depth-of-trees
 (mod individual-index
 (- *max-depth-for-new-individuals*
 1))))) ; minimum-depth-of-trees
 t
 (ecase *method-of-generation*
 (:full t)
 (:grow nil)
 (:ramped-half-and-half
 full-cycle-p))))))
 (aset new-programs individual-index
 (make-individual :program new-program))
 (incf individual-index)))
;;; Generation 0 is not unique in the Pygmy Algorithm
 (values new-programs
	 (make-breeding-pool (/ size-of-population 10)) ; pygmies
	 (make-breeding-pool (/ size-of-population 10)))))
								 ; civil servants

(defun make-breeding-pool (size)
 "Creates a list of size 'size' of 'individuals'."
 (loop repeat size collect (make-individual)))
 ;; This baroque method is needed to avoid producing 'size' pointers to
 ;; the same underlying object.

Functions choose-from-terminal-set, create-individual-program and create-arguments-for-function are the same as in A.2.2.1.

(defun execute-generations
 (pygmies civil-servants pygmy-hash civil-service-hash
 population fitness-cases maximum-generations
 fitness-function termination-predicate function-set
 argument-map terminal-set)
 "Loops until the user's termination predicate says to stop."
 (do ((current-generation 0 (+ 1 current-generation)))
 ;; loop incrementing current generation until
 ;; termination-predicate succeeds.
 ((let ((best-of-generation (first civil-servants)))
 (funcall
 termination-predicate current-generation
 maximum-generations
 (individual-standardised-fitness best-of-generation)
 (individual-hits best-of-generation))))
 (when (> current-generation 0)
 ;; Breed the new population to use on this generation
 ;; (except gen 0, of course).
 (breed-new-population pygmies civil-servants population))
 ;; Clean out the fitness measures.
 (zeroise-fitness-measures-of-population population)
 ;; Measure the fitness of each individual. Fitness values
 ;; are stored in the individuals themselves.
 (evaluate-fitness-of-population
 population fitness-cases fitness-function)
 ;; Normalise fitness in preparation for crossover, etc.
 (normalise-fitness-of-population population)
 ;; Sorting of the population is not required in the Pygmy Algorithm.
 ;; Update the breeding pools.
 (update-breeding-pool pygmies civil-servants
			 pygmy-hash civil-service-hash population)
 ;; Keep track of best-of-run individual
 (let ((best-of-generation (first civil-servants)))
 (when (or (not *best-of-run-individual*)
 (> (individual-standardised-fitness
								best-of-run-individual)
 (individual-standardised-fitness best-of-generation)))
	(setq *best-of-run-individual* (copy-individual best-of-generation))
 (setq *generation-of-best-of-run-individual* current-generation)))
 ;; Print out the results for this generation.
 (report-on-generation current-generation
			 population
			 pygmies
			 civil-servants)))

Function zeroise-fitness-measures-of-population is the same as in A.2.2.1 except that it has an extra line:

 (setf (individual-pygmy-fitness individual) 0.0)

(defun evaluate-fitness-of-population (population fitness-cases
 fitness-function)
 "Loops over the individuals in the population evaluating and
 recording the fitness and hits."
 (dotimes (individual-index (length population))
 (let ((individual (aref population individual-index)))
 (multiple-value-bind (standardised-fitness hits)
 (funcall fitness-function
 (individual-program individual)
 fitness-cases)
 ;; Record fitness and hits for this individual.
 (setf (individual-standardised-fitness individual)
 standardised-fitness)

The file pygmy.el continues:–

;;; In this version of the Pygmy Algorithm, I implemented "pygmy fitness"
;;; as 0.8 * standardised-fitness + 0.2 * length, to save having to modify
;;; each individual problem file; hence pygmy fitness can be calculated in
;;; the kernel's functions.
	(setf (individual-pygmy-fitness individual)
	 (* standardised-fitness
		 (+ 0.8
		 (* 0.2 (count-crossover-points
					 (individual-program individual))))))
 (setf (individual-hits individual) hits)))))

The files TruePygmy.el and Retirement.P.el have instead:–

;;; In this version of the Pygmy Algorithm, "pygmy-fitness" is calculated
;;; in each problem's problem-specific file.
	(setf (individual-pygmy-fitness individual)
	 pygmy-fitness)
 (setf (individual-hits individual) hits)))))

All files continue:–

Function normalise-fitness-of-population is the same as in A.2.2.1.

(defun attempt-to-insert (individual relevant-fitness
			 breeding-pool hash-table
			 threshold)
 "Given an individual and a breeding pool, attempts to insert the former
 into the latter."
 (let ((i-fitness (funcall relevant-fitness individual))) ; i = individual
;;; Each breeding pool contains unique individuals. Reject insertion if
;;; 'individual' is already a member. This is done using hash-tables for
;;; speed.
 (if (and (not (gethash (individual-program individual) hash-table))
;;; Note that 'member' doesn't work since normalised and adjusted fitnesses
;;; vary between identical individuals depending on the rest of the
;;; population.
	 (<= i-fitness
		 (funcall relevant-fitness threshold)))
	 ;; Disqualify losers before doing a detailed search!
	 (let ((insertion-point
		 ;; find point to insert individual. Returns nil if no success.
		 (loop for cons on breeding-pool ; Iterates cons cells
		 and breeder in breeding-pool ; Iterates cars
		 and previous-breeder = 'breeding-pool then cons
		 until (let ((b-fitness (funcall relevant-fitness
				 breeder)))
			 (or (> b-fitness i-fitness) ; b = breeder
				 (and (= i-fitness b-fitness)
					(> (length (individual-program
						 breeder))
					 (length (individual-program
						 individual))))))
 ;; For equal fitnesses the shorter individual is
		 ;; preferred.
		 finally return previous-breeder)))
	 (if insertion-point
		(prog2
		 (case insertion-point
		 (breeding-pool (setcdr breeding-pool ; Head insertion
					 (cons (car breeding-pool)
						 (cdr breeding-pool)))
				 (setcar breeding-pool
					 (copy-individual individual)))
		 (t (setcdr insertion-point ; Body insertion.
				 (cons (copy-individual individual)
				 (cdr insertion-point)))))
		 (setf (gethash (individual-program individual) hash-table)
			 t)))))))

(defsubst shorten (breeding-pool hash-table)
 "Removes the last individual of a breeding-pool from both the
 breeding-pool and its hash-table."
 (let ((second-to-last (last breeding-pool 2)))
 (remhash (individual-program (second second-to-last)) hash-table)
 (setcdr second-to-last nil)))

The files pygmy.el and TruePygmy.el continue:–

(defun update-breeding-pool (pygmies civil-servants
			 pygmy-hash civil-service-hash population)
 "Updates the breeding pools with the newly-bred individuals in
 new-programs."
 (dotimes (index (length population))
 (let ((individual (aref population index))
	 (insertion-point))
 (loop for breeding-pool in-ref (list civil-servants pygmies)
	 for relevant-fitness in '(individual-standardised-fitness
				 individual-pygmy-fitness)
	 for hash-table in-ref (list civil-service-hash pygmy-hash)
	 do (setq insertion-point
	 (attempt-to-insert
	 individual
		 relevant-fitness
		 breeding-pool
		 hash-table
		 (nth (1- (length breeding-pool)) breeding-pool)))
 ;; If insertion successful break out of the loop.
	 if (not (null insertion-point))
	 return (shorten breeding-pool hash-table)))))

The file Retirement.P.el, implementing the Pygmy Algorithm with semi-retiring Civil Servants, which is otherwise the same as TruePygmy.el, has a different version of this procedure:–

(defun update-breeding-pool (pygmies civil-servants
			 pygmy-hash civil-service-hash population)
 (dotimes (index (length population))
 (let ((individual (aref population index))
	 (insertion-point))
 (loop for breeding-pool in-ref (list civil-servants pygmies)
	 for relevant-fitness in '(individual-standardised-fitness
				 individual-pygmy-fitness)
	 for hash-table in-ref (list civil-service-hash pygmy-hash)
	 for success = nil then insertion-point
	 do (setq insertion-point
	 (attempt-to-insert
	 individual
		 relevant-fitness
		 breeding-pool
		 hash-table
		 (nth (1- (length breeding-pool)) breeding-pool)))
	 if (not (null insertion-point))
	 do (if (eq breeding-pool civil-servants)
		 (setq individual (car (last civil-servants))))
	 ;; Give retiring Civil Servants a chance as a Pygmy.
	 (shorten breeding-pool hash-table)
	 finally return (or success insertion-point)))))

All files continue:–

(defun breed-new-population
 (pygmies civil-servants population)
 "Controls the actual breeding of the new population.
 A civil servant and a pygmy are repeatedly chosen according to the
 defined selection method and bred to produce two new individuals.
 Since the breeding pools are not emptied each generation there is
 implicit reproduction of fit individuals. There is no mutation."
 (let ((population-size (length population)))
 (do ((index 0)
 (fraction 0 (/ index population-size)))
 ((>= index population-size))
	(multiple-value-bind (new-male new-female)
	 (funcall
 (if (< fraction
 crossover-at-function-point-fraction)
 'crossover-at-function-points
 'crossover-at-any-points)
 (find-individual pygmies)
 (find-individual civil-servants))
 (setf (individual-program (aref population index)) new-male)
 (setf (individual-program (aref population (+ 1 index)))
		 new-female))
 (incf index 2))))

All the remaining functions as the same as in A.2.2.1 except that there is no function mutate, and that in find-individual-using-tournament-selection and find-fitness-proportionate-individual all instances of (aref x y) have been changed to (nth y x). elt could in theory have been used in both programs, which would have been able to work on both the array in the original version of this routine and the list used in the Pygmy Algorithm, but nth is faster.
�2. With ADFs: pygmy.A, TruePygmy.A

;;; Kernel

(require 'CLify)
(require 'GUI)

File pygmy.A.el, which implements the In-kernel Pygymy Algorithm, continues:–

(provide 'ADF-kernel)
;;; Note that both "ADF-kernel.el" and "pygmy.A.el" provide 'ADF-kernel, so
;;; the problem files can be shared between them. To execute Koza GP, load a
;;; problem file. To execute the Pygmy Algorithm, load this file first.

File TruePygmy.A.el, which implements Ryan’s Pygmy Algorithm, has instead:–

(provide 'TruePygmy.A)

Both files continue:–

(defvar *debug*)
;;; "*debug* causes the population to be returned at the end of a run.")
 (if (not (boundp '*debug*)) (setq *debug* nil))

(defstruct individual
 program
 (standardised-fitness 134217727) ; largest integer
 (pygmy-fitness 134217727)
 (adjusted-fitness 0)
 (normalised-fitness 0)
 (hits 0))

(defstruct ADF-program
 adf0
 adf1
 rpb0)

(defun full-lisp (adf-prog)
 "Converts an 'individual-program' from the internal representation to the
 style of normal lisp defuns."
;;; This is necessary since Emacs Lisp lacks the facility for structures to
;;; include their own print functions.
 (first (read-from-string (format ; This is needed to avoid over-evaluation.
"(progn (defun ADF0 (arg0 arg1 arg2) %s)
(defun ADF1 (arg0 arg1 arg2) %s)\n %s)"
(ADF-program-adf0 adf-prog)
(ADF-program-adf1 adf-prog)
(ADF-program-rpb0 adf-prog)))))

(defvar *number-of-fitness-cases* :unbound
 "The number of fitness cases")

(defvar *max-depth-for-new-individuals* :unbound
 "The maximum depth for individuals of the initial random generation")

(defvar *max-depth-for-individuals-after-crossover* :unbound
 "The maximum depth of new individuals created by crossover")

The following three parameters are provided in the file Pygmy.el simply because that kernel uses the same problem-specific files as kernel.el, which provide values for these parameters. They are missing altogether from TruePygmy.el.

(defvar *reproduction-fraction* :unbound "Unused.")
(defvar *max-depth-for-new-subtrees-in-mutants* :unbound "Unused.")
(defvar *crossover-at-any-point-fraction* :unbound "Unused.")

(defvar *crossover-at-function-point-fraction* :unbound
 "The fraction of the population that will experience crossover at a
 function (internal) point in the tree during each generation.")

 (defvar *method-of-selection* :unbound
 "The method of selecting individuals in the population.
 Either :fitness-proportionate, :tournament or
 :fitness-proportionate-with-over-selection.")

(defvar *tournament-size* :unbound
 "The group size to use when doing tournament selection.")

(defvar *method-of-generation* :unbound
 "Can be any one of :grow, :full, :ramped-half-and-half")

(defvar *seed* :unbound
 "The seed for the Park-Miller congruential randomiser.")

(defvar *best-of-run-individual* :unbound
 "The best individual found during this run.")

(defvar *generation-of-best-of-run-individual* :unbound
 "The generation at which the best-of-run individual was found.")

(defun run-pygmy-algorithm-with-ADFs
 (problem-function
 seed
 maximum-generations
 size-of-population
 &rest seeded-programs)
 "Top level function running the entire genetic programming system.
 For my interpretation of the Pygmy Algorithm, including ADFs."
;; Check validity of some arguments
 (assert (and (integerp maximum-generations)
 (not (minusp maximum-generations)))
 (maximum-generations)
 "Maximum-generations must be a non-negative ~
 integer, not %S" maximum-generations)
 (assert (and (integerp size-of-population)
 (plusp size-of-population))
 (size-of-population)
 "Size-Of-Population must be a positive integer, ~
 not %S" size-of-population)
 (assert (and (symbolp problem-function)
 (fboundp problem-function))
 (problem-function)
 "Problem-Function must be a function.")
 (assert (numberp seed) (seed)
 "The randomiser seed must be a number")
;;; Arrange frequency of garbage collection
 (setq gc-cons-threshold 3000000)
 (garbage-collect)
 (message "Running Genetic Programming Paradigm...")
;;; Set up windows environment
 (save-excursion
 (setup-windows problem-function)
;;; Record initial time for display at the end.
 (let ((time (current-time-string)))
;;; Set the global randomiser seed.
 (setq *seed* (coerce seed 'float))
;; Initialise best-of-run recording variables
 (setq *generation-of-best-of-run-individual* 0)
 (setq *best-of-run-individual* nil)
;; Get the problem-specific functions needed to specify this
;; problem as returned by a call to problem-function
 (multiple-value-bind (adf0-function-set-creator
 adf1-function-set-creator
 rpb0-function-set-creator
 adf0-terminal-set-creator
 adf1-terminal-set-creator
 rpb0-terminal-set-creator
 fitness-cases-creator
 fitness-function
 parameter-definer
 termination-predicate)
 (funcall problem-function)
;; Get the function sets and associated argument maps
 (multiple-value-bind (adf0-function-set adf0-argument-map)
 (funcall adf0-function-set-creator)
 (multiple-value-bind (adf1-function-set adf1-argument-map)
 (funcall adf1-function-set-creator)
 (multiple-value-bind (rpb0-function-set rpb0-argument-map)
 (funcall rpb0-function-set-creator)
;; Set up the parameters using parameter-definer
 (funcall parameter-definer)
;; Print out parameters report
 (describe-parameters-for-run
 maximum-generations size-of-population)
;; Set up the terminal-set using terminal-set-creator
 (let ((adf0-terminal-set
 (funcall adf0-terminal-set-creator))
 (adf1-terminal-set
 (funcall adf1-terminal-set-creator))
 (rpb0-terminal-set
 (funcall rpb0-terminal-set-creator))
;;; define the fitness cases using the fitness-cases-creator function
		(fitness-cases (funcall fitness-cases-creator)))
;; Create the population and breeding pools and the latters' hash tables.
 (multiple-value-bind (new-programs pygmies civil-servants)
 (create-population
 size-of-population
 adf0-function-set adf0-argument-map
 adf0-terminal-set
 adf1-function-set adf1-argument-map
 adf1-terminal-set
 rpb0-function-set rpb0-argument-map
 rpb0-terminal-set
 seeded-programs)
	 (let ((pygmy-hash (make-hash-table :test 'equal
						 :size (length pygmies)))
		 (civil-service-hash (make-hash-table :test 'equal
							 :size (length civil-servants))))
		(GP-middle)
;; Now run the Pygmy Algorithm using the fitness-function
;; and termination-predicate provided
 (execute-generations
 pygmies civil-servants
		 pygmy-hash civil-service-hash
		 new-programs fitness-cases
 maximum-generations fitness-function
 termination-predicate
 adf0-function-set adf0-argument-map
 adf0-terminal-set
 adf1-function-set adf1-argument-map
 adf1-terminal-set
 rpb0-function-set rpb0-argument-map
 rpb0-terminal-set)
;; Finally print out a report
 (report-on-run)
		(set-point-at-end)
		(format* t time)
		(format* t (current-time-string))
		(message "Finished!")(beep)(beep)(beep)
;;; Use of a triple beep prevents confusion with any other application.
		(if *debug* (values pygmies
				 civil-servants
				 new-programs))))))))))))

(defun report-on-run ()
 "Prints out the best-of-run individual."
 (GP-middle)(cls)
 (when (not *graphic*) (format* t "\n\n\n\n"))
 (format* t
"The best-of-run individual program for this run was found on
generation %d and had a standardised fitness measure of %g and %d hit(s).
It was:
"
 generation-of-best-of-run-individual
 (individual-standardised-fitness *best-of-run-individual*)
 (individual-hits *best-of-run-individual*))
;;; "cl-prettyprint" is an undocumented function. The nearest documented
;;; equivalent is cl-prettyexpand, but that expands macros, which is not
;;; wanted here.
 (cl-prettyprint (full-lisp (individual-program *best-of-run-individual*))))

(defun sigma (population attribute)
 "Generalised summation function able to work on both arrays
 (new-programs) and lists (the breeding pools)."
 (loop for index from 0 to (1- (length population))
	sum (funcall attribute (elt population index)) into running-total
	finally return (/ running-total (length population))))

(defsubst program-length (individual)
 "Calculates the length of all branches of a program."
 (let ((program (individual-program individual)))
 (+ (count-crossover-points (ADF-program-adf0 program))
 (count-crossover-points (ADF-program-adf1 program))
 (count-crossover-points (ADF-program-rpb0 program)))))

(defun report-on-generation (generation-number
			 new-programs
			 pygmies
			 civil-servants)
 "For each generation prints out various statistics and the best individual."
 (let* ((best-civil-servant (first civil-servants))
	 (best-pygmy (first pygmies))
	 (print-string (format "\n\nGeneration: %d
 Civil Servants Pygmies New-programs
Average:
 Fitness %15g%15g%15g
 Length	 %15d%15d%15d
Best individual's:
 Fitness %15g%15g
 Hits %15d%15d
 Length %15d%15d\n
Best Civil Servant:"

generation-number

(sigma civil-servants 'individual-standardised-fitness)
(sigma pygmies 'individual-standardised-fitness)
(sigma new-programs 'individual-standardised-fitness)

(sigma civil-servants 'program-length)
(sigma pygmies 'program-length)
(sigma new-programs 'program-length)

(individual-standardised-fitness best-civil-servant)
(individual-standardised-fitness best-pygmy)
(individual-hits best-civil-servant)
(individual-hits best-pygmy)
(program-length best-civil-servant)
(program-length best-pygmy))))
 (GP-middle)
 (cls)
 (if *graphic*
	 (prog2 (format* t print-string)
		 (cl-prettyprint (full-lisp
					 (individual-program best-civil-servant)))))
 (GP-bottom)
 (format* t print-string)
 (cl-prettyprint (full-lisp (individual-program best-civil-servant)))
 ;; See under "report-on-run".
 (sit-for 0)))
 ;; In theory (sit-for 0) pauses to allow the screen to redisplay. In
 ;; practice Emacs often appears to ignore it, for reasons of its own.

Function print-population is the same as in A.2.2.2 except that all arefs are changed to elt, so the function can cope with both arrays (new-programs) and lists (pygmies and civil-servants).

(defun describe-parameters-for-run
 (maximum-generations size-of-population)
 "Lists the parameter settings for this run."
 (GP-top)
 (format* t "\nParameters used for this run.\n=============================")
 (format* t "%-50s%d" "Maximum number of Generations:"
 maximum-generations)
 (format* t "%-50s%d" "Size of Population:" size-of-population)
 (format* t "%-50s%d" "Maximum depth of new individuals:"
 max-depth-for-new-individuals)
 (format* t "%-50s%s" "Size of breeding pools (predetermined):" "20%")
 (format* t "%-50s%d"
 "Maximum depth of individuals after crossover:"
 max-depth-for-individuals-after-crossover)
 (format* t "%-50s%g" "Crossover at function points fraction:"
 crossover-at-function-point-fraction)
 (format* t "%-50s%g" "Number of fitness cases:"
 number-of-fitness-cases)
 (format* t "%-50s%s" "Selection method:" *method-of-selection*)
 (format* t "%-50s%s" "Tournament size:" *tournament-size*)
 (format* t "%-50s%s" "Generation method:" *method-of-generation*)
 (format* t "%-50s%g" "Randomiser seed:" *seed*)
 (sit-for 0)) ; allows the screen to redisplay.

(defun create-program-branch
 (function-set argument-map terminal-set
 maximum-depth-of-trees
 individual-index full-cycle-p)
 "Creates a complete branch for an ADF-containing program."
 (create-individual-subtree
 function-set argument-map
 terminal-set
 (ecase *method-of-generation*
 ((:full :grow) maximum-depth-of-trees)
 (:ramped-half-and-half
 (+ 1 ; minimum-depth-of-trees
 (mod individual-index
 (- maximum-depth-of-trees
 1))))); minimum-depth-of-trees
 t
 (ecase *method-of-generation*
 (:full t)
 (:grow nil)
 (:ramped-half-and-half full-cycle-p))))

(defun create-new-program (individual-index full-cycle-p
 maximum-depth-of-trees
 adf0-function-set adf0-argument-map
 adf0-terminal-set
 adf1-function-set adf1-argument-map
 adf1-terminal-set
 rpb0-function-set rpb0-argument-map
 rpb0-terminal-set)
 "Creates a new individual with ADF structure."
 (make-ADF-program
 :adf0 (create-program-branch
 adf0-function-set adf0-argument-map
 adf0-terminal-set
 maximum-depth-of-trees individual-index full-cycle-p)
 :adf1 (create-program-branch
 adf1-function-set adf1-argument-map
 adf1-terminal-set
 maximum-depth-of-trees individual-index full-cycle-p)
 :rpb0 (create-program-branch
 rpb0-function-set rpb0-argument-map
 rpb0-terminal-set
 maximum-depth-of-trees individual-index full-cycle-p)))

(defun create-population (size-of-population
 adf0-function-set adf0-argument-map
 adf0-terminal-set
 adf1-function-set adf1-argument-map
 adf1-terminal-set
 rpb0-function-set rpb0-argument-map
 rpb0-terminal-set
 seeded-programs)
 "Creates the population. This is an array of size size-of-population
 that is initialised to contain individual records. The Program slot
 of each individual is initialised to a suitable random program except
 for the first N programs, where N = (length seeded-programs). For these
 first N individuals the individual is initialised with the respective
 seeded program. This is very useful in debugging. Also created are
 the two breeding pools, each lists of size 10% of the full population."
 (let ((new-programs (make-vector size-of-population nil))
 (minimum-depth-of-trees 1)
 (attempts-at-this-individual 0)
 (full-cycle-p nil))
 (do ((individual-index 0))
 ((>= individual-index size-of-population))
 (when (zerop (mod individual-index
 (max 1 (- *max-depth-for-new-individuals*
 1)))); minimum-depth-of-trees
 (setq full-cycle-p (not full-cycle-p)))
 (let ((new-program
 (if (< individual-index (length seeded-programs))
 ;; Pick a seeded individual
 (nth individual-index seeded-programs)
 ;; Create a new random program.
 (create-new-program
 individual-index full-cycle-p
 ;; We count one level of depth for the root
 ;; above all of the branches that get evolved.
 (- *max-depth-for-new-individuals* 1)
 adf0-function-set adf0-argument-map
 adf0-terminal-set
 adf1-function-set adf1-argument-map
 adf1-terminal-set
 rpb0-function-set rpb0-argument-map
 rpb0-terminal-set))))
	(aset new-programs individual-index
	 (make-individual :program new-program))
 (incf individual-index)))
;;; Generation 0 is not unique in the Pygmy Algorithm
 (values new-programs
	 (make-breeding-pool (/ size-of-population 10)) ; pygmies
	 (make-breeding-pool (/ size-of-population 10))))) ; civil servants

Function make-breeding-pool is the same as in A.2.4.1; functions choose-from-terminal-set, create-individual-subtree and create-arguments-for-function are the same as in A.2.2.2.

(defun execute-generations
 (pygmies civil-servants pygmy-hash civil-service-hash
 population fitness-cases maximum-generations
 fitness-function termination-predicate
 adf0-function-set adf0-argument-map
 adf0-terminal-set
 adf1-function-set adf1-argument-map
 adf1-terminal-set
 rpb0-function-set rpb0-argument-map
 rpb0-terminal-set)
 "Loops until the user's termination predicate says to stop."
 (do ((current-generation 0 (+ 1 current-generation)))
 ;; loop incrementing current generation until
 ;; termination-predicate succeeds.
 ((let ((best-of-generation (first civil-servants)))
 (funcall
 termination-predicate current-generation
 maximum-generations
 (individual-standardised-fitness best-of-generation)
 (individual-hits best-of-generation))))
 (when (> current-generation 0)
 ;; Breed the new population to use on this generation
 ;; (except gen 0, of course).
 (breed-new-population pygmies civil-servants population))
 ;; Clean out the fitness measures.
 (zeroise-fitness-measures-of-population population)
 ;; Measure the fitness of each individual. Fitness values
 ;; are stored in the individuals themselves.
 (evaluate-fitness-of-population population fitness-cases fitness-function)
 ;; Normalise fitness in preparation for crossover, etc.
 (normalise-fitness-of-population population)
 ;; Sorting of the population is not required in the Pygmy Algorithm.
 (update-breeding-pool pygmies civil-servants
			 pygmy-hash civil-service-hash population)
 ;; Keep track of best-of-run individual
 (let ((best-of-generation (first civil-servants)))
 (when (or (not *best-of-run-individual*)
 (> (individual-standardised-fitness *best-of-run-individual*)
 (individual-standardised-fitness best-of-generation)))
	(setq *best-of-run-individual* (copy-individual best-of-generation))
 (setq *generation-of-best-of-run-individual* current-generation)))
 ;; Print out the results for this generation.
 (report-on-generation current-generation
			 population
			 pygmies
			 civil-servants)))

zeroise-fitness-measures-of-population is the same as in A.2.4.1.

(defun evaluate-fitness-of-population (population fitness-cases
 fitness-function)
 "Loops over the individuals in the population evaluating and
 recording the fitness and hits."
 (dotimes (individual-index (length population))
 (let ((individual (aref population individual-index)))
 (multiple-value-bind (standardised-fitness hits)
 (funcall fitness-function
 (individual-program individual)
 fitness-cases)
 ;; Record fitness and hits for this individual.
 (setf (individual-standardised-fitness individual)
 standardised-fitness)
 (setf (individual-hits individual) hits)

The file pygmy.A.el continues:–

;;; In this version of the Pygmy Algorithm, I implemented "pygmy fitness"
;;; as 0.8 * standardised-fitness + 0.2 * length, to save having to modify
;;; each individual problem file; hence pygmy fitness can be calculated in
;;; the kernel's functions.
	(setf (individual-pygmy-fitness individual)
	 (* standardised-fitness
		 (+ 0.8
		 (* 0.2
		 (program-length individual)))))))))

The files TruePygmy.A.el has instead:–

	(setf (individual-pygmy-fitness individual) pygmy-fitness)))))

The rest of the program is identical to that in A.2.4.1.

�A.2.5 The Maze Problem

This code is of course all completely original.

1. Main Program: maze, maze2, maze.A, maze2.A, maze2.P.A

(“maze2” describes the files with the fitness function after it was modified in the light of ‘jailbar’ mazes; “maze” describes the files from before this.)

;; Maze Generator Problem. With ADFs.

(require 'CLify)
(require 'ADF-kernel)
(require 'printer)

(defconst *completeness-fraction* 40
 "The portion of the fitness measure assigned to completeness of the maze.")

(defconst *traversability-fraction* 40
 "The portion of the fitness measure assigned to traversability of the
 maze.")

(defconst *complexity-fraction* 20
 "The portion of the fitness measure assigned to complexity of the maze.")

(defconst *hits-threshold* (+ *completeness-fraction*
			 traversability-fraction
			 (/ *complexity-fraction* 2))
 "To be a hit, a maze must be complete and fully traversable, and of
 sufficiently high complexity - only in the last parameter is there any
 leeway.")�

(defvar arg0)
(defvar arg1)
(defvar arg2)

(defvar xx :unbound "X-size of maze")
(defvar yy :unbound "Y-size of maze")
(defvar size-of-maze :unbound "XX * YY")

(defvar x :unbound "x coordinate of maze-generating automaton")
(defvar y :unbound "y coordinate of maze-generating automaton")

(defvar maze : unbound "An array holding the maze generated.")

(defvar move-counter :unbound
 "Holds the number of positions the automaton has moved since last turning -
 should thus allow control over corridor length")

(defvar du-counter :unbound
 "Holds the sum of iterations 'du' has performed for all calls to it in a
 given execution of a maze generator.")

(defvar dirn :unbound
 "Holds the direction in which the maze-generating automaton points.")

(defconst dirn-map '((left (setq x (1- x)))
 (down (setq y (1+ y)))
 (right (setq x (1+ x)))
 (up (setq y (1- y)))))
(defconst left 0)
(defconst down 1)
;;; Quasi-enumeration values. Note also that True and False are
;;; represented by 1 and -1 respectively, for the sake of closure.

(defsubst top-p () (zerop y))
(defsubst right-p () (= (1+ x) xx))
(defsubst left-p () (zerop x))
(defsubst bottom-p () (= (1+ y) yy))
;;; Four predicates indicating whether the automaton has reached the
;;; extremities of the maze.

(defun div (x y)
 "Divides two integers and returns a real."
 (/ (float x) y))

(defmacro if< (a b action)
 `(if (< ,a ,b) ,action -1))

(defmacro if-AND2 (a b action)
 `(if (and (plusp ,a) (plusp ,b)) ,action -1))

(defmacro if-AND3 (a b c act)
 `(if (and (plusp ,a) (plusp ,b) (plusp ,c)) ,act -1))

(defmacro if-OR2 (a b action)
 `(if (or (plusp ,a) (plusp ,b)) ,action -1))

(defmacro if-OR3 (a b c act)
 `(if (or (plusp ,a) (plusp ,b) (plusp ,c)) ,act -1))

(defmacro if-NOT (a action)
 `(if (not (plusp ,a)) ,action -1))

(defun square (z) (* z z))

(defun runtime-rnd-integer () (random-integer (max xx yy)))
;;; Since the point of a maze generator is to be able to produce
;;; more than one maze, it has to have access at runtime to the
;;; random number generator.

(defconst lookup-table1
 (vconcat
 (loop for x from 3 to 40
 collect
 (vconcat
 (loop for y from 3 to 40
 collect (div ; (Converts to percentage)
 (+ (* 2 x y) (* -2 x) (- y)
 (/ (+ y x (* (- x) y)
 (/ (+ 9 y (* (- x) y) (/ (* x y) (+ 9 y)))
 (- 2 x)))
 (- x 2)) 2); The last 2 is for margin of error.
 100))))) ; Converts to percentage.
 "A look-up table relating x and y dimensions of a maze to the possible
 number of 'illegalities' (gaps with no walls) in the maze. The equation was
 derived from feeding the empirically observed data into the symbolic
 regression Genetic Programming system. Whilst the equation could probably
 be simplified, this is not necessary as this subroutine is only evaluated
 the once.")

(defconst lookup-table2
 (vconcat
 (loop for x from 0 to 10
 collect (exp (* -0.5 (square (* (- x 10) (/ 3.0 20))))))
 (loop for x from 10 to 99
 collect (exp (* -0.5 (square (* (- x 10) (/ 3.0 90)))))))
 "A look-up table converting the net incompleteness of a maze into a biased
 measure of fitness of that maze.")

(defun next-dirn (direction)
 "Utility function - returns direction 1/4 turn clockwise
 from 'direction'."
 (let ((next-dir (caadr (member (assoc direction dirn-map) dirn-map))))
 (if (null next-dir)
 (caar dirn-map)
 next-dir)))

(defun prev-dirn (direction)
 "Utility function - returns direction 1/4 turn anti-clockwise
 from 'direction'."
 (let ((pos (- (length dirn-map)
 (length (member (assoc direction dirn-map) dirn-map)))))
 (car
 (if (zerop pos)
 (first (last dirn-map))
 (nth (1- pos) dirn-map)))))

(defun get-location (x y)
 "Utility function - accesses maze element."
 (aref (aref maze x) y))

(defmacro if-wall (action)
 "If the automaton is facing a wall, carry out this action."
 `(if (wall) ,action -1))

(defsubst wall ()
 "For use in 'if'; returns whether the automaton is facing a wall."
 (ecase dirn
 (left (if (left-p) 1 (aref (get-location x y) left)))
 (down (if (bottom-p) 1 (aref (get-location x y) down)))
 (up (if (top-p) 1 (aref (get-location x (1- y)) down)))
 (right (if (right-p) 1 (aref (get-location (1+ x) y) left)))))

(defun move ()
 "Moves the automaton in the direction in which it is facing; returns
 the number of moves made since the last change of direction."
 (if (minusp (wall))
 (progn (eval (second (assoc dirn dirn-map)))
 (incf move-counter))
 -1))

;;; Four predicates telling the program if it's reached the extremities of
;;; the maze:
(defmacro if-top (action) `(if (top-p) ,action -1))
(defmacro if-right (action) `(if (right-p) ,action -1))
(defmacro if-left (action) `(if (left-p) ,action -1))
(defmacro if-bottom (action) `(if (bottom-p) ,action -1))
;;; The borders are extrinsic to the maze. For a maze of size xx * yy,
;;; the top-left is (0,0) and the bottom-right ((xx-1), (yy-1)).

(defun make-wall (direction)
 "Utility function."
 (ecase direction
 (left (if (left-p) -1 (aset (get-location x y) left 1)))
 (down (if (bottom-p) -1 (aset (get-location x y) down 1)))
 (up (if (top-p) -1 (aset (get-location x (1- y)) down 1)))
 (right (if (right-p) -1 (aset (get-location (1+ x) y) left 1)))))

;;; Three functions causing a wall to be constructed:-
(defun make-wall-ahead () (make-wall dirn))
(defun make-wall-left () (make-wall (next-dirn dirn)))
(defun make-wall-right () (make-wall (prev-dirn dirn)))
;;; The second two are provided so the automaton can move in a straight
;;; direction making a corridor without having to excecute left-make-
;;; right-make-left to do so.

;;; Three functions to turn the automaton.
(defun turn-left () (setq dirn (next-dirn dirn)) (setq move-counter 0))
(defun turn-right () (setq dirn (prev-dirn dirn)) (setq move-counter 0))
(defun U-turn () (setq dirn (next-dirn (next-dirn dirn)))
 (setq move-counter 0))

(defun jump (x-coord y-coord)
 "Repositions the automaton in the maze."
 (setq x (mod (abs x-coord) xx))
 (setq y (mod (abs y-coord) yy))
 1) ;arbitrary - but constant - return value.

(defmacro du (condn subprog) ;do-until
 "Executes an iteration until either
o The condition is true; Or
o The number of iterations reach the number of cells in the maze; Or
o The total number of du iterations so far in the run reach a threshold;
 which I determined to be 20 x the number of cells in the maze."
 `(let ((du-limit size-of-maze))
 (do ((du-index 0 (+ 1 du-index)))
 ((or (> du-index du-limit)
 (> du-counter (* 20 du-limit))
 (plusp ,condn))
 du-counter)
 (eval ,subprog)
 (incf du-counter))))

(defun make-maze ()
 "Creates an xx * yy sized grid of (-1,-1) elements, where each element
 will contain a 1 in the first cell to show a wall on the left, and a
 1 in the second cell to show a wall below."
 (vconcat (loop for x from 0 to (1- xx)
 collect (vconcat (loop for y from 0 to (1- yy)
 collect (make-vector 2 -1))))))
;;; This seemingly roundabout way of creating the maze is necessary because
;;; Emacs Lisp isn't particularly good at handling >1D arrays; a simple nested
;;; set of make-vectors creates an array with elements all being the
;;; *same object*. Using "vconcat"s instead of "vconcat (... collect"s doesn't
;;; work either as the separate vectors end up being conglomerated together.

(defun clear-maze (maze)
 "Clears all walls from a maze."
 (loop for x from 0 to (1- xx) do
 (loop for y from 0 to (1- yy) do
 (loop for z from 0 to 1 do
 (aset (aref (aref maze x) y) z -1)))))

;;; Define function and terminal sets:-

(defun define-terminal-set-for-MAZE-adf0 ()
 '(arg0 arg1 arg2))

(defun define-function-set-for-MAZE-adf0 ()
 (values '(progn progn progn
 if-top if-right if-left if-bottom if-wall if<
 if-AND2 if-AND3 if-OR2 if-OR3 if-NOT)
 '(2 3 4 1 1 1 1 1 3 3 4 3 4 2)))
 ;; progns other conditionals Boolean conditionals

(defun define-terminal-set-for-MAZE-adf1 ()
 '((turn-left) (turn-right) (U-turn) (move)
 (make-wall-left) (make-wall-right) (make-wall-ahead)
 arg0 arg1 arg2))

(defun define-function-set-for-MAZE-adf1 ()
 (values '(progn progn progn du ADF0
 if-top if-right if-left if-bottom if-wall if<
 if-AND2 if-AND3 if-OR2 if-OR3 if-NOT)
 '(2 3 4 2 3
 ;; progns du ADF0
 1 1 1 1 1 3 3 4 3 4 2)))
 ;; other conditionals Boolean conditionals

(defun define-terminal-set-for-MAZE-rpb0 ()
 '((turn-left) (turn-right) (U-turn) (move)
 (make-wall-left) (make-wall-right) (make-wall-ahead)
 (runtime-rnd-integer) size-of-maze
 :integer-random-constant))

(defun define-function-set-for-MAZE-rpb0 ()
 (values '(progn progn progn du jump ADF0 ADF1
 if-top if-right if-left if-bottom if-wall if<
 if-AND2 if-AND3 if-OR2 if-OR3 if-NOT)
 '(2 3 4 2 2 3 3
 ;; progns du jump ADF0 ADF1
 1 1 1 1 1 3 3 4 3 4 2)))
 ;; other conditionals Boolean conditionals

(defvar *adf0*)

(defun ADF0 (arg0 arg1 arg2)
 (eval *adf0*))

(defvar *adf1*)

(defun ADF1 (arg0 arg1 arg2)
 (eval *adf1*))

(defstruct MAZE-fitness-case
 x-size
 y-size)

(defun define-fitness-cases-for-MAZE ()
 "Generates n-1 predetermined fitness cases and one for each maze generated
 randomly on the fly to discourage brittleness."
 (let (fitness-cases index this-fitness-case
 (predetermined-fitness-cases '((10 10))))
 (setq fitness-cases (make-vector (1- *number-of-fitness-cases*) nil))
 (format* t "Predetermined fitness cases:")
 (dotimes (index (1- *number-of-fitness-cases*))
 (setq this-fitness-case (make-MAZE-fitness-case))
 (aset fitness-cases index this-fitness-case)
 (setf (MAZE-fitness-case-x-size
 this-fitness-case)
 (first (nth index predetermined-fitness-cases)))
 (setf (MAZE-fitness-case-y-size
 this-fitness-case)
 (second (nth index predetermined-fitness-cases)))
 (format* t " %-8d%-8d"
 (MAZE-fitness-case-x-size this-fitness-case)
 (MAZE-fitness-case-y-size this-fitness-case)))
 (format* t "Plus another one generated randomly on the fly.")
 fitness-cases))

(defun MAZE-wrapper (result-from-program)
 "Evaluates the fitness of a maze."
 (traverse-maze maze))

(defun complexity-skewer (raw-complexity x y)
 "Biases the fitness of a given complexity. It is first divided by the
 maximum for a maze size, to put it on a scale of 0-1; then it is
 normalised. This function uses two look-up tables for speed."
 (aref lookup-table2 (floor (/ raw-complexity
 (aref (aref lookup-table1 (- x 3))
 (- y 3))))))
;;; The use of "floor" rather than "round" ensures the vector
;;; remains within bounds.

(defun traversed-p (locn fs-maze)
 "Returns whether the maze cell has already been traversed."
 (null (aref (aref (aref fs-maze (first locn))
 (second locn))
 1)))

(defun metacar-p (el lst)
 "A utility used by 'traverse' to check whether an element already
 occurs as the car of an element in a list."
 (if (dolist (z lst) (if (equal (car z) el) (return t)))
 t
 nil))

(defun traverse-maze (maze)
 "Traverses a maze, evaluating its fitness. An automaton is placed at a
 random point in the maze, and the locations it has been are recorded in
 the 2D array fs-maze (fs = fitness). It traverses locations taking them
 from a stack maintained by 'traverse-cell' until the stack is empty.
 Since the automaton might start in a small enclosed area of the maze, which
 would give a false impression of the traversability of the maze, if the
 traversability thus measured is less than 50% the function tries again up
 to four further times and takes the best of these 5."
 (let ((fs-maze (make-maze))
 (best-so-far 0.0)
 (return-value)
 (size-of-maze (* xx yy))
 (interior-space (* (1- xx) (1- yy))))
 (loop for loopcounter from 0
 do (let ((stack (list (list (random-location xx yy) 'left)))
 (traversed-counter 0)
 (illegalities 0)
 ;; An "illegality" is a point with no walls radiating out from it;
 ;; i.e. a gap in the maze, an incompletion.
 (reencounters 0))
 ;; A "reencounter" signifies a location to be traversed which is
 ;; either already traversed, or is awaiting traversal. This shows
 ;; the degree of branching of the maze's corridors for a complete
 ;; maze, and also indicates the degree of incompleteness of an
 ;; incomplete maze; it is used to work out a maze's complexity.
 (clear-maze fs-maze)
 (loop
 until (null stack)
 do
 (let* ((cell-details (pop stack))
 (locn (first cell-details))
 (dirn (second cell-details)))
 (if (not (traversed-p locn fs-maze))
 (multiple-value-setq (stack traversed-counter
 illegalities reencounters)
 (traverse-cell fs-maze maze
 locn
 (next-dirn (next-dirn dirn))
 stack traversed-counter
 illegalities reencounters))
 (incf reencounters)))) ; (already traversed.)
 (if (> traversed-counter best-so-far)
 (setq best-so-far (div traversed-counter size-of-maze)))
 (setq return-value
 (* (% (min horizontals verticals) (max horizontals verticals))
;;; The fitness value as measured below is multiplied by the horizontal-to-
;;; vertical wall ratio or its reciprocal, whichever is lower, to keep the
;;; ratio as near as possible to 1. Without this "jailbar" mazes have lower
;;; fitnesses than mazes with lots of corners.
 (* (- 1 (div illegalities interior-space)) ; Completeness
 (+ *completeness-fraction*
 (* best-so-far
 traversability-fraction)
 (* *complexity-fraction* ; normalised complexity
 (complexity-skewer reencounters xx yy)))))))

;;; This is equivalent to:
;;; completeness-fraction * completeness +
;;; traversability-fraction * completeness * traversability +
;;; complexity-fraction * completeness * traversability * complexity
;;; but as it involves less arithmetic it should be faster.
 if (or (>= best-so-far 0.5)
 (>= loopcounter 4)) ; For < 50% traversal, tries again up to 4x.
 return return-value)))

(defun random-location (xx yy)
 (values (random-integer xx) (random-integer yy)))

;;; The following three functions offer equivalents for 'fs-maze' to the
;;; utility functions available to 'maze'. These local usages of maze, x, y &
;;; dirn will shadow the global ones, as a result of which "wall" will operate
;;; upon the correct actual paramters.

(defun fs-move (x y compass)
 (let ((dirn compass))
 (move)
 (list x y)))

(defun fs-border (x y) (or (top-p)
 (left-p)))

(defun space (maze x y dirn)
 "Returns whether the automaton is facing a space or a wall."
 (minusp (wall)))
;;; Converts closure representation of Boolean variables back to the native
;;; representation.

(defun traverse-cell (fs-maze maze
 locn dirn ; Dirn points back the way the automaton's come
 stack
 traversed-counter
 illegalities
 reencounters)
 "Traverses a single cell of a maze by looking in all four directions,
 and if there is a space (no wall) in that direction, and the
 next location in that direction has not already been traversed (or is
 waiting to be traversed), it puts its coordinates onto a stack of locations
 waiting to be traversed. "
 (let ((fs-x (first locn)) (fs-y (second locn)))
 (dolist (compass '(left down right up))
 (let ((nextlocn (fs-move fs-x fs-y compass)))
	 (if (and (not (equal compass dirn))
		 ;; No sense in going back the way it's come!
		 (space maze fs-x fs-y compass))
		 ;; Ie no wall blocking traversal.
		 (if (or (metacar-p nextlocn stack)
			 ;; I.e. the location is already on the stack
			 (traversed-p nextlocn maze))
		 (incf reencounters)
		 (push (list nextlocn compass)
			 stack)))))
 (aset (aref (aref fs-maze fs-x) fs-y) 1 nil)
 ;; Since this is not part of the Genetic Programming virtual machine; it
 ;; can record Boolean False with the normal 'nil' rather than -1.
 (incf traversed-counter)
 (if (and (not (fs-border fs-x fs-y))
	 (minusp (aref (get-location fs-x fs-y) left))
	 (minusp (aref (get-location fs-x fs-y) down))
	 (minusp (aref (get-location (1- fs-x) fs-y) down))
	 (minusp (aref (get-location fs-x (1- fs-y)) left)))
	 ;; A point with no walls radiating out in any direction is used
	 ;; as the predicate for an incompletion of the maze.
	(incf illegalities)))
 (values stack traversed-counter illegalities reencounters))

(defun random-maze-size () (+ 7 (random-integer 11)))
 "Returns a random integer in the range 7 to 17."

(defun setup-variables ()
 "Sets up the variables for the assessment of a maze generator's fitness."
 (multiple-value-setq (x y) (random-location xx yy))
 (setq size-of-maze (* xx yy))
 (setq dirn 'left)
 (setq move-counter 0)
 (setq maze (make-maze))
 (setq du-counter 0))

(defun evaluate-standardised-fitness-for-MAZE
 (program fitness-cases)
 (let (raw-fitness hits standardised-fitness
 value-from-program this-fitness-case rpb0)
 (setq raw-fitness 0.0)
 (setq hits 0)
 (setq rpb0 (ADF-program-rpb0 program))
 (setq *adf0* (ADF-program-adf0 program))
 (setq *adf1* (ADF-program-adf1 program))
 (dotimes (index *number-of-fitness-cases*)
 (cond
 ((= index (1- *number-of-fitness-cases*))
	 (setq xx (random-maze-size))
	 (setq yy (random-maze-size)))
 (t (setq this-fitness-case (aref fitness-cases (/ index 2)))
	 (setq xx (MAZE-fitness-case-x-size this-fitness-case))
	 (setq yy (MAZE-fitness-case-y-size this-fitness-case))))
 (setup-variables)
 (setq value-from-program
 (MAZE-wrapper (eval rpb0)))
 ;; The program returns a completely irrelevant value, which is
 ;; discarded. The important thing is the maze is has generated, stored
 ;; in 'maze'. MAZE-wrapper converts this into the maze generator's
 ;; fitness.
 (incf raw-fitness value-from-program)
 (when (> value-from-program *hits-threshold*) (incf hits)))
 (setq standardised-fitness (- 100 ; Convert to lower-is-better
 (/ raw-fitness
 number-of-fitness-cases)))
 (values standardised-fitness hits)))

(defun define-parameters-for-MAZE ()
 (setq *number-of-fitness-cases* 2)
 (setq *max-depth-for-new-individuals* 5)
 (setq *max-depth-for-new-subtrees-in-mutants* 4)
 (setq *max-depth-for-individuals-after-crossover* 17)
 (setq *reproduction-fraction* 0.1)
 (setq *crossover-at-any-point-fraction* 0.2)
 (setq *crossover-at-function-point-fraction* 0.7)
 (setq *method-of-selection* :tournament)
 (setq *tournament-size* 7)
 (setq *method-of-generation* :ramped-half-and-half))

(defun define-termination-criterion-for-MAZE
 (current-generation
 maximum-generations
 best-standardised-fitness
 best-hits)
 (declare (ignore best-hits best-standardised-fitness))
 (>= current-generation maximum-generations))

(defun MAZE ()
 (values 'define-function-set-for-MAZE-adf0
 'define-function-set-for-MAZE-adf1
 'define-function-set-for-MAZE-rpb0
 'define-terminal-set-for-MAZE-adf0
 'define-terminal-set-for-MAZE-adf1
 'define-terminal-set-for-MAZE-rpb0
 'define-fitness-cases-for-MAZE
 'evaluate-standardised-fitness-for-MAZE
 'define-parameters-for-MAZE
 'define-termination-criterion-for-MAZE))

;;; Instructions for the user.

(goto-char (point-max))
(format* t
"To see a maze generator in action, enter browse mode,
enclose the generator with \"(mprint '<generator>)\"
and press C-x C-E.")

�2. Maze Printing Program: printer

;;; Maze-printer

;;; This program produces a graphics representation of mazes produced by
;;; maze generators evolved by the Genetic Programming system.

(require 'CLify)
(provide 'printer)

(defvar *maze-frame*)
(defvar *maze-buffer* :unbound "Contains maze graphics.")
(defvar *posn* :unbound "Position of the maze-drawing cursor.")

(defconst left 0)
(defconst down 1)

(defvar maze)
(defvar x)
(defvar y)
(defvar xx)
(defvar yy)

(defun setup-maze-frame ()
 "Creates a frame for maze display if one does not already exist; adjusts
 its dimensions to those suitable for the current maze, and creates an
 empty buffer to put the maze in."
 (let ((hght (+ (* yy 2) 6))
 (wdth (+ (* xx 4) 3)))
 (if (not (and (boundp '*maze-frame*)
 (framep *maze-frame*)
 (frame-live-p *maze-frame*)))
 setq *maze-frame* (make-frame ((name . "Maze Display")
 (height . hght)
 (width . wdth)
 (modeline . nil)))))
 (if (not (and (= (frame-height) hght)
 (= (frame-width) wdth)))
 (progn (set-frame-height *maze-frame* hght)
 (set-frame-width *maze-frame* wdth))))
 (select-frame *maze-frame*)
 (setq *maze-buffer* (switch-to-buffer "Maze printout buffer"))
 (erase-buffer))

(defun cell (wall)
 "Fills a cell of the maze with either a wall or space, depending on
 its argument; and advances the cursor on one maze position."
 (princ " " *maze-buffer*)
 (if wall (put-text-property *posn* (1+ *posn*)
 'face 'modeline
 maze-buffer))
 (incf *posn*))

(defun new-line ()
 (terpri *maze-buffer*) (incf *posn*))

(defun print-maze (maze)
 "Prints a graphical representation of a maze. This function may be
 called separately from mprint; it is a self-contained subroutine."
 (let ((storewindow (selected-window)))
 (setq *posn* 1)
 (setup-maze-frame)
 (dotimes (index (+ 2 (* 3 xx)))
 ;; This ratio of x:y = 3:1 balances the requirements for a wall to
 ;; be square in appearance with that for the maze as a whole to be
 ;; square in appearance.
 (cell t)) ; Top border.
 (loop for y from 0 to (1- yy) do
 (loop for index from 0 to
 (if (= y (1- yy)) 0 1)
 do (new-line) (cell t) ; Left border
 (loop for x from 0 to (1- xx) do
 (cell (or (= 1 (aref (get-location x y) left))
 (and (= 1 index) (= 1 (aref (get-location x y) down)))
 (and (= 1 index) (plusp x) (< y (1- yy))
 (= 1 (aref (get-location (1- x) y) down))
 (= 1 (aref (get-location x (1+ y)) left)))))
 ;; The bottom left "pixel" of a cell needs to be filled in even if
 ;; that location has no walls, if it forms a corner between a vertical
 ;; wall beneath and a horizontal one to the left.
 (loop repeat 2 do
 (if (and (= 1 index) (= 1 (aref (get-location x y) down)))
 (cell t)
 (cell nil))))
 (cell t))) ; Right border.
 (new-line)
 (dotimes (index (+ 2 (* 3 xx))) (cell t)) ; Lower border.
 (select-window storewindow)))

(defun mprint (program)
 "Given a maze generating program, prompts the user for x and y
 dimensions then executes the program and plots the maze thus generated."
 (format* t "Please enter x maze size (eg 10)")
 (setq xx (read))
 (format* t "Please enter y maze size (eg 10)")
 (setq yy (read))
 (setup-variables)
 (multiple-value-setq (x y) (random-location xx yy))
 (MAZE-wrapper
 (if (and (fboundp 'ADF-program-p)
 (ADF-program-p program))
 (progn (setq rpb0 (ADF-program-rpb0 program))
 (setq *adf0* (ADF-program-adf0 program))
 (setq *adf1* (ADF-program-adf1 program))
 (eval rpb0))
 (eval program)))
 (print-maze maze))

�A.2.6 The Stack System

These files were produced as offshoots of the original files by rewriting whichever parts were necessary. Due to the largely different nature of the genetic algorithm from the other systems in this study, this required an extensive rewrite of the core of this code.

1. The Kernel: stack

;;; Stack Kernel

(require 'CLify)
(require 'GUI)
(provide 'stack)

(defstruct individual
 program
 (standardised-fitness 0)
 (hits 0))

(defvar *debug*)
;;; "*debug* causes the population to be returned at the end of a run.")
(if (not (boundp '*debug*)) (setq *debug* nil))

(defvar *number-of-fitness-cases* :unbound
 "The number of fitness cases")

(defvar *length-range-for-new-individuals* :unbound
 "The maximum length for individuals of the initial
 random generation")

(defvar *max-length-for-individuals-after-crossover* :unbound
 "The maximum length of new individuals created by crossover")

(defvar *fitness-proportionate-fraction* :unbound
 "Proportion of individuals selected according to their fitness
 (rather than randomly).")

(defvar *max-length-for-inversions-in-mutants* :unbound
 "The maximum length of new subtrees created by mutation")

(defvar *seed* :unbound
 "The seed for the Park-Miller congruential randomiser.")

(defvar *best-of-run-individual* :unbound
 "The best individual found during this run.")

(defvar *generation-of-best-of-run-individual* :unbound
 "The generation at which the best-of-run individual was found.")

(defvar *probability-of-mutation* :unbound)

(defvar *proportion-of-point-mutation* :unbound
 "Splits mutation into point mutation and inversion.")

(defvar *stack* :unbound
 "The stack which the genetic programs use for memory".)

(defun run-stack-GP
 (problem-function
 seed
 maximum-generations
 size-of-population
 &rest seeded-programs)
 "Top level function running the entire genetic programming system.
 For my implementation of Perkis' Stack GP system."
;; Check validity of some arguments
 (assert (and (integerp maximum-generations)
 (not (minusp maximum-generations)))
 (maximum-generations)
 "Maximum-generations must be a non-negative ~
 integer, not %S" maximum-generations)
 (assert (and (integerp size-of-population)
 (plusp size-of-population))
 (size-of-population)
 "Size-Of-Population must be a positive integer, ~
 not %S" size-of-population)
 (assert (and (symbolp problem-function)
 (fboundp problem-function))
 (problem-function)
 "Problem-Function must be a function.")
 (assert (numberp seed) (seed)
 "The randomiser seed must be a number")
;;; Arrange frequency of garbage collection
 (setq gc-cons-threshold 3000000)
 (garbage-collect)
 (message "Running Genetic Programming Paradigm...")
;;; Set up windows environment
 (save-excursion
 (setup-windows problem-function)
;;; Record initial time for display at the end.
 (let ((time (current-time-string)))
;;; Set the global randomiser seed.
 (setq *seed* (coerce seed 'float))
;; Get the five problem-specific functions needed to specify this
;; problem as returned by a call to problem-function
 (multiple-value-bind (element-set-creator
 fitness-cases-creator
 fitness-function
 parameter-definer
 termination-predicate)
 (funcall problem-function)
;; Set up the parameters using parameter-definer
 (funcall parameter-definer)
;; Print out parameters report
 (describe-parameters-for-run
 maximum-generations size-of-population)
;; Set up the element-set using element-set-creator
 (let ((element-set (funcall element-set-creator)))
;; Define the fitness cases using the fitness-cases-creator function
 (let ((fitness-cases (funcall fitness-cases-creator)))
;; Create the population
 (let ((population
 (create-population
 size-of-population element-set seeded-programs
		 fitness-cases fitness-function))) ; [15]
;; Initialise best-of-run recording variables
		(setq *generation-of-best-of-run-individual* 0)
;;; This value is arbitrary, but is necessary for the other functions not to
;;; crash upon encountering either an unbound variable or a non-numeric
;;; initial value.
		(setq *best-of-run-individual* (aref population 0))
		(GP-middle)
;; Now run the Stack Genetic Programming system using
;; the fitness-function and termination-predicate provided
 (execute-generations
 population size-of-population fitness-cases
 maximum-generations fitness-function
 termination-predicate element-set)
;; Finally print out a report
 (report-on-run)
		(set-point-at-end)
		(format* t time)
		(format* t (current-time-string))
		(message "Finished!")(beep)(beep)(beep)
;;; Use of a triple beep prevents confusion with any other application.
		(if *debug* population))))))))

(defun report-on-run ()
 "Prints out the best-of-run individual."
 (GP-middle)(cls)
 (when (not *graphic*) (format* t "\n\n\n\n"))
 (format* t "%s"
 (format
"The best-of-run individual program for this run was found on
generation %d and had a standardised fitness measure of %g and %d hit(s).
It was:
%s"
 generation-of-best-of-run-individual
 (individual-standardised-fitness *best-of-run-individual*)
 (individual-hits *best-of-run-individual*)
 (individual-program *best-of-run-individual*))))
 ;; See under "print-population" for the reason for this syntax.

(defun report-on-generation (generation-number population)
 "Prints out the best individual at the end of each generation"
 (let ((size-of-population (length population))
 (sum 0.0)
	(printstring "\nGeneration %d: Average standardised-fitness = %g.
The best individual program of the population had a standardised fitness measure of %g and %d hit(s).
It was:
%s"))
 ;; Add up all of the standardised fitnesses to get average
 (dotimes (index size-of-population)
 (incf sum (individual-standardised-fitness
 (aref population index))))
 (GP-middle)(cls)
 (if *graphic* (format* t printstring
;;; If *graphic* two reports are needed, one in the best-of-generation window
;;; and one in the audit trail window.
			 generation-number (/ sum (length population))
			 (individual-standardised-fitness
 best-of-run-individual)
			 (individual-hits *best-of-run-individual*)
			 (`(quote (,(individual-program
 best-of-run-individual))))))
 (GP-bottom)
 (format* t printstring
 generation-number (/ sum (length population))
 (individual-standardised-fitness *best-of-run-individual*)
 (individual-hits *best-of-run-individual*)
 (`(quote (,(individual-program *best-of-run-individual*))))))
 (sit-for 0))
 ;; In theory (sit-for 0) pauses to allow the screen to redisplay. In
 ;; practice Emacs often appears to ignore it, for reasons of its own.

(defun print-population (population)
 "Given a population, this prints it out (for debugging) "
 (dotimes (index (length population))
 (let ((individual (aref population index)))
 (format* t "%s"
 ;; I have not made format* sufficiently complex to be able to deal
 ;; with "(individual-program individual)" without evaluating it either
 ;; too many or two few times. This nested "format" syntax I consider to
 ;; be preferable to the syntactic jungle necessary to achieve this
 ;; effect using format* alone.
	 (format "\n%d %g %s"
		 index
		 (individual-standardised-fitness individual)
		 (individual-program individual))))))

(defun describe-parameters-for-run
 (maximum-generations size-of-population)
 "Lists the parameter settings for this run."
 (GP-top)
 (format* t "\nParameters used for this run.\n=============================")
 (format* t "%-50s%d" "Maximum number of Generations:"
 maximum-generations)
 (format* t "%-50s%d" "Size of Population:" size-of-population)
 (format* t "%-50s%d%s%d" "Length range of new individuals:"
 (first *length-range-for-new-individuals*) " - "
	 (second *length-range-for-new-individuals*))
 (format* t "%-50s%d" "Fitness proportionate fraction of selection:"
 fitness-proportionate-fraction)
 (format* t "%-50s%d" "Maximum length of inversions for mutants:"
 max-length-for-inversions-in-mutants)
 (format* t "%-50s%d"
 "Maximum length of individuals after crossover:"
 max-length-for-individuals-after-crossover)
 (format* t "%-50s%g" "Number of fitness cases:"
 number-of-fitness-cases)
 (format* t "%-50s%g" "Randomiser seed:" *seed*)
 (format* t "%-50s%g" "Proportion of mutations to use point mutation:"
 proportion-of-point-mutation)
 (sit-for 0)) ; allows the screen to redisplay.

(defvar *generation-0-uniquifier-table*
 (make-hash-table :test (function equal))
 "Used to guarantee that all generation 0 individuals are unique")

(defun create-population (size-of-population element-set
 seeded-programs
			 fitness-cases fitness-function)
 "Creates the population. This is an array of size
 size-of-population that is initialised to contain individual
 records. The Program slot of each individual is initialised
 to a suitable random program except for the first N programs,
 where N = (length seeded-programs). For these first N
 individuals the individual is initialised with the respective
 seeded program. This is very useful in debugging."
 (let ((population (make-vector size-of-population nil)))
 (do ((individual-index 0))
 ((>= individual-index size-of-population))
 (let ((new-program
 (if (< individual-index (length seeded-programs))
 ;; Pick a seeded individual
 (nth individual-index seeded-programs)
 ;; Create a new random program.
		 (loop for index from 1 to
		 (+ (first *length-range-for-new-individuals*)
			 (random-integer (1+
				(- (second *length-range-for-new-individuals*)
				 (first *length-range-for-new-individuals*)))))
		 collect (choose-from-element-set element-set)))))
 ;; Check if we have already created this program.
 ;; If not then store it and move on.
 ;; If we have then try again.
 (cond ((< individual-index (length seeded-programs))
 (aset population individual-index
 (make-individual :program new-program))
	 (evaluate-standardised-fitness (aref population
						 individual-index)
					 fitness-cases
					 fitness-function)
 (incf individual-index))
 ((not (gethash new-program *generation-0-uniquifier-table*))
 (aset population individual-index
 (make-individual :program new-program))
 (setf (gethash new-program *generation-0-uniquifier-table*) t)
 (evaluate-standardised-fitness (aref population
						 individual-index)
					 fitness-cases
					 fitness-function)
	 (incf individual-index))
 (t nil)))) ; [16]
 ;; Flush out uniquifier table to that no pointers
 ;; are kept to generation 0 individuals.
 (clrhash *generation-0-uniquifier-table*)
 ;; Return the population that we've just created.
 population))

(defun choose-from-element-set (element-set)
 "Chooses a random element from the element set.
 If the element chosen is the ephemeral :Floating-Point-Random-Constant,
 then a floating-point random constant is created in
 the range -5.0->5.0. If :Integer-Random-Constant is chosen then an
 integer random constant is generated in the range -10 to +10."
 (let ((choice (nth (random-integer (length element-set))
 element-set)))
 (if (= 58 (aref (format "%s" choice) 0))
 ;; ASCII 58 = ':'. This allows extension of elements which require
 ;; preprocessing such as the numeric constants here.
	(list '>>
	 (case choice
	 (:floating-point-random-constant
	 ;; pick a random number in the range -5.0 ---> +5.0.
	 (coerce (- (random-floating-point-number 10.0) 5.0)
		 'float))
	 (:integer-random-constant
	 ;; pick a random integer in the range -10 ---> +10.
	 (- (random-integer 21) 10))
	 (otherwise choice)))
 (list choice))))

(defun execute-generations
 (population size-of-population fitness-cases maximum-generations
 fitness-function termination-predicate element-set)
 "Loops until the user's termination predicate says to stop. This uses
 steady-state GP, in which individuals are processed one at a time, rather
 than one generation at a time. A form of tournament selection is used
 such that three individuals are chosen and the least fit is replaced with
 the offspring of the other two."
 (do ((individuals-processed 1 (+ 1 individuals-processed))
 (current-generation 0))
 ;; loop incrementing individuals-processed until termination-predicate
 ;; succeeds. Since this is steady-state GP, "generations" must be
 ;; emulated.
 ((cond
	((zerop (mod individuals-processed size-of-population))
	 (report-on-generation current-generation population)
	 (incf current-generation)
	 (funcall termination-predicate
		 current-generation
		 maximum-generations
		 (individual-standardised-fitness *best-of-run-individual*)
		 (individual-hits *best-of-run-individual*)))
	 (t nil)))
 (multiple-value-bind (indiv-1 indiv-2 indiv-3)
;;; Since these are pointers, not copies, altering them alters the originals.
 (select-3-and-sort population)
 (if (equal *best-of-run-individual* indiv-3)
	 (let ((new-best
		 (loop for different-indiv
		 = (aref population (random-integer
 (length population)))
		 when (and (not (eq different-indiv indiv-1))
				 (not (eq different-indiv indiv-2))
				 (not (eq different-indiv indiv-3)))
;;; This originally used "equal" rather than "eq", but that goes into an
;;; infinite loop if the population converges.
		 return different-indiv)))
	 (setq new-best (copy-individual *best-of-run-individual*))
	 (setq *best-of-run-individual* new-best)))
;;; I have opted to keep the best-so-far individual in the population.				
 (setf (individual-program indiv-3)
	 (crossover (individual-program indiv-1)
			(individual-program indiv-2)))
 (if (< (random-floating-point-number 1.0) *probability-of-mutation*)
	 (mutate (individual-program indiv-3) element-set))
 ;; Keep track of best-of-run individual
 (cond
 ((< (evaluate-standardised-fitness indiv-3
					 fitness-cases
					 fitness-function)
	 ;; This function of course computes the standardised-fitness as a
	 ;; "side-effect", but also returns its value.
	 (individual-standardised-fitness *best-of-run-individual*))
	(setq *best-of-run-individual* indiv-3)
	(setq *generation-of-best-of-run-individual* current-generation))
 (t nil)))))

(defun select-3 (population)
 "Picks three random individuals from the population."
 (loop for index from 1 to 3
	collect (aref population (random-integer (length population)))))

(defun select-3-and-sort (population)
 "Picks three random individuals from the population and with a probability
 of *fitness-proportionate-fraction*, sorts them into order of fitness."
 (if (< (random-floating-point-number 1.0) *fitness-proportionate-fraction*)
 (stable-sort (select-3 population)
		 '<
		 :key 'individual-standardised-fitness)
 (select-3 population)))

;;; Stack manipulation functions.
(defsubst spush (x) "Pushes an item onto the stack" (push x *stack*))
(defsubst spop () "Pops an item from the stack" (pop *stack*))
(defun >> (x) "Pushes a number onto the stack" (spush x))

(defun evaluate-standardised-fitness
 (individual fitness-cases fitness-function)
 "Evaluates an individual's fitness"
 (let (standardised-fitness hits)
 (multiple-value-bind (standardised-fitness hits)
 (funcall fitness-function
 (individual-program individual)
 fitness-cases)
 ;; Record fitness and hits for this individual.
 (setf (individual-standardised-fitness individual)
 standardised-fitness)
 (setf (individual-hits individual) hits)
 (setf (individual-standardised-fitness individual)
 standardised-fitness))))

(defun crossover (male female)
 "Performs crossover on the programs at any point - non-homologous
 recombination, in the parlance of Genetics."
 ;; Pick points in the respective trees on which to perform the crossover.
 (let ((male-start (random-integer (length male)))
 (female-start (random-integer (length female)))
 (male-end) (female-end))
 (loop
 (setq male-end
 (+ male-start
	 (1+ (random-integer (- (length male)
				 male-start)))))
 (setq female-end
 (+ female-start
	 (1+ (random-integer (- (length female)
				 female-start)))))
 (if (<= (+ male-start ; Validate.
	 (- female-end female-start)
	 (- (length male) male-end))
	 max-length-for-individuals-after-crossover)
	 (return)))
 (concatenate 'list ; Involves copying. [10]
		 (subseq male 0 male-start)
		 (subseq female female-start female-end)
		 (subseq male male-end))))

(defun mutate (program element-set)
 "Mutates the argument program."
 ;; Pick the mutation point.
 (let ((mutation-point
 (random-integer (length program))))
	(if (> (random-floating-point-number 1)
	 proportion-of-point-mutation)
	 ;; Point mutation.
	 (setf (nth mutation-point program)
		 (choose-from-element-set element-set))
	 ;; Inversion mutation [17]
	 (let* ((2nd-point (+ mutation-point
			 (random-integer (min
					 max-length-for-inversions-in-mutants
					 (- (length program)
					 mutation-point)))))
		 (inversion-piece (subseq program
					 mutation-point
					 2nd-point)))
	 (setf inversion-piece (reverse inversion-piece))))))

See A.2.2.1 for the random-number generator.
�2. The Problem Files

(i) The Symbolic Regression Problem: stack-regrn

;;; Symbol Regression Problem for 0.5x^2 for Stack GP.

(require 'CLify)
(require 'stack)

(defun define-element-set-for-REGRESSION ()
 '(s+ s- s* s%
 DUP
 :floating-point-random-constant))

;;; Problem specific functions. "s" for "stack".
(defun s+ () (if (> (length *stack*) 1) (spush (+ (spop) (spop)))))
(defun s- () (if (> (length *stack*) 1) (spush (- (spop) (spop)))))
(defun s* () (if (> (length *stack*) 1) (spush (* (spop) (spop)))))
(defun s% () (if (> (length *stack*) 1) ; Protected division.
 (spush
 (let ((num (spop)) (denom (spop)))
 (if (zerop denom) 1 (/ num denom))))))
(defun DUP () (if (not (null *stack*))
 (let ((x (spop))) (spush x) (spush x))))

The structure REGRESSION-fitness-case and define-fitness-cases-for-REGRESSION are defined in A.2.3.1.

(defun REGRESSION-wrapper () (let ((return-value (spop)))
 (if (null return-value) 0 return-value)))

(defun evaluate-standardised-fitness-for-REGRESSION
 (program fitness-cases)
 (let (raw-fitness hits standardised-fitness x target-value
 difference value-from-program this-fitness-case)
 (setq raw-fitness 0.0)
 (setq hits 0)
 (dotimes (index *number-of-fitness-cases*)
 (setq *stack* nil)
 (setq this-fitness-case (aref fitness-cases index))
 (spush (REGRESSION-fitness-case-independent-variable
 this-fitness-case))
 (setq target-value
 (REGRESSION-fitness-case-target
 this-fitness-case))
 (dolist (sexp program) (eval sexp))
 (setq value-from-program
 (REGRESSION-wrapper))
 (setq difference (abs (- target-value
 value-from-program)))
 (incf raw-fitness difference)
 (when (< difference 0.01) (incf hits)))
 (setq raw-fitness (* raw-fitness (1+ (length program))))
								 ; Penalises introns.
 (setq standardised-fitness raw-fitness)
 (values standardised-fitness hits)))

(defun define-parameters-for-REGRESSION ()
 (setq *number-of-fitness-cases* 10)
 (setq *length-range-for-new-individuals* '(5 15))
 (setq *max-length-for-individuals-after-crossover* 20)
 (setq *fitness-proportionate-fraction* 0.7)
 (setq *max-length-for-inversions-in-mutants* 4)
 (setq *probability-of-mutation* 0.1)
 (setq *proportion-of-point-mutation* 0.7))

See A.2.3.1 for define-termination-criterion-for-REGRESSION.

(defun REGRESSION ()
 (values 'define-element-set-for-REGRESSION
 'define-fitness-cases-for-REGRESSION
 'evaluate-standardised-fitness-for-REGRESSION
 'define-parameters-for-REGRESSION
 'define-termination-criterion-for-REGRESSION))

�(ii) The Boolean 3-Majority-On Problem: stack-3maj

;;; Boolean 3-Majority-on Problem for Stack GP.

(require 'CLify)
(require 'stack)

(defvar :d0)
(defvar :d1)
(defvar :d2)

(defun define-element-set-for-MAJORITY-ON ()
 '(:d2 :d1 :d0 ; ":" indicates a terminal
 sAND2 sAND3 sOR sNOT))

;;; Problem specific functions.
(defun sNOT () (if (> (length *stack*) 0) (spush (not (spop)))))
(defun sOR () (if (> (length *stack*) 1) (spush (or (spop) (spop)))))
(defun sAND2 () (if (> (length *stack*) 1) (spush (and (spop) (spop)))))
(defun sAND3 () (if (> (length *stack*) 2)
 (spush (and (spop) (spop) (spop)))))
;;; Note the use of "buggy" definitions - see Perkis.

See A.2.3.2 for the structure MAJORITY-ON-fitness-case and define-fitness-cases-for-MAJORITY-ON.

(defun MAJORITY-ON-wrapper () (spop))

(defun evaluate-standardised-fitness-for-MAJORITY-ON
 (program fitness-cases)
 (let (raw-fitness hits standardised-fitness target-value
 match-found value-from-program fitness-case)
 (setq raw-fitness 0.0)
 (setq hits 0)
 (dotimes (index *number-of-fitness-cases*)
 (setq *stack* nil)
 (setq fitness-case (aref fitness-cases index))
 (setq :d0 (MAJORITY-ON-fitness-case-d0 fitness-case))
 (setq :d1 (MAJORITY-ON-fitness-case-d1 fitness-case))
 (setq :d2 (MAJORITY-ON-fitness-case-d2 fitness-case))
 (setq target-value
 (MAJORITY-ON-fitness-case-target fitness-case))
 (dolist (sexp program) (eval sexp))
 (setq value-from-program
 (MAJORITY-ON-wrapper))
 (setq match-found (eq target-value value-from-program))
 (incf raw-fitness (if match-found 1.0 0.0))
 (when match-found (incf hits)))
 (setq standardised-fitness (- (+ 8 (length program)) raw-fitness))
					 ; Penalises introns.
 (values standardised-fitness hits)))

(defun define-parameters-for-MAJORITY-ON ()
 (setq *number-of-fitness-cases* 8)
 (setq *length-range-for-new-individuals* '(5 15))
 (setq *max-length-for-individuals-after-crossover* 40)
 (setq *fitness-proportionate-fraction* 0.7)
 (setq *max-length-for-inversions-in-mutants* 4)
 (setq *probability-of-mutation* 0.0)
 (setq *proportion-of-point-mutation* 0.7))

See A.2.3.1 for define-termination-criterion-for-MAJORITY-ON.

(defun MAJORITY-ON ()
 (values 'define-element-set-for-MAJORITY-ON
 'define-fitness-cases-for-MAJORITY-ON
 'evaluate-standardised-fitness-for-MAJORITY-ON
 'define-parameters-for-MAJORITY-ON
 'define-termination-criterion-for-MAJORITY-ON))
�A.2.7 Demonstration Program

The demonstration file is run by the following short Unix script, contained in the file demo:–

cd /user/compsci/cs_it/grantms/genetic
emacs -l runner.el &

The file runner.el is as follows:–

;;; Master coordinating program for the Genetic Programming System.

(setq load-path (append '("~/genetic/byte") load-path))

(require 'CLify)
(require 'GUI)

(defconst out-directory "~/genetic/examples/"
 "Directory for spooling results into.")
(defconst master-buffer (current-buffer)
 "Buffer containing the menus.")
(defconst line-width 58)
(setq standard-input t)
(setq debug-on-quit t)

(emacs-lisp-mode) ; Purely for the nice colours!
(hilit-recenter 1) ; Initialise fancy colours

(defconst titles
 '(("" nil)
 ("THE" blue-bold)
 ("GENETIC PROGRAMMING" blue-bold)
 ("PARADIGM" blue-bold)
 ("" nil)
 ("demonstrated in" purple)
 ("a project for the degree of" purple)
 ("Master of Sciences" purple)
 ("in Information Technology" purple)
 ("" nil)
 ("by" nil)
 ("Michael Grant" ForestGreen-bold)
 ("September 1996" nil)
 ("" nil)
 ("<Press any key>" firebrick-italic))
 "Each list specifies a line and a face.")

(defconst master-list-of-problems '(
 (original "Symbolic Regression" REGRESSION "regression")
 (original "Squad Car" NON-HAMSTRUNG-SQUAD-CAR "squadcar")
 (original "Boolean 3-Majority-On" MAJORITY-ON "3_maj_on")
 (original "Boolean Even-3-Parity" EVEN-3-PARITY "even3")
 (original "Boolean Even-4-Parity" EVEN-4-PARITY "even4")
 (original "Boolean Even-5-Parity" EVEN-5-PARITY "even5")
 (original "Maze (old fitness function)" MAZE "maze")
 (original "Maze (new fitness function)" MAZE "maze2")
 (original "Maze complexity data" MAZE-DATA "mazedata")
 (ADF-kernel "Symbolic Regression" REGRESSION "regression.A")
 (ADF-kernel "Boolean Even-3-Parity" EVEN-3-PARITY "even3.A")
 (ADF-kernel "Boolean Even-4-Parity" EVEN-4-PARITY "even4.A")
 (ADF-kernel "Boolean Even-5-Parity" EVEN-5-PARITY "even5.A")
 (ADF-kernel "Maze (old fitness function)" MAZE "maze.A")
 (ADF-kernel "Maze (new fitness function)" MAZE "maze2.A")
 (ADF-kernel "Maze (macros version)" MAZE "macro.A")
 (stack "Symbolic Regression" REGRESSION "stack-regrn")
 (stack "Boolean 3-Majority-On" MAJORITY-ON "stack-3maj")
 (true-pygmy "Squad Car" NON-HAMSTRUNG-SQUAD-CAR "squadcar.P")
 (true-pygmy "Boolean 3-Majority-On" MAJORITY-ON "3_maj_on.P")
 (true-pygmy "Boolean Even-3-Parity" EVEN-3-PARITY "even3.P")
 (true-pygmy "Boolean Even-4-Parity" EVEN-4-PARITY "even4.P")
 (true-pygmy "Boolean Even-5-Parity" EVEN-5-PARITY "even5.P")
 (true-pygmy.A "Boolean Even-3-Parity" EVEN-3-PARITY "even3.P.A")
 (true-pygmy.A "Boolean Even-4-Parity" EVEN-4-PARITY "even4.P.A")
 (true-pygmy.A "Boolean Even-5-Parity" EVEN-5-PARITY "even5.P.A")
 (true-pygmy.A "Maze (new fitness function)" MAZE "maze2.P.A"))
;;; KERNELS, NAME, DEFUN, FILE DIRECTORY
 "Each list specifies a problem's required kernel-type, its name, the name
 of its top-level function to be passed to the top-level kernel function,
 and the file to find it in.")

(defun identify-kernel (kernel-name)
 "Converts a kernel type into a list of possible filenames."
 (ecase (car (read-from-string kernel-name))
 ((kernel pygmy pygmy2 pygmy3) 'original)
 (stack 'stack)
 ((TruePygmy Retirement.P) 'true-pygmy)
 (TruePygmy.A 'true-pygmy.A)
 ((ADF-kernel pygmy.A) 'ADF-kernel)))

(defun list-of-problems (kernel-file)
 "Given a kernel file, extracts from master-list-of-problems the problems
 that kernel can tackle."
 (loop for item in master-list-of-problems
	if (equal (identify-kernel kernel-file) (first item))
	 collect (cdr item)))

(defun beginning_of_line () (beginning-of-line)(point))
(defun end_of_line () (end-of-line)(point))

(defun change-line-face (face &optional line)
 (if (not (null line)) (forward-line line))
 (put-text-property (beginning_of_line) (end_of_line) 'face face)
 (if (not (null line)) (forward-line (- line))))

(defun centre-line (string)
 "Pads a string out with spaces either side to centre it on a line"
 (let ((spc (make-string (/ (- line-width (length string)) 2) ?\040)))
 (concat spc string spc)))

(defun title-page ()
 "Prints out the title page."
 (dolist (line titles)
 (format* t "%s" (centre-line (first line)))
 (change-line-face (second line) -1))
 (read-event)) ; Wait for any key to be pressed.

(defun menu (menu-items description)
 (erase-buffer)
 (format* t (centre-line "Genetic Programming Parameters\n"))
 (change-line-face 'bold -2)
 (dolist (item menu-items) (format* t "%s" item))
 (format* t "\nPlease select %s:" description)
 (change-line-face 'underline -1)
 (goto-line 3)
 (change-line-face 'highlight)
 (loop for chr = (read-event) with selection = 0
	until (equal chr 'return)
	finally return selection
	do
	 (cond ((and (equal chr 'up) (plusp selection))
		(change-line-face nil) (forward-line -1)
		(decf selection) (change-line-face 'highlight))
	 ((and (equal chr 'down) (< selection (1- (length menu-items))))
		(change-line-face nil) (forward-line)
		(incf selection) (change-line-face 'highlight)))))

(defun enter-number (line)
 "Calls enter-option until the value returned is a number"
 (loop for option = nil then (enter-option line)
	until (numberp option)
	finally return option
	if option do (delete-char (1+ (- (length (format "%s" option)))) (beep))))

(defun enter-option (line)
 "Prints a prompt at the specified line and reads in a value."
 (let (result)
 (goto-line line) (end-of-line)
 (delete-char -1)
 (let ((point (point)))
	 (princ "<please enter>" master-buffer)
	 (put-text-property point (end_of_line) 'face 'highlight))
 (setq result (read))
 (delete-char -14) (princ (format "%s" result) master-buffer)
 result))

(defun spool-to-file (PROB DUMMY GENS SIZE)
 "Configures system so that instead of executing a single run, the system
 executes 33 consecutive runs and spools each run's best-of-generation
 individual to disk."
 (setq standard-input t)
 ;; Sets input to the keyboard. One cannot rely on it already being thus.
 (setq visible-bell t)
 ;; Disables audible beeping at the end of each individual run.
 (goto-line 8)
 (format* t "Filename : *")
 (let ((fsp (concat out-directory (format "%s" (enter-option 8)))))
 (loop for SEED from 0.01 to 1.0 by 0.03
	 do (funcall *run* PROB SEED GENS SIZE)
	 (GP-middle)
	 (append-to-file (point-min) (point-max) fsp)))
 (setq visible-bell nil) ; reenables beeping
 (loop repeat 6 do (beep)))
 ;; An alert sound easily distinguishable from the triple beeps of
 ;; single runs.

(defun runner ()
 "Highest level function - runs whole system and acts as an interface between
 the user and the top-level kernel function."
 (interactive) ; Allows manual calling of this function by means of a command.
 (modify-frame-parameters (next-frame) '((height . 20) (width . 60)))
 ;; This program is intended to be run from a command-line script, which will
 ;; result in "(next-frame)" returning the current (and only) frame.
 (title-page)
 (let ((types '(("Koza's original GP paradigm"
		 "Koza's GP with ADFs"
		 "The In-kernel Pygmy Algorithm"
		 "The In-kernel Pygmy Algorithm with ADFs"
		 "Ryan's Pygmy Algorithm"
		 "Ryan's Pygmy Algorithm with ADFs"
		 "The Pygmy Algorithm with semi-retiring civil servants"
		 "Perkis' Stack GP")

		 (run-genetic-programming-system
		 Run-GP-With-ADFs
		 run-pygmy-algorithm
		 run-pygmy-algorithm-with-ADFs
		 run-true-pygmy-algorithm
		 run-pygmy-algorithm-with-ADFs
		 run-true-pygmy-algorithm
		 run-stack-GP)

		 ("kernel"
		 "ADF-kernel"
		 "pygmy"
		 "pygmy.A"
		 "TruePygmy"
		 "TruePygmy.A"
		 "Retirement.P"
		 "stack")))

	type top-level-defun kernel-file problems
	problem problem-defun problem-file
	number-of-generations size-of-population seed)
 (loop do
 (setq type (menu (first types) "type of GP system"))
 (setq top-level-defun (nth type (second types)))
 (setq kernel-file (nth type (third types)))
 (let ((problems (list-of-problems kernel-file)))
 (setq problem (menu (mapcar 'first problems) "problem"))
 ;; This calls "menu" to return a list corresponding to the chosen
 ;; problem. From this list are now read the problem's attributes.
 (setq problem-defun (second (nth problem problems)))
 (setq problem-file (third (nth problem problems)))
 (loop do
 (erase-buffer)
 (format* t "%s\n%s\n
Kernel: %s
Problem: %s
Number of Generations: *
Size of Population: *
Randomiser Seed: *

Enter 0.0 < seed <= 1.0 for a single run or any other
value for a 33-run stint to to be spooled to disk."
		 (centre-line "GENETIC PROGRAMMING")
		 (centre-line "-------------------")
		 (nth type (first types))
		 (first (nth problem problems)))
 (change-line-face 'bold -15)
 (setq number-of-generations (enter-number 6))
 (setq size-of-population (enter-number 7))
 (setq seed (enter-number 8))
 (goto-char (point-max))
 (if (or (<= seed 0) (> seed 1.0))
	 (prog2 (setq *run* top-level-defun)
	 (setq top-level-defun 'spool-to-file)))
 (erase-buffer)
 (format* t
"Entering Genetic Programming system.
Once in operation the system can be halted for on-the-fly
adjustments by use of CTRL-g. Repositioning the point in
the *Backtrace* debugging window and typing c will
continue the run.
This may be necessary anyway to see what's going on if
the screen display fails to refresh itself.")
 (load kernel-file) (load problem-file)
 (save-selected-window
	 (funcall top-level-defun
	 problem-defun
	 seed
	 number-of-generations
	 size-of-population))
 (goto-char (point-max))
 (if (y-or-n-p "Browse results? ")
	 (progn (format* t "%s"
			 (concat
"Entering browse mode. Use CTRL-X CTRL-W to save any of the
results buffers, and CTRL-META-c to return to the program."
 (if (equal top-level-defun 'spool-to-file)
				 (concat
"\nUse CTRL-X CTRL-F to load the results file from directory\n"
				 out-directory))))
		 (recursive-edit)))
 while (y-or-n-p "Run this problem (series) again? ")))
 while (y-or-n-p "Run another problem? "))
 (format* t "\nGood-bye."))
 (sit-for 2) ; Pause to allow user to view good-bye message!
 (save-buffers-kill-emacs))

;;; Now, having defined everything (this program is not compiled), run it:-

(runner)
� This may be found in the file CLify.el; the byte-compiled code is in file byte/CLify.elc; et passim.
� Of course, now that their form is known, it would be possible to rearrange them into a meta-kernel and short files to provide the functions they did not share in common.
� Koza had single-float here, but this was altered to float since single-precision floating numbers do not exist in Emacs Lisp.
� Emacs Lisp 19 ignores ignore. This line is kept for possible future expansions to Emacs Lisp, and to retain compatibility in case of future porting of this program.

� Koza’s routine as provided returned a second value from this function, but the other functions don’t seem to expect it and if included it fouls up an ecase or two, so I removed it.

� The Emacs Lisp manual recommends against using values without multiple-value-bind. This is because it returns (<value>), whereas Common Lisp values returns just <value>. Consequently values has been removed from many of these functions.
� All setfs possible have been replaced with setq since the latter is built-in and therefore probably faster.

� Whilst this could, and possibly should, have been made a proper parameter of the system, this would have been impossible in pygmy.el, because it used the same problem-specific files as kernel.el. TruePygmy.el was left the same, for consistency.
� Or at least that was my original intention. As it transpired I went on to ignore the maze generators’ hits.

BIBLIOGRAPHY

�PAGE �

�PAGE �147�

APPENDICES

