Length of meridian arc on an ellipsoid

Suppose the Earth is modelled as an ellipsoid with semi-major axis a, semi-minor axis b, and eccentricity e. A standard problem is to
find the length of a meridian arc between two geographical latitudes, say ¢, and ¢,. Three methods are suggested below. For more on
this topic see e.g. the lecture notes by Deakin and Hunter [1].

The radius of curvature in meridian at latitude ¢ is given by
p = a(l-ed)(1 - e%sin2p) 32 = a(l + g)Y2(1 + ecosip) ¥
where & = €%/(1-¢€?) = (a*~b?)/b?

We work here in terms of ¢, which is assumed to be small (¢ = 1/150 for the Earth). The arc length is given by

¢
a(l + )2 | (1 + ecosp) ¥2do.
Py

Method 1: Numerical integration

In theory this method is subject to rounding errors, due to the addition of many terms. In practice it seems to work well enough,
provided one uses an accurate integration formula such as Weddle’s rule (rather than the better known Simpson’s and three-eighths
rules). In Weddle’s rule the number of intervals is a multiple of 6, and the integral over a block of 6 intervals is estimated as

6h 3h
o Y®dx =551y (0) +5y(h) +y(2h) + 6y(3h) +y(4h) + Sy (Sh) +y(Bh)].

The number of intervals can be repeatedly doubled until the value stays constant within the desired order of accuracy. This method is
slow, but is useful as a check on other methods.

Method 2: integration of the power series

Here we expand the integrand (1 + £c0os?p) 32 by the binomial theorem, taking as many terms as are required to achieve the desired
accuracy. The powers cos?™p are integrated by rewriting them in terms of multiple angles:

cos2mp = 1-2m [%(ZnT ) + (mZT 1)COSZ(p + (sz 2)cos4q> + (mZT 3) cos6be + ... + c052m<p]

We may as well multiply the result by the binomial expansion of (1 + £)¥2, since this does not make it any more complicated. If this is
done, the length of the meridian arc is

a[cy(p, — @q) + Cy(sin2¢, — sin2¢,) + C,(sinde, — sindp,) + C4(sinbe, — sinbe,) + ... ],

where the c,, are power series in €. To reduce the effect of rounding errors when ¢, — ¢, is small, it may be better to rewrite
sin2me, — sin2me, as 2sinm(g, — ¢,)cosm(e, + ¢,). The coefficients c,, are given below up to &® (equivalent to €'6), which should
be more than enough for most purposes.
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Method 3: Another power series method

The following method may be of interest in that it can be extended by computer to any desired degree of accuracy, without the need to
program-in complicated coefficients like those in Method 2. It finds the arc length along the meridian from the equator to a given
latitude . The arc length from ¢, to ¢, can be found by applying the method to ¢, and ¢,, and taking the difference.

We expand (1 + £c0s%p) 32 by the binomial theorem, as in Method 2, but now integrate the cos?™¢ as follows. Setting
®
Ky = Io cos?Mepde,
we find easily that 2mK_, = (2m — 1)K, _, + sinpcos?™~ 1o, whence
1 1. 3 3. 1.
Ko=0, K= 29 + singcose, K,= g¥  gsinocose + Zsmcpcos%p, etc.
A routine calculation shows that the integral, which has to be multiplied by a(1 + €)¥2 (= a%b) to get the arc length, is
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+ ...

It is clear how the pattern can be continued indefinitely. The following tested piece of code, written in Delphi Pascal, shows how the
method can be applied to give any degree of precision up to the limit of the language used.

const

MAX_POWNER _EPSILON = 8; // arbitrary: higher if machine precision warrants it
var

coeff : array [0.. MAX_POAER_EPSI LON] of extended;

/1 Del phi "extended" is floating-point with 64-bit precision (19 sig. fig.)

Conmpute the coefficients of phi, sin(phi)*cos(phi), sin(phi)*cos*3(phi), etc.
This procedure need only be called once for a given ellipsoid (a, b).
}
procedure ConputeCoefficients( a, b : extended);
var
epsilon : extended;
j, k : integer;
denom nult : extended;
begin
epsilon := (a - b)*(a + b) / (b*b);

/'l Conpute sums shown inside large () in Wb text
j = MAX_POWER EPSI LON,;

denom : = 4.0%j *j;
coeff[j] := (denom - 1.0)/denom
for j := MAX_ POVNER EPSILON - 1 downto O do begin
for k := MAX_POVNER EPSI LON downto j + 1 do coeff[k] := -epsilon * coeff[Kk]
if (j > 0) then begin
denom : = 4.0%j *j;
coeff[j] := (coeff[j+1] + 1.0) * (denom- 1.0)/denom
end
el se coeff[0] := coeff[1l] + 1.0;

end;



/1l Apply factors 1/2, 1.3/2.4, 1.3.5/2.4.6, etc. and di mensions of ellipsoid.
mult := a*alb,;

coeff[0] := nult*coeff[O0];
coeff[1] := nult*coeff[1];
for j := 2 to MAX_PONER _EPSI LON do begin
mult = mult*(2*j - 3)/(2*] - 2);
coeff[j] := mult*coeff[j];
end;
end;

Apply the above coefficients to compute arc |ength on meridian
fromequator to passed-in |atitude phi

}
function Conput eArcLengt hFromEquat or ( phi _degrees : extended) : extended,;
var
phi, ¢, c2, total : extended;
j @ integer;
begin
phi := (PI/180.0) * phi_degrees; [/ degrees to radians
c := Cos( phi);
c2 := c*c;
total := coeff[ MAX_PONER _EPSI LON] ;
for j := MAX POWNER EPSILON - 1 downto 1 do total := total*c2 + coeff[j];
result := phi*coeff[0] + Sin(phi)*c*total;
end;
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