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Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa
Quinta da Torre, 2829-516 Caparica, Portugal

Colton Magnant 5

Department of Mathematical Sciences
Georgia Southern University

65 Georgia Ave, Statesboro, GA 30460 USA

Abstract

An edge-colouring of a graph G is rainbow k-connected if, for any two vertices of
G, there are k internally vertex-disjoint paths joining them, each of which is rain-
bow (i.e., all edges of each path have distinct colours). The minimum number of
colours for which there exists a rainbow k-connected colouring for G is the rainbow
k-connection number of G, and is denoted by rck(G). The function rck(G) was



introduced by Chartrand et al. in 2008, and has since attracted considerable inter-
est. In this note, we shall consider the function rck(G) for complete bipartite and
multipartite graphs, highly connected graphs, and random graphs.
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1 Introduction

Connectivity is one of the most important and fundamental graph-theoretic
concepts, in both the combinatorial setting and the algorithmic setting. The
connectivity concept and its variants, such as k-connectivity, requirement of
Hamiltonicity, requirement of bounded diameter, and so on, have been in-
tensely studied. In 2008, Chartrand, Johns, McKeon and Zhang [4,5] intro-
duced the concept of rainbow k-connectivity, as follows. An edge-colouring of
a graph G is rainbow k-connected if, for any two vertices of G, there are k in-
ternally vertex-disjoint rainbow paths joining them (i.e., the edges of each path
have distinct colours). The minimum number of colours for which there exists
a rainbow k-connected colouring for G is the rainbow k-connection number of
G, and is denoted by rck(G). We write rc(G) = rc1(G). Note that, by Menger’s
theorem, any two vertices of a graph G have k internally vertex-disjoint paths
joining them if and only if G is k-connected. Hence, the function rck(G) will
only be defined for k-connected graphs G.

In their original papers, Chartrand et al. [4,5] studied rck(G) for many
basic families of graphs, notably in the cases when G is complete, and com-
plete bipartite and multipartite. They also introduced the strong rainbow
connection number src(G), and considered some relationships between rc(G)
and src(G). Since then, the function rck(G) has attracted considerable inter-
est. Among the concepts considered are minimum degree conditions, higher
connectivity, random graphs, and the time complexity of determining rck(G),
and further analogous functions were also introduced, including the rainbow
vertex connection number rvc(G) and the k-rainbow index rxk(G) (Caro et
al. [2]; Krivelevich and Yuster [9]; Chartrand et al. [6], among others). Very
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recently, Li and Sun [12] published an informative survey which summarised
the current status of rainbow connection.

In this note, we report new results on rainbow connection for complete bi-
partite and multipartite graphs, highly connected graphs, and random graphs.

2 Complete Bipartite and Multipartite Graphs

For 1 ≤ n1 ≤ · · · ≤ nt with t ≥ 2, let Kn1,...,nt denote the complete multipartite
graph with classes n1, . . . , nt. Chartrand et al. [4] determined rc(Kn1,...,nt).

Theorem 2.1 ([4]) Let 1 ≤ n1 ≤ · · · ≤ nt with t ≥ 2, let
∑t−1

i=1 ni = m and
nt = n. Then

rc(Kn1,...,nt) =



n if t = 2 and n1 = 1,

min(d m
√
ne, 4) if t = 2 and 2 ≤ n1 ≤ n2,

1 if t ≥ 3 and nt = 1,

2 if t ≥ 3, nt ≥ 2 and m > n,

min(d m
√
ne, 3) if t ≥ 3 and m ≤ n.

For k ≥ 2 and the complete bipartite graph Kn,n, they proved the following
for rck(Kn,n).

Theorem 2.2 ([5]) For k ≥ 2 and n = 2kdk
2
e, we have rck(Kn,n) = 3.

They also asked whether we have rck(Kn,n) = 3 for all sufficiently large n.
Li and Sun [11] proved that this is the case, when n ≥ 2kdk

2
e. This result and

Theorem 2.2 both considered explicit colourings. With a random construction,
we are able to improve the result to n ≥ 2k + o(k), as follows.

Theorem 2.3 ([7]) For ε > 0, there exists a function f(ε) such that for
k ≥ f(ε) and n ≥ (2 + ε)k, we have rck(Kn,n) = 3.

Using a similar random method, we can in fact extend Theorem 2.3 to
complete multipartite graphs with equipartitions. For t ≥ 3, let Kt×n denote
the complete t-partite graph, with n vertices in each class.

Theorem 2.4 ([7]) For ε > 0 and t ≥ 3, there exists a function f(ε, t) such

that for k ≥ f(ε, t) and n ≥ (2+ε)k
t−2

, we have rck(Kt×n) = 2.

There remains the open problem of determining similar results for complete
multipartite graphs, whose partitions are not equal. Chartrand et al. [5] asked
this question in the bipartite case.



3 Highly Connected Graphs

A natural question one can ask is, what can we say about rc(G) if G is highly
connected? In this direction, Caro et al. were the first to prove a result.

Theorem 3.1 ([2]) If G is a 2-connected graph on n vertices, then rc(G) ≤
2n
3

, and rc(G) ≤ n
2

+O(
√
n).

For 3-connected graphs, Li and Shi proved the following.

Theorem 3.2 ([10]) If G is a 3-connected graph on n vertices, then rc(G) ≤
3(n+1)

5
.

For higher connectivity, the following result of Chandran et al. is known.

Theorem 3.3 ([3]) If G is a connected graph on n vertices with minimum
degree δ, then rc(G) ≤ 3n

δ+1
+ 3. Hence, if G is `-connected, then rc(G) ≤

3n
`+1

+ 3.

We can ask the more general question with rck(G) instead. For 2-connected
graphs, we have the following.

Theorem 3.4 ([7]) If G is a 2-connected graph on n vertices, then rc2(G) ≤
3n
2

.

Sketch of proof. We may assume that G is minimally 2-connected. Take an
ear decomposition of G. We first colour the initial cycle with distinct colours.
Then, for each new ear that we attach, we colour it with distinct new colours,
except when the ear has length 2, in which case we colour both edges with
one new colour. Then one can check that for G, at most 3n

2
colours are used,

and that the resulting colouring is rainbow 2-connected. 2

A well-known sub-family of 2-connected graphs are those which are series-
parallel graphs. A 2-connected series-parallel graph is a (simple) graph which
can be obtained from a K3, and repeatedly applying a sequence of operations,
each of which is a subdivision or replacement of an edge by a double edge.
For these graphs, we can prove the following result.

Theorem 3.5 ([7]) If G is a 2-connected series-parallel graph on n vertices,
then rc2(G) ≤ n.

Sketch of proof. This is similar to the previous proof. Again, assume that
G is minimally 2-connected, and take an ear decomposition of G. Colour the
initial cycle with distinct colours. But now, for each new ear that we attach,
the fact that G is series-parallel allows us to colour it in such a way that



exactly one edge uses a colour that has previously been used, the other edges
are given distinct and new colours, while the rainbow 2-connected property is
preserved. Then for the final graph G, n colours are used in total, and it is
rainbow 2-connected. 2

We can ask the following, more general question. For 1 ≤ k ≤ `, derive a
sharp upper bound for rck(G), if G is an `-connected graph on n vertices. Is
there a constant c = c(k, `) such that rck(G) ≤ cn?

4 Random Graphs

Another interesting question is to consider rck(G) in the random graphs set-
ting. As usual, for 0 < p < 1, let Gn,p denote the random graph on n vertices,
with edge probability p. For a graph property Q, we say that the function
f(n) is a sharp threshold function for Q if there are constants c, C > 0 such
that Gn,cf(n) almost surely does not satisfy Q, and Gn,p almost surely satisfies
Q for all p ≥ Cf(n). A result of Bollobás and Thomason [1] implies that any
monotone (increasing) graph property has a sharp threshold function. Since
the property rc(Gn,p) ≤ 2 is monotone, it has a sharp threshold function. For
this property, Caro et al. proved the following result.

Theorem 4.1 ([2]) p =
√

log n/n is a sharp threshold function for the prop-
erty rc(Gn,p) ≤ 2.

This result was generalised substantially by He and Liang, as follows.

Theorem 4.2 ([8]) Let d ≥ 2 be a fixed integer and k = k(n) ≤ O(log n).

Then p = (logn)1/d

n(d−1)/d is a sharp threshold function for the property rck(Gn,p) ≤ d.

Here, our generalisation of Theorem 4.1 is as follows.

Theorem 4.3 ([7]) p =
√

log n/n is a sharp threshold function for the prop-
erty rck(Gn,p) ≤ 2 for all k ≥ 1.

We can also consider other models of random graphs. Recall that Gn,m,p

denotes the random bipartite graph with classes n and m, and edge probability
p. Also, Gn,M denotes the random graph on n vertices and M edges, with the
space of all such graphs having the uniform probability distribution. We can
likewise consider sharp threshold functions for these models, and again by the
result of Bollobás and Thomason [1], all monotone properties in these models
have a sharp threshold function. We have the following results.



Theorem 4.4 ([7]) p =
√

log n/n is a sharp threshold function for the prop-
erty rck(Gn,n,p) ≤ 3 for all k ≥ 1.

Theorem 4.5 ([7]) M =
√
n3 log n is a sharp threshold function for the

property rck(Gn,M) ≤ 2 for all k ≥ 1.

It would be interesting to derive similar results for other models of random
graphs. For example, random regular graphs.
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