
Semantics ex Proof and Refutation

(Extended Abstract)

A logic may be regarded as a consequence relation between collections of
formulas; typically characterized either through provability in a reasoning sys-
tem (e.g., natural deduction) or through entailment in a semantics. A standard
task of the logician to show that two such characterizations are equivalent: a
system is sound with respect to a semantics if provability implies entailment; it
is complete if entailment implies provability. Taking provability and entailment
as predicates, soundness claims that provability is a subset of entailment and
completeness claims that entailment is a subset of provability. Hence, soundness
and completeness concerns the extensional equivalence of two characterizations
of a logic.

Since rules of provability and clauses of the semantics define the connectives
of the logic, one expects the proof-theoretic and semantic views of logic to be
reasonably close. Indeed, one may expect not only extensional equivalence to
hold but intensional equivalence (i.e., that the two relations behave the same);
for example, the semantic clause for conjunction precisely captures the intro-
duction rule for conjunction and its invertibility. Hence, to prove soundness
and completeness one may show that entailment and provability simulate each
other.

Nonetheless, there is a distinction between entailment and provability that
renders the problem of behavioural equivalence complex. A clause for a connec-
tive is definitional in that it has an iff structure; in contrast, a rule is implica-
tional in that the conclusion holds when the premisses do, but the converse is
not necessarily true. That provability is implicational is to say that it concerns
deduction:

Established Premiss1 . . . Established Premissn
Established Conclusion

⇓

The systematic use of mathematical techniques to determine the forms of valid
deductive argument defines deductive logic. Taking validity to mean entailment,
soundness concerns the correctness of the rules in that they preserve validity.
To understand completeness analogously, one considers the contrapositive: a
logic is complete if non-provability implies non-entailment. The significance of
this view is that proofs and refutations become equal citizens when considering
the relationship between provability and entailment for a logic.
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To witness non-provability one must show that any attempt at constructing
a proof fails, which may be done by applying proof rules as reduction operators,
taking a putative conclusion to some set of sufficient premisses. In this case
rules do not determine deductions but rather reductions,

Sufficient Premiss1 . . . Sufficient Premissn
Putative Conclusion

⇑

The study of reduction operators, the dual of deductive logic, is reductive logic.
The space of reductions of a putative conclusion is typically larger than its space
of proofs, including also failed searches.

In contrast to deductive logic, reductive logic currently has no uniform math-
ematical foundation; though there has been substantial research done on the
reductive logic of classical and intuitionistic calculi (e.g., Pym and Ritter [5]).
Yet, reductive logic captures the question of when there is a proof in the logic
(as opposed to what proofs are), which, by the above argument, renders it of
central importance for understanding the relationship between proof and se-
mantics. More practically, reductive logic offers a principled way of deriving a
semantics from a reasoning system.

Given a logic with consequence defined by provability (e.g., as is often the
case for substructural logics — see, for example, Read [6]), one may generate
a semantics by designing an entailment to mimic the behaviour of the reduc-
tion operators. In model-theoretic semantics, entailment can be studied directly
(i.e., avoiding truth-in-a-model) by working with eigenworlds w — generic rep-
resentatives of worlds — in a (classical) meta-logic rather than actual worlds
in an actual model; for example, enforcing the following simulation means that
the connective ∧ may be modelled by classical conjunction:

Γ ` φ Γ ` ψ
Γ ` φ ∧ ψ ∧ − rule ∼

Σ, w 
 Γ : w 
 φ,Π Σ, w 
 Γ : w 
 ψ,Π

Σ, w 
 Γ : w 
 φ ∧ ψ,Π ∧-clause

More generally, a semantics for a logic L can be determined from those of
another logic L′ for which one already has a sound and complete semantics
by encapsulating how L’s connectives diverge from those of L′. A case-study
is the relationship between intuitionistic logic (IL) and classical logic (CL) —
typically, L′ is CL.

Dummett’s [1] multiple-conclusioned sequent calculus DJ shows that, except
for implication, the connectives of IL behave as their corresponding connectives
of CL. Consequently, each connective (including disjunction) may be modelled
by the corresponding classical connective. In the remaining case, DJ does require
sequents to be single-conclusioned,

Γ, φ ` ψ
Γ ` φ→ ψ

This condition is captured in the clause for implication in model-theoretic se-
mantics by a guard that enforces a change world:

w 
 φ→ ψ if and only if, for any u, if w � u, then u 
 φ implies u 
 ψ
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Essentially, the w � u condition preserves the context Γ through persistence
— if w � u, then w 
 Γ implies u 
 Γ — while ensuring not other assertion
can interact with the new assumption φ. For example, the following invertible
computation demonstrates why the law of the excluded middle fails for IL-
entailment:

w 
 Γ, u 
 Γ, φ : w 
 φ, u 
 ⊥
w 
 Γ, u 
 Γ, u 
 φ : w 
 φ, u 
 ⊥ ∧-clause

w 
 Γ, w ≺ u, u 
 φ : w 
 φ, u 
 ⊥ persistance

w 
 Γ, w ≺ u : u 
 φ, (u 
 φ =⇒ u 
 ⊥)

w 
 Γ : w 
 φ, (w ≺ u =⇒ (u 
 φ =⇒ u 
 ⊥))

w 
 Γ : w 
 φ,w 
 φ→ ⊥
w 
 Γ : w 
 φ ∨ φ→ ⊥ ∨-clause



Γ |= φ

Γ |= φ ∨ φ→ ⊥
⇑

or

Γ, φ |= ⊥
Γ |= φ ∨ φ→ ⊥

⇑

Of course, this analysis relies on a number of implicit design choices; for exam-
ple, the idea of using an algebra to relativize truth is one such choice, which
distinguishes model-theoretic and proof-theoretic semantics.

The connexion between Dummett’s system and CL (as characterized by
Gentzen’s LK [7]) is the technology that delivers the above analysis; and, gen-
erally, the relationship between L and L′. It can be made precise by means of
algebraic constraints in the style of Harland’s and Pym’s resource-distribution
via boolean constraints mechanism [3, 4]. The rule for IL’s implication may be
expressed as the LK rule for implication enriched with boolean variables x,

Γ, φ · x ` ψ · x,∆ · x̄
Γ ` φ→ ψ,∆

An instance of the rule is given by an assignment on x according to which
formulas assigned 1 are kept and formulas assigned 0 are removed. It is in
capturing the effect of these constraints to the world algebra that one generates
the guarding in the clause for implication in the model-theoretic semantics of
IL. A general perspective of such algebraic constrains system in reductive logic
have been discussed by Gheorghiu et al. [2].

To conclude, reductive logic is both a natural and useful paradigm for study-
ing logic that can help understand the relationship between the two major char-
acterization of consequence, provability and entailment. Furthermore, it can
help derive the latter from the former by giving an understanding of precisely
when provability holds, using algebraic constraints to relate the logic being stud-
ied to one that is well-understood: eigenworlds allow one to study entailment
directly, and using the constraints to control their behaviour delivers the desired
semantics. This may enable general and algorithmic techniques for studying the
relationship between proof to be developed.
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