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The logic of bunched implications, BI, provides a logical analysis of a basic notion of resource rich
enough, for example, to form the logical basis for “pointer logic” and “separation logic” semantics
for programs which manipulate mutable data structures. We develop a theory of semantic tableaux
for BI, so providing an elegant basis for efficient theorem proving tools for BI. It is based on the use
of an algebra of labels for BI’s tableaux to solve the resource-distribution problem, the labels being
the elements of resource models. For BI with inconsistency, , the challenge consists in dealing
with BI’s Grothendieck topological models within such a proof-search method, based on labels. We
prove soundness and completeness theorems for a resource tableaux method TBI with respect to this
semantics and provide a way to build countermodels from so-called dependency graphs. Then, from
these results, we can define a new resource semantics of BI, based on partially defined monoids, and
prove that this semantics is complete. Such a semantics, based on partiality, is closely related to the
semantics of BI’s (intuitionistic) pointer and separation logics. Returning to the tableaux calculus,
we propose a new version with liberalized rules for which the countermodels are closely related to
the topological Kripke semantics of BI. As consequences of the relationships between semantics of
BI and resource tableaux, we prove two strong new results for propositional BI: its decidability and
the finite model property with respect to topological semantics.
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1. Introduction

The notion of resource is a basic one in many fields, including economics, engineering and psy-
chology, but it is perhaps most clearly illuminated in computer science. The location, ownership,
access to and, indeed, consumption of, resources are central concerns in the design of systems
(such as networks, within which processors must access devices such as file servers, disks and
printers) and in the design programs, which access memory and manipulate data structures (such
as pointers).
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The development of a mathematical theory of resource is one of the objectives of the pro-
gramme of study of BI, the logic of bunched implications, introduced by O’Hearn and Pym
(O’Hearn and Pym 1999; Pym 1999; Pym 2002; Pym 2004). The basic idea is to model di-
rectly the observed properties of resources and then to give a logical axiomatization. Initially,
we require the following properties of resource, beginning with the simple assumption of a set
of elements of a resource: a combination, , of resources, together with a zero resource, ;

a comparison, , of resources. Mathematically, we model this set-up with a (for now, commu-
tative) preordered monoid in which , with unit , has the property
and imply , for any . Taking such a structure as an algebra
of worlds, we obtain a forcing semantics for (propositional) BI which freely combines multi-
plicative (intuitionistic linear and ) and additive (intuitionistic , and ) structure. A
significant variation takes classical additives instead. BI is described in necessary detail in § 2.
For now, the key property of the semantics is the sharing interpretation (O’Hearn and Pym 1999;
O’Hearn 1999).
The (elementary) semantics of the multiplicative conjunction, iff there are

and such that , and , is interpreted as follows: the resource
is sufficient to support just in case it can be divided into resources and such that
is sufficient to support and is sufficient to support . The assertions and — think of
them as expressing properties of programs— do not share resources. In contrast, in the semantics
of the additive conjunction, iff and , the assertions and share
the resource . Similarly, the semantics of the multiplicative implication, iff for all
such that , , is interpreted as follows: the resource is sufficient to support

— think of the proposition as (the type of) a function — just in case for any resource
which is sufficient to support — think of it as the argument to the function— the combination

is sufficient to support . The function and its argument do not share resources. In contrast,
in the semantics of additive implication, iff for all , if , then ,
the function and its argument share the resource . For a simple example of resource as cost, let
the monoid be given by the natural numbers with addition and unit zero, ordered by less than
or equals. A more substantial example, “pointer logic”, PL, and its spatial semantics, has been
provided by Ishtiaq and O’Hearn (Ishtiaq and O’Hearn 2001). In fact, the semantics of pointer
logic is based on partial monoids, in which the operation is partially defined.
An elementary Kripke resource semantics, formulated in categories of presheaves on pre-

ordered monoids, has been defined for BI (O’Hearn and Pym 1999; Pym 1999; Pym 2002; Pym
2004) but it is sound and complete only for BI without inconsistency, , the unit of the addi-
tive disjunction. This elementary forcing semantics handles inconsistency only by denying the
existence of a world at which is forced. The completeness of BI with for a monoid-based
forcing semantics is achieved, first, in categories of sheaves on open topological monoids and,
second, in the more abstract topological setting of Grothendieck sheaves on preordered monoids
(Pym 2002; Pym et al. 2004; Pym 2004). These different semantics of BI are sketched in § 2. In
each of these cases, inconsistency is internalized in the semantics. The semantics of (intuitionis-
tic) pointer logic can be incorporated into the Kripke semantics based on Grothendieck sheaves

The preorder is the reverse of that taken in (O’Hearn and Pym 1999). It corresponds to the one usually used in
labelled deductive systems and thus allows us to directly relate the resources with labels in a traditional way.
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(Pym 2002; Pym et al. 2004; Pym 2004), but it suggests partial monoids as a basis for a “Kripke
resource semantics”.
BI provides a logical analysis of a basic notion of resource (Pym 2002; Pym 2004), quite

different from linear logic’s “number-of-uses” reading (Girard 1987), which has proved rich
enough to provide intuitionistic (i.e., the additives) “pointer logic” semantics for programswhich
manipulate mutable data structures (Ishtiaq and O’Hearn 2001; O’Hearn et al. 2001; Pym et al.
2004; Pym 2004). In this context, efficient and useful proof-search methods are necessary. For
many logics, semantic tableaux have provided elegant and efficient bases for tools based on
both proof-search and countermodel generation (Fitting 1990). We should like to have bases
for such tools for BI and PL. The main difficulty to be overcome in giving such a system for
BI is the presence of multiplicatives. We need a mechanism for calculating the distribution of
“resources” with multiplicative rules which, in BI’s sequent calculus, given in § 2, is handled
via side-formulæ. A solution is a specific use of labels that allow the capture of the semantic
relationships between connectives during proof-search or proof-analysis (Balat and Galmiche
2000; Gabbay 1996; Harland and Pym 2003).
Recent work has proposed a tableaux calculus, with labels, for BI without , which captures

the elementary Kripke resource semantics (Galmiche and Méry 2001) but an open question until
now has been whether a similar approach or calculus can be extended to full BI, including , and
its Grothendieck topological semantics. Such a calculus and its related tableaux method would
provide a decision procedure for BI (decidability of BI has been conjectured, via a different
method, in (Pym 2002; Pym 2004) but not explicitly proved).A real difficulty lies in the treatment
of a monoid-based forcing semantics, like Grothendieck topological semantics (Pym 2002; Pym
2004), with such a labelled calculus. In this paper, we are concernedmainly with the relationships
and connections between semantics of BI and so-called “resource tableaux” which lead to new
results from the perspective of both proof-search and semantics.
In § 2, we review briefly the BI logic, its sequent calculus and mainly its different semantics,

namely the Kripke resource semantics and the Grothendieck topological semantics. We explain
why problems for completeness w.r.t. the former arise from the presence of inconsistency and
how topological semantics solve them.
In § 3, we define a system of labelled semantic tableaux, TBI, in which the labels are drawn

fromBI’s algebra of worlds and which useBI’s forcing semantics, based onGrothendieck sheaves.
The rules are similar to the ones of (Galmiche and Méry 2001) with introduction of label con-
straints (called assertions and requirements) but the specific way to deal with topologically in-
volves delicate new closure and provability conditions. Moreover we introduce a specific graph
called dependency graph (or Kripke resource graph) that is built in parallel with the tableau
expansion and reflects the information that can be derived from a given set of assertions. Two
examples illustrate how resource tableaux deal with and how provability in BI can be analyzed.
In § 4 we study the soundness of TBI that can only be proved for so-called basic Grothendieck
resource models. We need new results on semantics, developed in the next section, to be able to
directly prove the soundness of TBI. Moreover, we show the completeness of TBI with respect
to the Grothendieck topological semantics. Moreover, we use our completeness proof to show
that in the case of a failed tableau, i.e., non-provability, we can build a a countermodel from a
dependency graph. Moreover, observing that a dependency graph only deals with the relevant
resources needed to decide provability, it seems possible to propose a new resource semantics
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for BI that corresponds to an alternative way of dealing with by considering partially defined
monoids. In § 5, we define such a semantics called PDM semantics, that was previously expected
but not developed in (Pym 2002; Pym et al. 2004; Pym 2004). For that, we start by defining a new
relational semantics of BI, based on a ternary-relation with particular properties, and then
prove its soundness and completeness with respect to BI. This semantics is such that the class of
PDM models is included in the class of the relational models and therefore, the PDM semantics
corresponding to this relational semantics with a specific relation defined by .
Thus, we can solve the problem of soundness of TBI by showing that TBI is soundwith respect to
the relational semantics. Returning to the PDM semantics, considered as a specialization of the
relational semantics, we have now a new resource semantics that is naturally related to our study
of resource tableaux, through labels and constraints, and that is proved complete with respect
to BI. Similar semantics can be defined for Affine BI, in which the multiplicative conjunction
satisfies the structural rule of weakening. It illustrates the power of the partiality in this context,
knowing that such fragments of BI are the logical bases of pointer logic (Ishtiaq and O’Hearn
2001) and separation logic (Reynolds 2000).
In § 6, we study how, by a special treatment of the additive disjunction, we can propose liberal-

ized rules for TBI, that is an improvement of the initial version of the calculus. This new version
is related to the topological Kripke semantics of BI (Pym et al. 2004; Pym 2004) which allows
to be taken into account together with a non-indecomposable treatment of the disjunction. In

fact, the topological semantics considers open sets, while the canonical interpretation of BI we
define, considers sets that are closed under deduction. We show that a new semantic clause for
the additive disjunction is required to achieve a suitable canonical forcing relation. However, the
semantic changes made to have a syntactic counterpart and the corresponding initial expansion
rules have to be accordingly modified. In § 7, we give new expansion rules for TBI and thus a
resulting tableau system called TBI’. We prove its soundness and completeness but the construc-
tion of countermodels is less direct than in TBI because of the extension of the label algebra.
Moreover, those countermodels are related to BI-algebras which are themselves closely related
to the topological Kripke semantics, from which they can be viewed as an algebraic counterpart.
Therefore TBI’ appears as the syntactic reflection of the forcing semantics in the category of
sheaves over a topological monoid and dependency graphs can be viewed as (partial) topological
Kripke models.
In § 8, we prove two new results for propositional BI, namely, the finite model property with

respect to Grothendieck topological semantics, and the decidability of propositional BI, conjec-
tured but not proved in (Pym 2002; Pym 2004). The relationships identified between resources,
labels, dependency graphs, proof-search and resource semantics are central in this study. More-
over, dependency graphs can be seen directly as countermodels in this new semantics. We con-
clude, in § 9, with a summary of our contribution and a brief discussion of future directions for
this research.

2. The Semantics and Proof Theory of BI

We review briefly the semantics and proof theory of BI that freely combines linear conjunction,
with unit , and linear implication, , with intuitionistic conjunction, with unit , disjunction,
with unit , and implication, . There is an elementary Kripke resource semantics which,
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because of the interaction between and (Pym 2002; Pym et al. 2004; Pym 2004), is complete
only forBIwithout . In order to have completeness with , it is necessary to use the topological
setting introduced in (O’Hearn and Pym 1999; Pym 2002; Pym et al. 2004; Pym 2004) and
described below, which is a significant step over the elementary case.

Definition 2.1 (propositions). The propositional language ofBI consists of: a multiplicative unit
, the multiplicative connectives , , the additive units , , the additive connectives , ,
, a countable set of propositional letters. , the collection of BI propositions
over , is given by the following inductive definition:

The additive connectives correspond to those of intuitionistic logic (IL) whereas the multi-
plicative connectives correspond to those of multiplicative intuitionistic linear logic (MILL). The
antecedents of logical consequences are structured as bunches, in which there are two ways to
combine operations that respectively display additive and multiplicative behavior.

Definition 2.2 (bunches). Bunches are given by the following grammar:

Equivalence, is given by commutative monoid equations for “,” and “;”, whose units are
and respectively, together with the evident substitution congruence for sub-bunches — we
write to denote a sub-bunch of — determined by the grammar.

Judgements are expressions of the form , where is a bunch and is a proposition.
The LBI sequent calculus is given in Figure 1. The following results hold (see (Pym 2002; Pym
2004) for the proofs):

Theorem 2.1 (Cut-elimination). If is provable in LBI including Cut, then it is provable
in LBI without Cut.

A proposition is a theorem if or is provable in LBI, but the following theorem
provides a more simple definition (Pym 1999; Pym 2002):

Theorem 2.2. (resp. ) is provable in LBI if and only if (resp. ) is
provable in LBI.

Corollary 2.1. A proposition is a theorem iff is provable in LBI.

In the definition of LBI given in (Pym 2002), the rule is mis-stated: it is corrected in (Pym 2004) and the corrected
version is as given in Figure 1. This error was known prior to the publication of (Pym 2002) but persisted because of
an editing error by the author. There are no known consequences. The error was also propagated to (Galmiche et al.
2002) but (Harland and Pym 2003) is correct.
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Figure 1. The LBI Sequent Calculus

2.1. Kripke Resource Models

As explained in the introduction, BI has a simple and natural truth-functional semantics, pre-
sented as Kripke-like forcing relation relative to a preordered commutative monoid or worlds. It
may be seen as freely combining Kripke’s semantics for intuitionistic logic (Kripke 1965) with
Urquhart’s semantics for the relevant connectives (Urquhart 1972) which comprise the multi-
plicative fragment of intuitionistic linear logic (MILL) (O’Hearn and Pym 1999; Pym 2002). As
we have seen, the meaning of the formal semantics may be explained in terms of resource, an
appropriate generalization of Urquhart’s notion of pieces of information.
So our basic semantic structure is a preordered commutative monoid upon which we impose

a bifunctoriality condition. This condition, though credible from the point of view of resource
semantics, is motivated mathematically. Other properties which are well-motivated by resource
semantics, such as “aggregation”:

(A): for all and , and ,

are not required for our mathematical development and are not adopted here.

Definition 2.3. A Kripke resource monoid (KRM) is a preordered commuta-
tive monoid in which is bifunctorial w.r.t. :

(P): if and , then .

We frequently refer to the bifunctoriality condition by saying that is order-preserving. Conse-
quently, we call an order-preserving preordered commutative monoid.

Having established the basic structure, we only require a notion of interpretation in order to be
able to define a class of elementary models. At this stage, we require a condition (K) which will
ensure the hereditary property of Kripke models holds in our setting.
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Definition 2.4. Let be a KRM and be the collection of BI propositions over a language
of propositional letters, then an elementary Kripke resource interpretation (EKRI) is a function
– that satisfies:

(K): for all such that , if , then .

All that remains for an elementary semantics is to give a forcing relation. The clauses for
the additives ( , , , , ) exploit just the ordering on worlds, , and exactly those for
intuitionistic Kripke models (Kripke 1965). Note, in particular, the clause for : the model has
no internal representative for inconsistency. The clauses for the multiplicatives ( , , ) require
the combination of worlds, , and follow Urquhart’s semantics (Urquhart 1972).

Definition 2.5. An elementary Kripke resource model (EKRM), is a triple = – in
which is a KRM, – is an EKRI, and is a forcing relation on satisfying the
following conditions:
- iff
- iff always
- iff never
- iff and
- iff or
- iff for all such that , if , then
- iff
- iff there exist such that , and
- iff for all such that , .

The semantics of propositions given by the relation is parametrized by the interpretation
– for which the property (K) of Definition 2.4 holds for atomic propositions. One can prove,
by structural induction on propositions, that if (K) holds for atomic propositions, then it also
holds for any proposition.
Let be a EKRM and be the formula obtained from a bunch by replacing each “;” by
, each “,” by , each by and each by , with association respecting the tree structure
of . The sequent is valid in (notation: ), if and only if, for all worlds ,

implies . The sequent is valid (notation: ), if and only if, for all
EKRMs , .

Theorem 2.3 (soundness of BI). If is provable in LBI, then .

The unit of the connective internalizes inconsistency in BI but the elementary Kripke
resource semantics does not account for inconsistency ( is nowhere forced). Accordingly,
must be excluded to obtain the completeness result w.r.t. this semantics and the completeness
result is only proved for BI without (Pym 2002; Pym 2004).

Theorem 2.4 (completeness of BI without ). If in BI without , then is prov-
able in LBI without .

In fact, the incompleteness of BI (with ) arises from the interaction between multiplicative
implication ( ) and the unit , as illustrated by the following example:
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For all and , we have in the elementary
Kripke resource semantics but is not provable in
LBI (Pym 2002).

To understand how this incompleteness arises, it is necessary to take a slightly more abstract
point of view. The elementary semantics can be formulated quite conveniently in presheaf cat-
egories (Lambek and Scott 1986). Here is a KRM, considered as a category
(of worlds). All of the connectives, except , can be defined in this setting by exploiting the
Cartesian closed (Lambek and Scott 1986) structure, carried by any functor category (we neglect
concerns about size here), and the monoidal closed structure on induced by via
Day’s constructions (Day 1970; O’Hearn and Pym 1999; Pym et al. 2004; Pym 2004). To see
that the completeness argument fails in this setting, we must consider the interaction between
and . It may readily be checked that the sequent is provable in LBI. But, in
the term model which must be constructed to establish completeness (Pym 2002; Pym 2004), the
bunch is equivalent to . It then follows that we must have a world which represents,
and so forces, . Such a world is not present in the elementary semantics.
Completeness in the presence of can be recovered by adopting a semantics which has an in-

ternal representation of . One such semantics is provided bymoving from the presheaf-theoretic
setting of the elementary semantics, to the topological setting of sheaves. By replacing the cate-
gory of worlds with a kind of topological monoid, considered as category, we then obtain models
in the category of sheaves over a topological space of worlds in which the empty set, which
is an open set, provides a representative for (Pym 2002; Pym 2004). It is possible, and we
would suggest desirable, to retain a direct connection with the simple algebraic structure of a
pre-ordered commutative monoid by working with Grothendieck sheaves.

2.2. Grothendieck Sheaf-theoretic Models

BI’s Kripke semantics may be adapted to take account for by moving from presheaves to
sheaves on a topological monoid (Pym 2002; Pym et al. 2004; Pym 2004). We briefly review
the topological semantics of BI, that allows to be taken into account together with a non-
indecomposable treatment of the disjunction.

Definition 2.6 (TRM). A topological resource monoid (TRM) is a commutativemonoid
in the category Top of topological spaces and continuous maps between them, i.e., a topological
space , with open sets , on which a monoidal product of open sets is
defined, together with its unit , and such that distributes over arbitrary unions of open
sets:

The tensor product of two opens sets is not necessarily open, consequently, we must require
that the monoidal structure be defined by open maps, i.e.,which map open sets to open sets.
Thus, if is a topological space and if are defined as above, we speak of the
topological monoid on and . If are open, we speak of the open
topological monoid on and .
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The symmetric monoidal structure of a commutative topological monoid gives rise, via Day’s
construction of a tensor product (Day 1970), to a symmetric monoidal closed structure on the
category of sheaves on .

Definition 2.7 (TKM). Let be a commutative open topological monoid. A topo-
logical kripke model (TKM) is a triple – , where – is a
partial function from the BI-propositions over a language of propositional letters to the objects
of such that:

Kripke monotonicity: if then implies

and satisfies:
- iff , for
- for all
- iff
- iff
- iff and
- iff, for some such that , and
- iff, for all , implies
- iff, for some , and and
- iff, for all , implies .

Such a semantics considers an inconsistent world, at which is forced, together with the so-
called non-indecomposable treatment of : iff, for some open sets , such that

, and . This semantics is shown sound and complete for BI (Pym
2002).
We give now an algebraic generalization of the topological semantics, in a setting that recovers

the simplicity of the previous elementary preordered monoid semantics and also the topological
treatment of inconsistency. The basic idea in Grothendieck sheaves is to represent the essential
topological structure in terms of the underlying preordered commutative monoid using a map
(the “Grothendieck topology”) to associate sets of sets of worlds with each world. Most of the
necessary conditions, given in Definition 2.8, are quite standard (Mac Lane and Moerdijk 1992),
and are required to handle the additive (intuitionistic) part of BI. We require on additional condi-
tion — continuity — to handle the monoid operation, , and so provide the additional structure
that is necessary to interpret the multiplicatives. This condition amounts to a requirement that
respects the composition induced by .

Definition 2.8 (GTM). A Grothendieck topological monoid (GTM) is given by a quintuple
, where is a preordered commutative monoid, in which is bifunc-

torial w.r.t. , and is a map satisfying the following conditions:
(Sieve): for all , and , ;
(Maximality): for all , , implies
( means and );
(Stability): for all , such that and all , there exists such
that for all , there exists such that ;
(Transitivity): for all , and , ;
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(Continuity): for all , and , .
Such a is usually called a Grothendieck topology.

Definition 2.9 (GTI). Let be a GTM and be the collection of BI propositions over
a language of propositional letters, a Grothendieck Topological Interpretation is a function

satisfying:
(K): for all such that , implies ;
(Sh): for all and , if, for all , , then .

It is shown in (Pym 2002; Pym et al. 2004; Pym 2004) that given an interpretation which
makes (K) and (Sh) hold for atomic propositions, (K) and (Sh) also hold for any proposition of
BI in that interpretation.

Definition 2.10 (GRM). A Grothendieck resource model (GRM) is a triple –
in which is a GTM, – is a GTI and is a forcing relation on
satisfying the following conditions:
- iff
- iff always
- iff
- iff and
- iff there exists such that for all , or
- iff for all such that , if , then
- iff there exists such that for all ,
- iff there exists such that for all , there exist , such

that , and
- iff for all such that , .

Let be a GRM and be the formula obtained from a bunch by replacing each “;” by ,
each “,” by , each by and each by , with association respecting the tree structure of .
A sequent is valid in , written , if and only if, for all worlds ,
implies . A sequent is valid, written , iff, for all GRMs , it is valid in .

Theorem 2.5 (soundness and completeness of BI). is provable in LBI iff .

Proof. Proof based on a term model construction for BI, with respect to GRMs. (Pym et al.
2004; Pym 2002; Pym 2004).

As a corollary, we obtain validity, i.e., a proposition is valid iff for all GRMs , .
Here we have summarized the results about BI semantics by focusing on the completeness re-

sults for BI with or without . We will see that we will not use directly the Grothendieck models
in our study of semantic proof-search methods for BI. In fact, a particular class of Grothendieck
topological models, called basic, will appear as central in this study.
We now consider the related class of Grothendieck topological monoids called basic GTMs.

Lemma 2.1. Let be a KRM such that:
(B1): contains a greatest element , i.e., for all , ;
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(B2): for all , ;
The structure , where is the map defined by the
following condition:

(B3): iff and or and
is a basic GTM. For partial orders, Condition (B3) corresponds to if
and .

Proof. Since is an order-preserving preordered commutative monoid, we only
need to show that satisfies the axioms required for a Grothendieck topology in Definition 2.8.

(Sieve): We show .
– If then the result is direct since there is no element in .
– If then implies by definition of , which implies .
(Maximality): We show .
– By definition of , implies .
(Stability): We show that

.
– If , then implies since is a greatest element. Therefore,

implies and we only need to choose .
– If , then we pick . implies and we can choose . By

definition of , we have . Besides, by maximality, we have . Thus,
it is sufficient to set since and imply .

(Transitivity):We show .
– If , then and we have by definition of .
– If , then let be a family of sets of worlds and let be a world in

. We have by definition of since . Moreover, and
imply by definition of . Therefore, we have for all , which
implies by definition of .

(Continuity): We show .
– If , then

1) If , then and, by definition of , we have .
2) If then, by definition of , implies . Thus, we get and

because is order-preserving and satisfies Condition (B2) of Lemma
2.1. Therefore, we obtain by definition of .

– If then, by definition of , implies . Consequently, as is order-
preserving, we get , fromwhich it follows that
by definition of .

A map that satisfies Condition (B3) of Lemma 2.1 is called a basic
Grothendieck topology. We can now proceed with the definition of a basic GRM.
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Definition 2.11 (basic GRM). A GRM – , where , is basic
if and only if is basic, i.e., satisfies Conditions (B1), (B2) and (B3) of Lemma 2.1.

As said before, this restriction on the BI models will be at the center of our study. Having
in mind these completeness results, for BI with or without , we aim to study now the proof-
theoretic foundations ofBI and to propose proof-searchmethods that build proofs or countermod-
els for BI. The key idea is to defined labels, in the spirit of labelled deductive systems (Gabbay
1996), in order to capture the semantics of the logic and then to provide labelled calculi for BI
and related proof-search methods. A main concern is the generation of countermodels and then
of based-on semantic explanations in case of non-validity. In the case of BI without , we have
already provided a labelling algebra which syntactically reflects the Kripke resource semantics
(Galmiche and Méry 2001) and use it to define a proof-search procedure with countermodels
generation. For BI, with , such an approach is much more delicate because of the Grothendieck
topological semantics which, it seems, cannot be directly captured by labels. We shall see that a
key step of this semantic analysis is the use of dependency graphs, explained in § 3.4.

3. Resource Tableaux for BI

We set up the theory of labelled semantic tableaux for BI. We assume a basic knowledge of
tableaux systems (Fitting 1990). We begin with algebras of labels, which provide the connection
between the underlying syntactic tableaux and the semantics of the connectives used to regulate
the multiplicative structure.

3.1. A Labelling Algebra

We define a set of labels and constraints and a corresponding labelling algebra, i.e., a preordered
monoid whose elements are denoted by labels.

Definition 3.1. A labelling language consists of a unit symbol , a binary function symbol , a
binary relation symbol , a countable set of constants Labels are inductively defined
from the unit and the constants as expressions of the form in which and are labels.
Atomic labels are labels that do not contain any , while compound labels contain at least one .
Label constraints are expressions of the form , where and are labels.

Definition 3.2. Labels and constraints are interpreted in an order-preserving preordered commu-
tative monoid of labels, or labelling algebra , more precisely:
1. is a set of labels;
2. is a preordering relation on ;
3. Equality on labels is defined by: iff and ;
4. is a binary operation on such that:

(Associativity): ,
(Commutativity): ,
(Identity): , and
(Bifunctoriality): if then .
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The length of a label (notation: ), is given inductively by , and
. A label is a sub-label of the label (notation: ), if there exists a label such

that . The sub-label is said to be strict (notation: ), if .

For notational simplicity, we can omit the binary symbol when writing labels and then
represents . We deal with partially defined labelling algebras, obtained from sets of con-
straints by means of a closure operator.

Definition 3.3 ( -closure). The domain of a set of label constraints is the set of all the sub-
labels occurring in some constraints of , more formally, .
The closure of is defined as the smallest set such that:

(Extension): ,
(Reflexivity): if , then ,
(Transitivity): if and , then , and
(Compatibility): if and , then

Note that implies by definition of .

We do not distinguish between the closure of a set of label constraints and the (partially defined)
labelling algebra it generates.

3.2. Expansion Rules

We can now define the expansion rules of TBI.

Definition 3.4. A signed formula is a triple , denoted , ( ) being the
sign of the formula ( ) and ( ) its label.

Definition 3.5 (TBI-tableau). Le be a BI-proposition. A TBI-tableau for is a binary tree
whose root node is labelled with the signed formula , all other nodes being either labelled
with a signed formula, or with a label-constraint, and which is built (respecting the structure of
) according to the expansion rules of Figure 2.

In Figure 2 the rules of the first line are the standard and rules (Fitting 1990). The rules
of the second line are called rules and they introduce constraints, called assertions, with new
(label) constants. The rules of the third line are called rules and they introduce constraints,
called requirements, the variables of which being instantiated with existing labels. (The precise
meaning of “existing” is given below.)
In fact, the assertions behave as known facts (or hypothesis) while the requirements express

goals that must be satisfied (using assertions if necessary). Whilst the additive units are handled
implicitly by the calculus (as in intuitionistic logic) a specific rule for the multiplicative unit
is required. It introduces an assertion of the form . We implicitly assume the reflexive
assertion for any atomic label (constant or unit ) occuring in a tableau branch. For
example, the assertion is implicitly assumed for the expansion rule .
To gain a better intuition about labels and constraints, note, for each connective, the rela-

tionship between the expansion rules and the clauses of the elementary Kripke semantics (see
Definition 2.5), bearing in mind that labels represent worlds, rules (with introduction of new
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where , are new constants

Figure 2. Expansion rules for TBI-tableau

labels) correspond to existential quantification on worlds and rules (with variables that must
be instantiated by known labels) correspond to universal quantification on worlds. This under-
standing includes the specific rule for .

3.3. Tableaux and dependency graphs

Building a labelled tableau for an initial formula , following such expansion rules, the key
problem is to define so-called closure conditions such that either the tableau is closed and then
is valid or there exists an open branch and then is not valid (Fitting 1990). Moreover, in

the latter case, we aim to use the open branch in order to build a countermodel for . Tableaux
methods have been studied for various logics (classical, intuitionistic, linear, modal, etc.) and
in each case, the particular definitions of complementary formulæ and closure conditions allow
to capture the semantics of the logic in order to analyze the provability. Other problems, like
termination of tableau construction (or loop detection), are also studied and solved in different
ways depending of the logic.
We begin by illustrating the key notions (and the related problems) in the case of BI without
using the example of Figure 3.
We start with the formula and apply the expan-

sion rules. The first expansion step, marked , introduces a new constant . Steps 2 and 3 then
introduce the new constants and the assertions and .
The first key point to notice is that we first expand the formulæ that introduce new constants
, and the related assertions before expanding formulæ that reuse existing labels. There-

fore, although the signed formula precedes the signed formula
in the tableau, Step 4 proceeds with the latter, which results in the introduction of the new con-
stant . Step 5 then expands , which leads to the introduction of the assertion .
All the assertions of a branch , including implicit reflexive assertions on atomic labels, are
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:

:

:

:

:

Figure 3. Tableau for

gathered in a specific set, denoted . The domain of a branch is then defined as
the set of all sub-labels occurring in the -closure of its assertions, i.e., = .
The second key point to notice is that we build a specific graph, called a dependency graph or
Kripke resource graph, in parallel with the expansions of formulæ. This graph is designed to
reflect the -closure of the set of assertions occuring in a branch.More formally, the dependency
graph associated to a branch is defined as the directed graph the
nodes of which are labelled with labels of , the arrows deriving from as
follows: there is an arrow in if and only if there is an assertion in . For
notational simplicity, we do not explicitly represent reflexive and transitive arrows. Therefore,
each time a new assertion gets introduced in a branch , we must recalculate the set and
update the corresponding dependency graph.
In our example, the introduction of the assertion at Step 5 requires the addition of

the assertion to meet the (Compatibility) condition of Definition 3.3. Accordingly, the
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dependency graph corresponding to Step 5 is obtained from the one of Step 4 by adding the
arrows and . We mention that is possible to define formally a procedure that
builds, in parallel with tableau expansions, the dependency graph of a branch and so,
the closure . This procedure is such that a dependency graph gets updated only when
rules are expanded, all the other rules, introducing neither new constants, nor new assertions,
simply leave it unchanged.
After Step 5, there is no rule left to expand and we can start expanding the rules, which

introduce requirements. All the requirements of a branch are gathered in a specific set, denoted
. At Step 6, we must expand the signed formula . For that, we must

find two labels and such that the label already exists in the dependency graph. Here, we
choose (another possibility would have been ). Therefore, the third key point
to notice is that the expansion of a rule in a branch requires reusing of labels that already
exist in the dependency graph associated to .
Step 7, where the signed formula has to be expanded, is when we reach

our next key point. This time, we must not only find a label such that already occurs in
the dependency graph, we are also required to perform an admissible expansion step, i.e., the
constraint must hold w.r.t. the assertions of the branch, which formally means that

. On a dependency graph , the fact that a requirement holds
w.r.t. corresponds to the existence of a path from the node to the node . Here, we
choose , using the implicit reflexive arrow and knowing that labels are con-
sidered modulo commutativity. Another solution is to choose , using the arrow ,
which is exactly what Step 8 does. Therefore, our last key point is that a signed formula may be
expanded several times by a rule since there may be several distinct admissible expansions.
Before continuing with the example, we properly define the admissibility condition and pro-

ceed with the closure conditions for the TBI calculus.

Definition 3.6. A requirement occuring in a branch of a tableau is admissible in
if it holds w.r.t. the -closure of the assertions that were introduced in before the requirement

. A branch is admissible if all of its requirements are admissible and a tableau is
admissible if all of its branches are admissible.

3.4. Resource Tableaux for BI

We emphasize that the labelling algebra is defined in order to capture the semantics inside the
tableaux calculus. If we consider BI without the labels and constraints of TBI clearly reflect
the elementary Kripke semantics at the syntactic level and thus provide resource tableaux with
soundness and completeness properties (Galmiche and Méry 2001). But our aim is to consider
BI with and its complete Grothendieck topological semantics. Thus, we have to give an appro-
priate definition of closed tableau which takes the specificity of into account.
If we consider the problem of inconsistency from the point of view of the elementary Kripke

semantics, which is not complete for BI with , a branch must be closed (contradictory) when
it contains a signed formula . Indeed, such a branch cannot have a model in the ele-
mentary semantics for then it would be in contradiction with the fact that should never be
forced by any world. In the Grothendieck topological semantics, however, we can have worlds at
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which is forced. We will denote such worlds inconsistent worlds. Therefore, a branch cannot
be considered as closed only because it contains a signed formula . Additional condi-
tions have to be defined in order to allow a branch to contain such a signed formula while still
being realizable in some Grothendieck resource model. For that, first recall that if a world is
inconsistent, then it forces all propositions because LBI is sound and complete with respect to
Grothendieck resource models and is an axiom of LBI. Moreover, the (Continuity) condi-
tion of Grothendieck topologies (see Definition 2.8) implies that if then, for all worlds
, we have . In other words, any world that is obtained by composition with an in-
consistent world is itself inconsistent. We can now introduce the notion of inconsistent label in a
tableau branch, which is designed to reflect the behaviour of inconsistent worlds in Grothendieck
resource models.

Definition 3.7. Let be a branch. A label is inconsistent in if there exists a label such that
and a label in (set of sub-labels of ) such that occurs in .

A label is consistent in if it is not inconsistent.

Definition 3.8. A tableau branch is closed, or contradictory, if and only if it satisfies at least
one of the following conditions:

(CL1): contains two signed formulæ and that are complementary in , i.e.,
that are such that ;

(CL2): contains a signed formula and ;
(CL3): contains a signed formula ;
(CL4): contains a signed formula with inconsistent in .

A tableau branch which is not closed is said to be open. A tableau is closed if and only if all its
branches are closed, otherwise, it is open.

If, in the above definition, we suppress the condition (CL4) then we have the closure conditions
that fit well with BI without and its elementary semantics (Galmiche and Méry 2003).

Definition 3.9 (TBI-proof). Let be a BI-proposition. A tableau is a TBI-proof of if and
only if there exists a finite sequence of tableaux such that
- is the tableau with only one node (the root) labelled with the signed formula ,
- is obtained from by one of the expansion rules described in Definition 3.5, and
- , is closed and admissible.
The formula is TBI-provable if and only if there exists a TBI-proof of .

We shall return to our example of Figure 3 after Step 6. The left branch is then closed by a
standard complementarity between and . Step 7 corresponds to the expan-
sion of with such that . If we consider knowing that we
consider label composition modulo commutativity, then we can close a branch with
and because holds (see the dependency graph). Step 8 corresponds to a
new expansion of with , the requirement being satisfied (see
the dependency graph). Consequently, the third branch is closed because we have and

and holds (see the dependency graph).
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Figure 4. Tableau and Dependency Graph for

The point now is to prove why and how the Condition (CL4) allows to handle BI with . Before
we study the properties of the TBI calculus, we aim to illustrate the treatment of with two
examples, one with a provable formula and another one with an unprovable formula.

Example 1. First, we consider the provable formula . Its closed tableau
is given in Figure 4. The first two steps generate two assertions and the associated dependency
graph. After Step 3, we have a tableau with two branches. The first branch is closed since it
contains complementary formulæ, namely, . The second, however, contains
no complementary formulæ. We notice that the branch contains the formula . Thus,

is what we have called an inconsistent label and, by assertion , is also
inconsistent. Therefore, the branch is closed because it contains the formula with label
being inconsistent. Then we can deduce that the formula is TBI-provable.

Example 2. Consider another example with the formula
that leads to an unclosed tableau (see Figure 5). The first steps are similar to the other ex-
amples and after Step 6, the tableau has only so-called complete branches meaning that all
signed formula have been completely analyzed (this notion will formally defined in Defini-
tion 4.5). The second branch is closed with , the third one is closed with

and the fourth one is closed with . The first branch,
on the contrary, remains open since the only way to close it would be to have ,
but cannot be deduced from the (closure of the) assertions of the branch. We will see in a
next section how to build a countermodel from such an open branch.
Now we must show that this labelled calculus, whose restriction to BI without is sound and

complete for the elementary semantics, is also sound and complete for BI with respect to the
Grothendieck topological semantics.
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Figure 5. Tableau and Dependency Graph for
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4. Properties of the TBI Calculus

We aim to show the soundness and completeness of TBI with respect to GRMs but the soundness
can only be proved with respect to so-called basic GRMs. This deductive framework allows
not only a proof procedure but also, in the case of non-provability, the systematic generation of
countermodels.

4.1. Soundness

We prove here the soundness of TBIwith respect to particular GRMs called basic GRMs, follow-
ing a classical development, subject to the usual adaptations to BI from a notion of realizability
that is preserved by the expansion rules (Galmiche and Méry 2001). But we cannot prove it with
respect to GRMs and consequently with respect to the Grothendieck topological semantics.
Taking into account, the proof of soundness of TBI cannot be a simple extension of the one

of (Galmiche and Méry 2003). It becomes more delicate because we have to deal with Grothen-
dieck topological semantics. The best way to solve the problem consists first in restricting the
initial proof to so-called basic GRMs, and then in proving soundness of TBI with respect to a
new relational semantics that is complete and closely related to the TBI calculus.

Definition 4.1. Let – be a GRM with and be a tableau
branch, a realization of in is a mapping – , from the domain of to the
worlds of , that satisfies
1. ,
2. ,
3. for any in , ,
4. for any in , , and
5. for any in , .

Lemma 4.1. Let be a tableau, a branch of and – a realization of in a GRM . Then,
for any , holds in .

Proof. By a straightforward induction.

Definition 4.2. A tableau branch is realizable if there exists a realization of in some GRM
. A tableau is realizable if it contains a realizable branch.

Lemma 4.2. A closed tableau is not realizable.

Proof. Let be a closed tableau that is also realizable. Then, contains a branch which is
realizable in some GRM – . If the branch is closed because of complementary
formulæ then, by definition, we have which, by Lemma 4.1,
implies . But, since – realizes , we also have and . Therefore,
we reach a contradiction because, by property (K), we should have . If the branch is
closed because of a formula , whose label is inconsistent in , then, by definition, there
exists a label such that and a label in such that . Since
– realizes we have and . Since is a sublabel of , the continuity axiom of
implies that . Therefore, as Lemma 4.1 implies , (K) yields and, once
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again, we reach a contradiction because, if then, for any , we should have . Other
cases are similar.

Compared to the soundness proof forBIwithout and its elementaryKripkemodels (EKRMs)
(Galmiche and Méry 2003), we must consider now a restriction on the GRMs to the basic GRMs
in order to have a soundness result for the TBI calculus. All the previous lemmas that hold for
GRMs also hold for basic GRMs. Now, we consider a lemma that only holds for the restricted
models. We say that a tableau branch is b-realizable if there exists a realization of in some
basic GRM and a tableau is b-realizable if it contains a b-realizable branch.

Lemma 4.3. If is a tableau obtained from a tableau by application of an expansion rule of
TBI, then if is b-realizable, is also b-realizable.

Proof. Since is realizable, it contains a branch which is realizable in some basic GRM
for some realization – . If the signed formula that has been expanded to obtain
does not belong to , then is realizable since it still contains . Otherwise, we show by case
analysis on that the corresponding expansion rule preserves realizability. denotes
the set of all the signed formulæ of branch .
- Case .

is expanded into with = and =
, and being new constants. Since – realizes , we have .

Therefore, there exists such that for any , there exist such
that , and . As we consider a basic GRM (cf. Definition 2.11)
we have . We simply extend – to , by and
and consider . Thus we directly deduce that . Therefore, is
realizable and, consequently, is realizable.

- Case .
splits into and such that = , = and

= = . An admissible application of the rule re-
quires that should be in . Thus, by Lemma 4.1, we have .
Since – realizes , we have . Therefore, for any , such that

, either , or , which implies that either , or .
Then, either , or is realizable and, consequently, is realizable.

- Case .
splits into with = and with = .

Moreover, . Since – realizes , we have .
Therefore, there exist such that for any , either or . As
we consider a basic GRM we obtain either or . Therefore, either or
is realizable and, consequently, is realizable.

- Other cases are similar.

It is important to notice that we cannot, at this step, prove this lemma without the restriction
to the basic GRMs. If we consider the above and cases with general GRMs, it appears that
we cannot conclude following this approach.
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Corollary 4.1. Let be a tableaux sequence, if is b-realizable, then, for , is
b-realizable.

Proof. Directly from the previous lemma.

Theorem 4.1 (soundness of BI w.r.t. basic GRMs). Let be a proposition of BI. If there exists
a closed tableaux sequence for , then is valid in basic Grothendieck topological resource
models.

Proof. Let be a closed tableaux sequence. Suppose that does not hold
in basic Grothendieck resource semantics. Then, there exists a basic GRM for which .
Then, the initial tableau is trivially b-realizable and Lemma 4.3 implies that all such that

are also b-realizable. It follows from Lemma 4.2 that none of the can be closed and,
consequently, cannot be closed.

We observe that we are not in position to prove the soundness of TBI but we show, in the next
section, how to solve this problem by analyzing BI’s semantics and by defining a new relational
semantics of BI that is naturally related to the TBI calculus and reflects in a better way the
semantical interactions between connectives. First, we study the completeness of TBI that needs
no such restrictions on models.

4.2. Countermodel Construction

We describe how to construct a countermodel of from an open branch in a tableau for . The
proof of the finite model property, in a next section, relies critically on the introduction of a
special element, here called , used to collect the inessential (and possibly infinite) parts of the
model.

Definition 4.3. A signed formula is analyzed in a tableau branch , which is denoted
, if and only if

- and or
- and .

Definition 4.4. We define the relation , which means that the signed formula
is completely analyzed or fulfilled in a tableau branch , by case analysis as follows:
- iff
- iff
- iff
- iff
- iff and
- iff and
- iff
- iff
- iff or
- iff and
- iff and
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- iff or
- iff and and
- iff or
- iff or
- iff and and
- iff and and
- iff or .

Lemma 4.4. Let be a tableau branch, then
(a): and ,
(b): and ,
(c): and , and
(d): and .

Proof. By structural induction on .

Definition 4.5. A tableau branch is a complete if and only if it is open and all of its signed
formulæ are fulfilled. A tableau is complete if and only if it contains at least one
complete branch.

Lemma 4.5. If a tableau branch is complete, then:
(a): ,
(b): , and
(c): .

Proof. For the property (a), we consider the case where , the other case being similar.
If , then by definition of , . Since is assumed
to be complete, implies and so, finally leads to

by Lemma 4.4. For the properties (b) and (c), we show that it cannot be the case that
and both hold at the same time. Suppose we have both and
, then we have for some label such that and we also

have for some label such that . By the transitivity of the closure
, we get , which implies that the branch is closed by condition (CL1) of

Definition 3.8. This is a contradiction since, by definition, a complete branch is open.

The dependency graph related to a formula during the resource tableau construction repre-
sents the closure of the assertions in the sense of Definition 3.3 and so captures the computational
content of . Therefore, if a formula happens to be unprovable, we should have enough infor-
mation in its dependency graph to extract a countermodel for . For that, we must provide a
preordered commutative monoid together with a Grothendieck topology and a forcing relation
which falsifies in some world. The idea behind the countermodel construction is to regard the
dependency graph itself as the desired countermodel, thereby considering it as a central semantic
structure. For that, we take the nodes (labels) of the graph as the elements of a monoid whose

Lemma 4.5 does not imply that or for all propositional variables since may not appear
in any signed formula of , for example, if does not occur in the initial signed formula that labels the root of .
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multiplication is given by the composition of the labels. The preordering relation is then given
by the arrows and the forcing relation simply reflects the property of being fulfilled.
The key problem is that, since the closure operator induces a partially defined labelling al-

gebra, the dependency graph only deals with those pieces of information (resources) that are
relevant for deciding provability. Therefore, the monoidal product should be completed with
suitable values for those compositions which are undefined. The problem of undefinedness is
solved in Definition 4.6 by the introduction of a particular element, denoted , to which all un-
defined compositions are mapped and for which the equation , meaning
that any composition with something undefined is itself undefined, is assumed.
We must, however, be careful because introducing a new element may affect the property of

a formula of being realized in a world although the signed formula was
fulfilled in the dependency graph. Indeed, if forces then, since , we also need
to force . But, if forces any formula , then everything works as it should. On the other

hand, we know that an inconsistent world necessarily forces any formula because is an
axiom. Therefore, making an inconsistent world by setting just solves the problem.

Definition 4.6 ( -structure). Let be a complete branch and be the restriction of
to the labels which are consistent in . We define as the restriction of to

consistent constraints, i.e., and .
The M-structure associated to is defined as follows:
1. , where ;
2. The product is given by

if
otherwise;

3. The relation between elements of is defined by

iff or

4. The map , called the J-map of , is given by

iff and or and

Lemma 4.6. Let be a complete branch, the M-structure is a GTM.

Proof. A routine calculation shows that is an order-preservingpreorderedmonoid.
The commutativity of is by definition, the associativity of comes from that of and the com-
patibility condition of the -closure implies order-preservation. Finally, Lemma 2.1 ensures that
is a Grothendieck topology.

Definition 4.7. Let be the M-structure of a complete branch and
denote the collection of BI propositions over a language of propositional letters. The in-

terpretation – is, for all atomic propositions , .

Lemma 4.7. – is a GTI, i.e., it satisfies properties (K) and (Sh) of Definition 2.9.
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Proof. For (K), we have to prove that and .
If then, by definition. Otherwise, for some and then,
implies that for some such that . Moreover,
implies that , which by Lemma 4.4 yields , i.e., .
For (Sh), we have to prove that .

If then, by definition. Otherwise, for some and then,
for some such that and since , condition (K) implies .

Theorem 4.2. Let be a complete branch. Then – is a Grothendieck resource
model of , i.e., for all propositions , we have:

(a): ;
(b): if and is consistent in , then ;
(c): if and is consistent in , then .

Proof. Property (a) directly follows from Condition (Sh) since by definition of .
Properties (b) and (c) can be proved simultaneously by induction on knowing that, one
one hand, implies by Lemma 4.5 because is complete and, on the other
hand, because , by definition. We give just a few illustrative cases, the others
being similar.

- Case : implies , hence by definition of .
- Case : By Lemma 4.5, implies and , hence

by definition of since .
- Case : implies , hence by definition of .
- Case : implies , hence because .
- Case : In this case, is inconsistent in so that the implication is trivially verified.
- Case : Suppose that then , which implies , a contradiction

since , by definition.
- Case : By Lemma 4.5, implies . Therefore, there

are labels , such that , and . Since
is consistent in , implies that , and are consistent in , so that
, , . Thus, as , implies by definition of

and . Moreover, we get and from and by induction
hypothesis. Finally, since by definition of , we can conclude .

- Case :
Let . We have by definition of since . Let and ,
such that . We have by definition of , which implies . Thus,

because is the greatest element in by definition of . In turn,
implies by definition of and then , by definition of .
By definition of , then leads to . Moreover, by Lemma 4.5,

implies from which we get or by
definition of and we can finally conclude or by the induction hypothesis.
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Returning to the example of Figure 5, we show how to build a countermodel from the open
branch. As the reader might check, all formulæ in the open branch are fulfilled and is therefore
what we have called a complete branch. First, following the steps of Definition 4.6, we build
from a GTM .
1. is the subset of labels of that are consistent, to which we add the element , i.e.,

Notice that, because of the presence in of both the assertion and of the label
, the label , although not initially present in , is added by the closure operation in

order to respect the compatibility requirement.
2. The multiplication is

3. The preordering relation reflects the structure of the assertions . If we omit reflex-
ive and relations, we have two non-trivial relations, namely, and . The
corresponding diagram is depicted on the left-hand side of Figure 6.

4. The Grothendieck topology J is given by the following table:

Second, we apply Definition 4.7 to the only atomic proposition occurring in the branch
, which leads to the GTI . This, in turn, finally gives rise to the GRM

– , the desired countermodel depicted on the right-hand side of Figure 6.
Now, we check that (i) and (ii) . For (i), we

have because and because . Thus, and,
since we obtain, by (K), . Therefore, we have .
For (ii), we notice that is the only world that forces . Thus, we have

only if , which is the case because and . Note that it would not be
the case in the elementary semantics for which no world can force . On the other hand,
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Figure 6. Countermodel for

because . Therefore, . Then the initial formula, although
valid in the elementary semantics, is not provable in BI.

4.3. Tableau Construction and Completeness

In the previous section, we have explained how to build a model from a complete branch. To
show the completeness theorem, we now need a tableau construction procedure which, given
a formula , builds a tableaux sequence until there exists a tableau that is either
closed or that contains a (possibly infinite) complete branch.
BI has such a procedure, with as initial formula. Until is closed or completed,

choose an open branch ; if there is an unfulfilled or formula ( ) in , then apply the
related expansion rule; else if there is an unfulfilled or formula ( ) in , then apply
the corresponding expansion rule, with all labels for which the formula is not fulfilled.
We remark, in the case of , that although there is no explicit expansion rule in TBI, the

fulfilled condition requires the addition of the constraint to the set of assertions .

Theorem 4.3 (completeness of TBI). If , then there is a closed tableau sequence for .

Proof. Suppose there is no closed tableau sequence for . Then, the above tableau construc-
tion procedure yields a tableau in which there is a completed branch . Since contains the
initial formula , Theorem 4.2 implies that we can build a Grothendieck resource model

– of , such that , which means that is not valid in the Grothendieck
resource semantics.

In this section we have proved the completeness of TBI w.r.t. Grothendieck resource models
but its soundness is only proved, at this step, w.r.t. basic Grothendieck resource models. In the
next section, we revisit BI’s semantics from the point of view of resource tableaux. The resulting
results will lead to a proof of soundness for the general models.

5. BI’s Semantics Revisited

As discussed in the introduction, the initial semantics of BI, based on pre-ordered commuta-
tive monoids, may be motivated by modelling units of resource as entities which may be zero,
combined, and compared. In (Pym 2002; Pym et al. 2004; Pym 2004), and in the preceding sec-
tions, it has been shown that a great deal of logical theory may be developed quite naturally and
that this simple model of resource quite naturally encompasses a wide range of examples of re-
source, including ambients, Petri nets, memory allocation and deallocation, logic programming,
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and money (Ishtiaq and O’Hearn 2001). However, it may readily be seen that models based not
on monoids with total combinations but rather on monoids with partial combination operations,

would not only more naturally encompass these examples but also may
be motivated abstractly by a desire to capture the notion of separation (Reynolds 2000; Ishtiaq
and O’Hearn 2001). The key idea here is that two units of resource may be combined only if
they are disjoint, or separated, or non-interfering. An excellent example arises quite simply in
the “pointer logic” model of BI given in (Reynolds 2000; Ishtiaq and O’Hearn 2001; O’Hearn et
al. 2001), in which we may illustrate the composition by taking “resource” to mean “portion of
computer memory”. The pointer logic has, in addition to , as a form of assertion, the “points-
to” relation, , which is used to make statements about the contents of heap cells. For example,

says that and denote distinct binary cells in memory, where the
second part of is a pointer to , the second part of is a pointer to , and where the first parts
contain and .
In this context, an open question arises: is it possible to propose a metatheoretically satis-

factory, general semantics of BI that is based on partial monoids, as taken in, for example, the
pointer logic model of BI? In this section, we provide, in the intuitionistic setting, a positive
answer via the definition of a new semantics for BI, based on partially defined pre-ordered com-
mutative monoids (“PDM semantics”), that is intermediate between the elementary semantics
and the Grothendieck topological semantics. This semantics arises from our study of resource
tableaux and their specific relationships with BI’s semantics.

5.1. A New Relational Semantics for BI

We first define a relational semantics of BI, based on specific ternary relations, such that the
PDM semantics will be a particular case (or instantiation) of this relational semantics that we
prove sound and complete for BI.

Definition 5.1 (BI frame). A BI frame is a structure = , in which is a set of
resources with two distinguished elements, and , and is a ternary relation on
that satisfies the following conditions, in which is defined as :
- (reflexivity);
- (commutativity);
- (associativity);
- (compatibility);
- (transitivity),
- ( -max);
- ( -abs).

We observe that is neutral for the ternary relation . Moreover the -max condition en-
tails that , i.e., is the greatest element for the preorder induced by the relation.
Consequently, in the ( -abs) condition, can be replaced by .

Definition 5.2 (relational interpretation). Let be a set of resources with a greatest element
(w.r.t. a preorder ) and be the collection of BI propositions over a language of
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propositional letters.
A relational interpretation (RI) is a function – that satisfies:
(K)for any such that , implies ;
(B) for any such that , we have .

Definition 5.3 (relationalmodel). Let be the collection ofBI propositions over a language
of propositional letters, a Relational Model (RM) is a structure = , in

which is a BI frame, is a relational interpretation, and is a forcing relation
on , satisfying the following conditions:
- iff
- iff always
- iff
- iff and
- iff or
- iff, for all such that , if , then
- iff
- iff there exist such that , and
- iff, for all , and entails .

Given a relational model , the validity is defined as follows:

iff and iff .

Theorem 5.1 (soundness of BI). BI is sound with respect to the relational semantics.

Proof. We show, by case analysis, that every LBI-rule preserves validity.
- ( ) We assume and and then show that . Let be a relational

model and be a world in such that , we have to show that . Since
, we have . Therefore, there exist and in such that

, and . From and , we deduce . Similarly,
and imply . Consequently, we get , and .

Hence, .
- ( ) Immediate since .
- ( ) We assume and then show that . Let be a relational model and

be a world in such that , we have to show that . Suppose and
are worlds in such that and , then . Since ,

we have which, using the assumption , entails that . Therefore,
.

- ( ) We show that and imply by induction
on the structure of .
a) Base case. Assuming and , we have to show that .

Let be a relational model and a world in such that . Since
, there exist two worlds and in such that

, and . Similarly, there are two worlds and in
such that , and . Since we have a world such that
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and , by the associativity axiom (of Definition 5.1) for , there exists a
world such that and . From and , we get . From

, and , we get . Since we now have , and
, we can deduce which, using the assumption that ,

entails that .
b) Case .

Assuming and , we get . Then, by in-
duction hypothesis, we obtain from which we finally get

.
c) Case . Similar to the previous one.

- The other cases are similar.

We now consider the question of completeness. We aim to build a term model such that if
then there exists a world in the model such that and . For that, we

consider the idea of prime theory in order to have the structure required by the semantic clauses
for the connectives and more particularly for and (Pym 2002; Pym 2004).
Here, we need some simple definitions. A bunch is said to be prime if it verifies that

implies or . A prime extension of a bunch is a bunch such that
is prime and . Moreover, we extend to bunches the definition of BI connectives in

the following way: is defined as , where . Similarly, the
notations and respectively stand for and .

Definition 5.4 (termmodel). The termmodel is defined as in which
1. is the set where is the set of all the prime bunches and is the equality generated

by derivability,
2. is the multiplicative unit of bunches (trivially prime),
3. is defined as iff and entails ,
4. is defined by iff ,
5. ,
6. is defined by iff for any .

First, we mention two results about the relation of the term model .

Lemma 5.1. If we consider the relation of the term model , if and only if .

Proof. If then and entails . In particular, as and
we deduce . If , then suppose and . By bifunctoriality

of , we get . Since , we finally have .

In the corresponding constructions in (Pym 2002), this condition is mis-stated: it is corrected in (Pym 2004) and the
corrected statement is as in Corollary 5.1, below. This error was known prior to the publication of (Pym 2002) but
persisted because of an editing error by the author. There are no known consequences. Similarly, (Pym et al. 2004)
requires the following: Erratum: p. 285, l. -12: “, for some ” should be “ ”.
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Corollary 5.1. If we consider , the preorder of the term model , if and only if .

Proof. We have iff iff (by Lemma 5.1) iff .

Moreover, we can easily deduce that and are respectively the greatest and the least ele-
ments of the term model w.r.t. the preorder, .
Having defined the term model, the next step consists in verifying that the relation of Def-

inition 5.4 satisfies the conditions of Definition 5.1 and that the forcing relation satisfies
the conditions of Definition 5.3. The proofs of these results rely on two fundamental following
lemmas:

Lemma 5.2 (extension lemma). If then there exists a prime extension of such that
.

Proof. Similar to the corresponding proof in (Pym 2002; Pym 2004). Given a fair enumeration
of BI propositions, is obtained as the limit of the following inductive construction. For the base
case, we set . For the induction step, we set if is prime. If is not prime,
we pick the first formula in the enumeration such that and neither , nor

. We then set if and , otherwise.
We need to show that for any , . For the base case , the result is immediate

since by hypothesis. For the induction step, suppose that , we show that
by showing that it cannot be the case that and both hold at the same time:
suppose not, then by the rule of LBI we would get and since by
hypothesis, an application of the rule immediately followed by a contraction on would
lead to , a contradiction to the induction hypothesis.
Finally, is obtained as the limit, in the evident notation, , being equivalent to
.

Lemma 5.3 (primeness lemma). If is prime and then there exists a prime exten-
sion of such that .

Proof. Similar to the corresponding proofs in (Dunn 1986) or (Routley and Meyer 1972).
Given a fair enumeration of BI propositions, is obtained as the limit of the following inductive
construction. For the base case, we set . For the induction step, we set if
is prime. If is not prime, then we pick the first formula in the enumeration such that

and neither , nor . We then set if and
, otherwise.

We need to show that for any , . For the base case , the result is immedi-
ate since by hypothesis. For the induction step, suppose that , we show
that by showing that either , or holds. Indeed, by
induction hypothesis, we have . Since , we get . By
distribution of “ ” over (recall that “ ” represents ), it then follows ,
from which we get by distribution of over . Since is as-
sumed to be prime, we conclude that either , or .
Finally, as in Lemma 5.2, is obtained as the limit .
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Now we can show the completeness via the next two lemmas.

Lemma 5.4. Let be the term model, is a BI frame.

Proof. is defined as iff and entails . Now, we verify
each condition of Definition 5.1.
- Reflexivity: and entails . Then, we have .
- Commutativity: trivial.
- Associativity: we show that and iff and . We prove

here the implication from left to right, the other being analogous. By hypothesis we have (i)
iff and entails and (ii) iff

and entails . We consider that is a prime bunch built by two
applications of Lemma 5.3.
We have that is trivial. We first show that we have . As
and , by (ii) we can deduce that . Moreover, as and , by
(i) we can deduce that and therefore . Finally, we have

. Then, we have iff iff .
- Transitivity: we show that and entails . By hypothesis, we have (i)

iff and entails and (ii) iff iff
and entails . If then since , by (ii) we have

and then . Moreover, if then, by (i) we get and therefore
.

- -max: we have to show that iff and entails , that is
trivial because it is an axiom.

- The other cases are similar.

Lemma 5.5. The term model is a relational model.

Proof. By induction on formula .
- (monotonicity) Suppose that and and prove that . By definition we

have . As iff , by Corollary 5.1, we deduce by transitivity of .
- ( ) iff iff and .
- ( ) iff iff or (because is prime).
- ( ) iff, for all such that , if then . Suppose that

. Then and then there exists, by Lemma 5.2, such that
. Moreover, we have and thus and . therefore, there
exists such that , and . Suppose there exists such that

, and . Thus, we have and and also by Corollary
5.1. Then, we have and then .

- ( ) iff and and . Suppose that , then we
have and thus there exist such that and and . We
remark that and are not necessarily prime. By Lemma 5.3, applied twice, we can extend
(resp. ) into a prime bunch (resp. ) such that . Therefore, by Lemma

5.1, we have and (resp. ) implies (resp. ). Suppose
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that and and . Then, by Lemma 5.1, we have and
(resp. ) implies (resp. ). Then, we have and thus
.

- ( ) iff and entails . Suppose that
and entails . entails and thus . Moreover
entails by Lemma 5.1. By transitivity of we obtain ; if
then . We can deduce that is a contradiction. Consequently, we have

which entails . Suppose that . Then and thus
that is equivalent to . As , by Lemma 5.2, there exists such

that that is equivalent to . If we consider and we
get and thus . Moreover we have and entails .

- ( ) immediate since is an axiom.
- ( ) iff . iff iff since is an axiom. Then, we have

and .
- ( ) iff . iff iff by Corollary 5.1.

Theorem 5.2 (completeness of BI). BI is complete with respect to the relational semantics.

Proof. From Definition 5.4 (of the term model) and by Lemma 5.4 and Lemma 5.5.

We have defined a new semantics for BI but the key points of this proposal are that we can
relate it with a new semantics based-on partial monoids and also prove the soundness of the TBI
calculus with respect to such a semantics (not achieved directly for the Grothendieck topological
semantics).

5.2. A New Kripke Resource Semantics for BI

In § 4, we have studied how countermodels can be built from dependency graphs. We now ob-
serve that those models are very closely related to the ones recently proposed in the semantics of
(intuitionistic) “pointer logic” (Ishtiaq and O’Hearn 2001; Pym et al. 2004; Pym 2004). Indeed,
the Grothendieck topology used to characterize the pointer logic model exactly corresponds to
our definition of the J-map for basic GRMs. Moreover, in our models, a special element called
is used to capture undefinedness as the image of all undefined compositions and is the only

element to force (because only belongs to ).
We now define what we call Kripke resource models and show that they correspond to a

particular class of relational resource models, taking the relation defined as

We now reconstruct the definitions of Kripke resource monoids, interpretations and Kripke
resource models in the partially defined setting. Since no confusion is likely, we reuse their
names.

Definition 5.5. A Kripke resource monoid (KRM) is a preordered commutative monoid
which contains a greatest element, denoted , such that for any ,

and in which is bifunctorial with respect to .
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We consider such a collection of resources, a preordered commutative monoid, from the re-
lational semantics perspective. In fact, we consider the relation that naturally verifies the
first three conditions of Definition 5.1. The conditions on correspond to the satisfaction, for
, of the ( -max) and ( -abs) conditions. The fact that is bifunctorial with respect to , is

captured by the and conditions for . It implies that this set of
resources corresponds to a BI frame.

Definition 5.6. Let be a KRM and be a language of BI propositions over a language
of propositional letters. Then, a Kripke resource interpretation, or KRI, is a function –

satisfying Kripke monotonicity (K) and such that for any , .

Again, such an interpretation can be seen, in a relational semantics perspective, as a relational
interpretation (see Definition 5.2).

Definition 5.7. A Kripke resource model is a triple = – in which is a KRM,
– is a KRI and is a forcing relation on satisfying the following conditions:
- iff
- iff always
- iff
- iff and
- iff or
- iff, for all such that , if , then
- iff
- iff there exist such that , and
- iff, for all such that , .

Soundness. We observe that the above definition corresponds to a particular relational model
(see Definition 5.3) in which we consider the relation . Therefore, it is clear
that the class of Kripke resource models is included in the class of relational resource models.

Theorem 5.3 (soundness of BI). BI is sound with respect to Kripke resource models.

Proof. Obvious from the proof of soundness with respect to the relational semantics (see The-
orem 5.1) since relational models include Kripke resource models.

We now return to the question of completeness. We observe that it is difficult to obtain a
direct proof that BI is complete for Kripke resource models. The proof in (Pym 2002; Pym
2004) requires a delicate construction of sets of choices of “evaluated prime bunches” in order
to ensure a consistent definition and, in the presence of , the topological nature of the models
considered therein is, as we have seen, essential. In particular, it is necessary to have a world
which forces . The idea with the partially defined semantics, based onmonoidswith the element
, is to have an elementary semantics, not requiring the topological structure. It seems that such
a requirement is not compatible with obtaining a completeness theorem unless we move to the
relational construction based on BI frames. Another advantage of this move is that we are able
to work with our simpler notion of prime bunch, greatly reducing the technical and conceptual
complexity of the completeness argument.
First, we relate a Kripke resource model with a basic GRM of Definition 2.11.
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Lemma 5.6. The class of Kripke resourcemodels coincides with the class of basic Grothendieck
resource models.

Proof. Let – be a basic GRM. We establish that it is a Kripke
model. Since is basic, we simply show that satisfies the conditions of Definition 2.5. In the
case of , since only belongs to , the condition is equivalent to . Now, for
any world , we have . Thus, in the case of , the condition

simplifies to , which is equivalent to . The
cases of and are similar. Conversely, endowing a Kripke model – with
the basic topology turns it into a basic Grothendieck model We can easily show that, for such a
, that Kripke monotonicity for – implies (Sh).

Consequences for TBI. Now we return to the TBI calculus and its relationships with the Kripke
resource semantics.

Theorem 5.4. TBI is sound w.r.t. Kripke resource models, i.e., if there exists a closed tableaux
sequence for a BI formula then is valid in Kripke resource models.

Proof. TBI is sound w.r.t. the basic GRMs. From Lemma 5.6 we deduce that TBI is sound
w.r.t. Kripke resource models.

Theorem 5.5. TBI is complete w.r.t. Kripke resource semantics, i.e., if there is no closed tableau
sequence for a BI formula then is not valid in the Kripke resource semantics.

Proof. TBI is complete w.r.t. the basic GRMs. From Lemma 5.6 we deduce that TBI is com-
plete w.r.t. Kripke resource models.

Then, we can obtain the soundness of TBI from the previous results and is the counterpart to
the Theorem 4.3.

Theorem 5.6 (soundness of TBI). TBI is sound w.r.t. BI, i.e., if there exists a closed tableaux
sequence for a BI formula then is valid in BI.

Proof. TBI is sound w.r.t. Kripke resource models by Theorem 5.3. Moreover, the Kripke
resource semantics is sound and complete w.r.t. BI by Theorem 5.4 and Theorem 5.5. Then we
conclude about the soundness of TBI.

Completeness. Finally, we are able to give a completeness theorem for BI w.r.t. the partially de-
fined semantics, thereby establishing completeness for a class of models which includes pointer
logic, and so demonstrating the strength of our resource semantics.

Theorem 5.7 (completeness of BI). BI is complete with respect to Kripke resource models.

Proof. Suppose that then, by Theorem 4.3, there exists a tableau containing a complete
branch from which one can build, as explained in Definition 4.6, a basic GRM which is a coun-
termodel of . From Lemma 5.6 it is also a Kripke resource model which is a countermodel of
. Moreover, the Kripke resource semantics is a particular case of the relational semantics which
has been proved complete (Theorem 5.2).
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5.3. A Partially Defined Semantics for BI

BI has been proved sound and complete for the reconstruction of Kripke resource semantics that
makes explicit use of the element . In this section, we revisit this semantics yet again in order
to show how to handle the necessary undefinedness implicitly.
An alternative (and equivalent) way of dealing with is to handle undefinedness implicitly

via a partially defined monoid (PDM), i.e., a monoid in which the product is a partial operation,
with no other requirement than being defined whenever is defined, and
vice versa. This gives rise to the PDM semantics, obtained from the Kripke resource semantics
by making some minor to the forcing relation

Definition 5.8. A PDM model is a triple = – in which is a KRM, – is a KRI
and is a forcing relation on satisfying the following conditions:
- iff
- iff always
- iff never
- iff and
- iff or
- iff, for all such that , if , then
- iff
- iff there exist such that , , and
- iff for all such that , implies
where denotes definedness.

The PDM semantics is easily seen to be equivalent to the previous Kripke resource semantics.
For example, in the case of , given that, on one hand, is the only element to force and,
on the other hand, that means undefinedness, then, no defined world should force , i.e.,
is nowhere forced. Similarly for and . Moreover, the term model construction required to
demonstrate directly the completeness of the PDM would require that if , then the
corresponding be undefined.
An immediate consequence of moving to the PDM semantics is that dependency graphs can

straightforwardly be considered as countermodels in this semantics. Soundness and completeness
of BI w.r.t. the PDM semantics are consequences of the previous results.

Theorem 5.8 (soundness of BI). BI is sound with respect to PDM models.

Proof. From the proof of soundness w.r.t. Kripke resource models (see Theorem 5.3).

Theorem 5.9 (completeness of BI). BI is complete with respect to PDM models.

Proof. From the proof of completeness w.r.t. Kripke resource models (see Theorem 5.7).

A question naturally arises from these results: can we define such new semantics for some
variants of BI, like for instance Affine BI or Boolean BI? In Affine BI, the comma, or , admits
weakening. Boolean BI, with the affine comma, has been used as the basis for the program logics
“pointer logic”, introduced by Ishtiaq and O’Hearn (Ishtiaq and O’Hearn 2001) and “separation
logic” (Reynolds 2000). It has also been used as a basis of the type systems used to provide
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unified accounts (O’Hearn 1999; O’Hearn and Pym 1999; Pym 2002; Pym 2004) of Reynolds’
Syntactic Control of Interference and Idealized Algol languages. In fact, both pointer logic and
separation logic have both intuitionistic and classical versions, i.e., the additives may be intu-
itionistic or classical. The system with classical additives is known as Boolean BI.
In Affine BI the multiplicative conjunction satisfies the structural rule of weakening, i.e.,

for any and . Compared to Definition 2.3, Kripke resource monoids of affine
BI are characterized by monoidal products which satisfy the (weakening) condition that for any
worlds and , . Intuitively, the weakening condition demands that the composition
of two resources should result in something bigger (w.r.t. the preordering) than the two compo-
nents. Such a condition is met by many (if not most) natural resource compositions.
An immediate consequence is that becomes the least element, and so, since any world

is now greater than , the condition iff simplifies to iff always, implying
that . Conversely, if is the least element, then, the functoriality of implies the weaken-
ing condition. Therefore, affine Kripke resource monoids can equivalently be viewed as Kripke
resource monoids having as their least element. Another interesting consequence of the weak-
ening for is that the condition in the forcing clause for can be simplified to an
equality, namely, , even in the presence of . Therefore, we can modify Definition
2.5 in order to define what an affine Kripke resource model is and then provide an affine PDM
semantics that can be proved sound and complete for affine BI.
We can derive a similar result directly for BooleanBI without the unit but not for full Boolean

BI, seemingly because of particular interactions between this unit and the additive conjunction.
A deeper analysis of this problem is out of the scope of this paper and will be provided in further
work, perhaps addressing in detail the question of how pointer and separation logics, which may
usefully be understood as specific models of BI, fit into our semantic framework.

6. BI’s Semantics and Liberalized Rules

In this section, we show how, by a special treatment of the additive disjunction, we can give lib-
eralized rules for TBI, which can be seen as an improvement of the initial version of the calculus.
Liberalized rules have been proposed to improve free variable tableau methods dedicated to clas-
sical logic, for instance by giving new so-called rule (Hähnle and Schmitt 1994). In previous
work (Galmiche and Méry 2003), we have given, starting from our calculus and its restrictions
to intuitionistic logic (IL) and multiplicative intuitionistic linear logic (MILL), liberalized rules
which improve the efficiency of the proof-search (by reducing the number of new constants to
deal with) and which also provide easy arguments about termination.

Equivalently, .
We are grateful to Hongseok Yang for his observations on this point.



Galmiche et al. 38

As an illustration, we consider forMILL the following liberalized rules,

where (resp. ) need not be new if (resp. ) has been already introduced in by
a previous tableau expansion.
These rules are proved admissible in the restriction of TBI toMILL (Galmiche andMéry 2003)

and it would be rather interesting if they could be extended to BI.
Unfortunately, the previous liberalized rules are not sound for TBI, as seen with the formula

, for which Figure 7 gives an open tableau. As the
tableau contains an open branch which is also completed, we can, as previously explained, build
a countermodel out of this complete branch. Therefore, the formula is not provable in BI.
However, if we use liberalized rules, the tableau of Figure 7 turns out to be closed and we

eventually end up with a closed tableau for a non-provable formula. Indeed, using the liber-
alized version of F we can reuse at Step 4 the constant introduced at Step 3, instead of
creating the constant . The corresponding tableau is obtained from Figure 7 by replacing each
occurrence of by which leads to the closure of the previously open fourth branch due to

.

6.1. The Canonical Interpretation

To understand why the liberalized rules forMILL cannot be extended to TBI, we must recall their
justification in the case ofMILL, i.e., the completeness of the logic with respect to regularKripke
resource models.

Definition 6.1. Let – be a Kripke resource model. A world is -characteristic
for in if and, for any world such that , . The forcing relation
is regular on if whenever there exists a world such that , there also exists a -
characteristic world. Finally, we say that – is regular if its forcing relation is
regular on .

Theorem 6.1. BI is not complete with respect to regular Kripke resource models.

Proof. We prove that there exists no regular Kripke resource countermodel for the sequent
. We suppose there is one such countermodel – ,

then there is a world such that (1) and (2) . As
(2) implies , there is a world such that and . Since is reg-
ular, implies that there exists a -characteristic world . Then, and
which, by order preservation, yields . It then follows from Kripke monotonic-
ity and that . As (2) also implies , we can similarly prove that

. Therefore, and, since , we have shown
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Figure 7. Tableau for

which contradicts 1). Thus, there exists no regular Kripke resource countermodel for the sequent
.

From the previous result, we observe that the presence of leads to the incompleteness of BI
with respect to regular Kripke resource models. In (D’Agostino and Gabbay 1994), in which the
multiplicative fragment ( , , ) is considered, the regularity property arises fromwhat is called
the canonical interpretation. The canonical interpretation is a term model in which a world, also
called an information token, is equivalent to the set of propositions it verifies. More precisely,
information tokens are sets of propositions closed under deduction and partially ordered by set-
inclusion. The forcing relation between information tokens and propositions is given by

. It immediately follows that and imply , in other words, satis-
faction is preserved under arbitrary intersections. This, in turn, entails the existence of the least
token that satisfies whenever there exists some token that satisfies . This least token intuitively
corresponds to the computational content of , i.e., the set .

Definition 6.2. Let denote the collection of BI propositions over a language of propo-
sitional letters, the mapping – , from to sets of propositions, is defined as follows:

LBI for .
The canonical interpretation for BI is then given by the carrier set ,

preordered by seen as set-inclusion.

Whenever no confusion may arise, we shall write instead of LBI .
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Lemma 6.1. , where is defined by , is a Kripke resource
monoid.

Proof. We check that is a monoidal product on . The identity w.r.t. , associativity
and commutativity properties directly come from those of . Moreover is order-preserving
because, in LBI, one can derive from the premises and .

Lemma 6.2. The canonical interpretation has the following properties:
1. iff ;
2. is the least element;
3. is the greatest element;
4. .

Proof.
1. Suppose . Since , we have and then, by definition, . We

now suppose . Then, if , by definition, . Using cut with yields
, i.e., .

2. Immediate from (1) because, for any , .
3. Immediate from (1) because, for any , .
4. We successively prove and . First, since

and hold in LBI, we have and , which implies
. Second, suppose . Then, by definition of – , we

have and , which, by of LBI, implies . Therefore,
and so .

Corollary 6.1. , where is defined by , is a (complete)
inf-semi-lattice with as the greatest element and as the least element.

Proof. Immediate since property (4) of Lemma 6.2 implies that is the greatest lower
bound of and .

Although the canonical interpretation is closed under intersections, it is not closed under
unions. Indeed, for any two atomic propositions and , we have , . Since
neither , nor hold in LBI, it follows that . But suppose
now that , for some . Then and imply , i.e.,

, that is a contradiction. Nevertheless, since the canonical interpretation is a com-
plete inf-semi-lattice, it can still be embedded into a complete lattice by defining the least upper
bound of and as and , which is easily seen
to be equivalent to .

Theorem 6.2. Let be the structure then, is a BI-algebra,
i.e., a Heyting algebra equipped with an additional residuated commutative monoid structure.

Proof. From Lemma 6.2 we know that is a complete lattice with least and greatest elements
and, from Lemma 6.1, that it is also a Kripke resource monoid. Therefore, we only need to show
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that the lattice and the monoidal part of are residuated.
First, we prove . First, for any , iff

iff iff . Second, belongs to the set because
entails . Therefore, is the least upper bound.

Then, can be proven similarly.

Henceforth, we shall refer to the canonical interpretation as the structure given in Theo-
rem 6.2. Following the work in (D’Agostino and Gabbay 1994) for the fragment ( , , ), we
equip the canonical interpretation with a satisfaction relation between information tokens and
propositions as follows

Definition 6.3. The canonical forcing relation is defined for an information token and a
BI proposition by iff , i.e., iff .

Lemma 6.3. For any proposition , is -characteristic for in .

Proof. First, we have because obviously holds in LBI. Then, if is such
that then, by definition, , which implies .

Corollary 6.2. The canonical forcing relation is regular on .

Proof. If any formula has a characteristic world in then the regularity condition is satisfied.

6.2. A Special Treatment of the Disjunction

In this subsection, we observe that the canonical forcing relation does not satisfy the usual clause
for disjunction, i.e., iff or . Indeed, this would require that

iff or , which does not hold in general as is provable and
neither nor is provable in LBI. Nevertheless, we remark that the if-direction
still holds since it simply corresponds to the pair of -rules in LBI. So, what semantic clause
for does the canonical forcing relation satisfy ?

Theorem 6.3. In the canonical interpretation , if and only if there exist ,
such that and and .

Proof. For the if-direction, if then, by definition, , which implies
. The result follows immediately since , and

.
For the only-if, we have, on the one hand, and because, by hypothesis,

and . On the other hand, since , yields
. The result is obtained from the following derivation in LBI:
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As Theorem 6.3 shows, the semantics of disjunction in the canonical interpretation is unusual
for a Kripke semantics. A special treatment of the disjunction, arising from considerations in
BI-algebras, is needed to make the liberalized rules work. The topological Kripke semantics,
introduced in (Pym 2002; Pym et al. 2004; Pym 2004) which and summarized in section ??,
allows, as for BI-algebras, to be taken into account together with a non-indecomposable treat-
ment of the disjunction. As one can notice, the clause for is very similar to the one given
in Theorem 6.3. Indeed, they are just dual since the topological semantics considers open sets,
while the canonical interpretation considers sets that are closed under deduction. Therefore, the
translation from one to the other is simply obtained by taking the complement and TBI’ appears
as the syntactic reflection of the forcing semantics in the category of sheaves over a topological
monoid.
We shall see that the dependency graphs, which are defined in the case of liberalized rules,

may be viewed as (partial) topological Kripke models.

7. Liberalized Resource Tableaux

In this section, we give new expansion rules for TBI. The resulting tableau system is called TBI’.
In our previous discussions, we have defined a canonical interpretation of BI and have also shown
that a new semantic clause for the additive disjunction is required to achieve a suitable canonical
forcing relation. However, the semantic changes made to have a syntactic counterpart and the
corresponding initial expansion rules have to be modified accordingly. For that, we make several
extensions to the initial framework.

7.1. An Extended Labelling Algebra

Definition 7.1. We enrich the labelling language given in Definition 3.1 with a new unit symbol
and a new binary function symbol . Therefore, compound labels become expressions of the
form or in which and are labels. We say that is a sublabel of (notation: ),
if there exists a label such that or . We note if and .

denotes the set of the sublabels of . All other definitions remain unchanged.

Definition 7.2. Labels and constraints are interpreted in a labelling algebra
in the following way:
1. is a set of labels;
2. is a preordering;
3. equality on labels is defined by : iff and ;
4. is an order preserving commutative monoid, i.e., satisfies

- associativity: ,
- commutativity: ,
- identity: , and
- bifunctoriality: implies ;

5. is a distributive complete semi-lattice, i.e., satisfies
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- associativity: ,
- commutativity: ,
- identity: ,
- bifunctoriality: implies ;
- contraction: ,
- weakening: , and
- distributivity: .

Lemma 7.1. The labelling algebra satisfies the following properties:
(1) ;
(2) ;
(3) .

Proof.
(1) By the weakening axiom, we have both and . Thus, by bifunctoriality of

, we can derive and . The bifunctoriality of then
entails , from which the result immediately
follows using the contraction axiom.

(2) The weakening axiom implies which, by identity, gives .
(3) Property (2) yields . So, follows by bi-

functoriality.Distributivity then gives . Since ,
it finally comes that .

Notice that property (1), together with the distributivity axiom, imply that is “fully” distribu-
tive over . Property (2) simply means that is the greatest element in the labelling algebra and
implies, with property (3), that absorbs any other label in a multiplication, i.e., for any
.

Definition 7.3. The closure of a set of label constraints is extended as follows:
1. ;
2. if then (reflexivity);
3. if and then (transitivity);
4. if then implies ( -compatibility);
5. if then implies ( -compatibility);
6. if then and (weakening);
7. if or then (dis-

tributivity).

7.2. Liberalized Rules

We now give, in Figure 8, the expansion rules of TBI’, which modifies TBI in order to reflect the
semantic changes previously made. Compared to the initial labelled system, we notice the pres-
ence of two new rules, namely, and . These rules are structural since they only operate
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, are new constants

Figure 8. TBI’ Expansion Rules

on the label of their signed formula without decomposing the formula itself. Their computational
contents simply reflect that corresponds to an intersection under the canonical interpretation.
Then we notice that the rule has been modified and is now a rule, introducing two new
constants, , , and a new assertion . The rule, on the other hand, becomes a

rule re-using two labels, , , such that the requirement is satisfied by the closure
of the assertions. The new rules for are justified by Theorem 6.3, of which they are the syn-
tactic counterparts. The usual version of the is admissible in TBI’, so one could also use the
following pair of rules for the disjunction:

The initial pair of rules leads to a nicely symmetric treatment of the disjunction but has the
drawback of solving requirements of the form , which can be difficult. Moreover, it
involves more splitting of the tableau branches, which can significantly increase the size of a
tableau proof. In presence of explicit structural rules (Kripke monotonicity and ), the two
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versions of the are easily proven to be equivalent. Therefore, one can indifferently use one
version or the other in a tableau proof.

Definition 7.4. A constant is -characteristic in a tableau branch if it appeared, for the first
time, in a formula which was introduced by a F , T or T expansion.

We remark that the constant introduced by the rule is not -characteristic. This
observation is semantically justified by the fact that, even if having such that ,
and implies that there exists a -characteristic , i.e., an such that and ,
it does not necessarily imply that . However, the previous discussion shows that Definition
7.4 can still be extended to cover the case of the rule (and so, cover all the rules), by
modifying it as prescribed by the fourth case of the following lemma.

Lemma 7.2. Let be a tableau branch. The following liberalized rules:

where ( ) need not be new, are admissible in TBI’ provided
1. ( ) is -characteristic ( -characteristic) in , and
2. there exists in such that .

Proof. Let be a regular Kripke resource model – . We only prove the result
for , the other case being similar. The soundness of the liberalized is justified by the
following semantic equivalence : iff there exists a -characteristic world such that

. The if direction is obvious. For the only-if direction, suppose that . Then,
there exists such that and . Since , the regularity of implies that there
exists a -characteristic world , which implies and, by order preservation, .
Kripke monotonicity finally entails .
Now, suppose that we have a realization – of in with and in .

Then, and . Since is assumed to be -characteristic, it follows from
and our previous discussion that , which means that the

expansion of a liberalized preserves realizability.

7.3. Proof and Countermodel Construction

We illustrate how TBI’ works with some examples. The first example, q.v. Figure 9, shows two
closed tableaux for , which therefore holds in BI. The first
tableau is obtained using the version of the rule, while the second is obtained with the
usual version. As one can see, for both tableaux, Step 2 deals with the new rule and extends
the branch with and , introducing by the way two new constants
and and a new assertion . Step 4, which shows the correspondence between the
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Figure 9. Two different tableaux for .

two rules, is more interesting. With the version, we are required to find two labels and
which verify the constraint . Taking and is a suitable choice

since, by compatibility on assertion , we can deduce , which, by
distributivity, gives .
If we use the version, Step 4 in the left tableau is simulated by Steps 4, 4’ and 4” in the

right one. Step 4 first expands into using Kripke mono-
tonicity because, as previously explained, holds in the labelling algebra
with respect to the assertions. Step 4’ then splits the tableau into two branches by decomposing

with the structural rule. Finally, Step 4” reapplies the rule on
both resulting from the previous step. As the reader can notice, all other steps are exactly
the same for both tableaux. Moreover, such a simulation of one version into the other can
always be performed, thus proving their equivalence.
For the second example, see Figure 10, the tableaux construction procedure ends up with an

open branch. Therefore, the formula does not hold in BI.
Notice that, since the new version of the rule introduces distinct constants for and when
expanding instead of propagating the , the fact that we reuse in Step does
not lead to a closed tableau as it did for the introductory example of Figure 7.
It is routine to extend the notions of fulfilled formula, completed branch, complete branch and

dependency graph to cover the introduction of in the labels. The model existence theorem for
TBI’ then follows immediately.

Theorem 7.1. A complete branch has an (algebraic) Kripke resource model.
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Figure 10. Tableau for

Proof. The problem is to embed the dependency graph of a given complete branch into a BI-
algebra. The main difficulty is that and are only partial operations on the dependency graph.
So, we must complete and with suitable values to obtain satisfactory monoidal product and
lattice meet operators. For the monoidal part, we follow the ideas of section § 4.2 and add a
greatest element , to which all undefined products are mapped. Similarly, for the lattice part,
we add a least element to which all undefined meets are mapped (other completions, such
as the Mac Neille completion, could also be used). The result then becomes a straightforward
adaptation of the proof of Theorem 4.2.

7.4. Properties of TBI’

In this subsection we prove the soundness and completeness of TBI’. For the soundness we show
that each rule of TBI’ preserves realizability under the canonical interpretation.

Theorem 7.2 (soundness of TBI’). Let be a BI proposition, if there exists a closed tableaux
sequence for in TBI’, then is a theorem of LBI.

Proof. It is easy to prove that each rule of TBI’ is sound under the canonical interpretation.
We do only a few cases, knowing that the others are similar.
- Case .

suppose for some . Then, . The result immediately follows
since , and .

- Case .
suppose for some . Then, for then, since , we should
have . Analogously, we prove .
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Now, to establish the soundness of TBI’, suppose that there exists a closed tableaux sequence for
. Since all rules are sound under the canonical interpretation, the initial signed formula
is not realizable in . In other words, it is impossible that . Therefore, , which
implies .

Theorem 7.3 (completeness of TBI’). Let be a proposition, if is provable in LBI then, there
exists a closed tableaux sequence for in TBI’.

Proof. The completeness follows from Theorem 7.1 and the fact that the tableau construction
procedure builds a tableau which is either closed or with a complete branch.
Another way to show completeness is to prove that TBI’ is closed under each LBI rule, as

explained in (D’Agostino and Gabbay 1994). For that, we define a transformation on a bunch
by replacing each proposition by a -characteristic label , each “,” by and sequences

of the form by a label . For example,
.The notation is to mean that such a label is assumed to be the

least upper bound of and , and, therefore, the implicit assertion is also
assumed. Then, a sequent , where is made upon a set of propositions , is provable in
TBI’ if the following tree is closed:

Now we prove the result for the rule of LBI, the others being similar. For that, we show
that if is provable in TBI’, then, so is . In other words, what we show, in
the following figure, is that the tree corresponding to (on the right-hand side) can
be closed if we assume that the one for (on the left-hand side) is closed. The notation

is to say that all occurrences of the label in are replaced by the label .

In this section, we have presented a liberalized tableau for BI. Liberalized rules are important
in practice since they give a way to control the introduction of new constants and, thus, to limit the
syntactic complexity of the labels which, in turn, leads to a more efficient proof-search (Hähnle
and Schmitt 1994). However, having such liberalized rules requires a special treatment of the
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additive disjunction which forces us to enrich the structure of the labels with a new symbol. For
this reason, it becomes more difficult to build countermodels. Moreover, such countermodels are
related to BI-algebras, which are themselves closely related to the topological Kripke semantics,
of which they may be viewed as an algebraic counterpart.

8. Decidability and Finite Model Property for BI

In this section, we discuss the finite model property w.r.t. topological resource models and, as a
consequence, the decidability of BI. For that, we investigate the situations in which a tableau may
have infinite branches and thus use two central notions, namely liberalized expansion rules and
branch redundancy, that have been introduced in the case of BI without (Galmiche and Méry
2003). The former provides a way to control the syntactic complexity of the labels by restricting
the introduction of new constants during the tableau expansion. The latter characterizes the po-
tential need of an infinite expansion process to achieve a completed branch and can roughly be
viewed as a kind of loop-checking.
We summarize the situation.When formulæ are in the scope of formulæ, the fulfillment

of formulæ requires the introduction of new constants which may destroy the fulfillment of
formulæ. The first step towards termination of the complete branch construction process is to

make use of the liberalized rules presented in Lemma 7.2. Doing so, only finitely many distinct
constants can be introduced in a tableau branch , i.e., only finitely many distinct atomic labels.
But this not yet sufficient to prevent branches from growing infinitely, because, even with a finite
number of atomic labels, one can still generate an infinite number of labels through composition.
Anyway, since there are only finitely many subformulæ of the initial formula to prove, after a
given finite number of expansion steps, any newly introduced signed formula must have already
been introduced, up to a fixed number of occurrences of the same constant. Such a situation
happens when some formulæ of the form occur in the scope of some formula

, with being a sublabel of . With such expansions, we can have sequences
such as , ( being the constant introduced by the first expansion),

in a complete branch. Then, we have repetitions of the same signed formulæ
differing from each other only by one occurrence of the constant , but without any additional
computational content allowing to possibly close the branch. In order to solve this problem, we
need the following notion of branch redundancy (Galmiche and Méry 2003).

Definition 8.1 (redundancy). A complete branch is said to be redundant for the constant if
there exists and such that for any
1. implies , and
2. implies , and
3. implies , and
4. implies .

Moreover, as Definition 8.1 suggests, considering ( ) and (
) as equivalent and since captures the inessential parts of the model, the construction

explained in Definition 4.6 always results in a finite countermodel.

Theorem 8.1. A completed branch has a finite topological resource model.



Galmiche et al. 50

Proof. Proof by induction on the number of constants for which is redundant.
Base case. If there is no constant for which is redundant then is finite and by Theorem 7.1
topological resource model which is, by construction, obviously finite.
Inductive case. We assume that the proposition holds for any completed branch which is redun-
dant for less than constants. Suppose that is redundant for constants. We select one of
those constants and denote it . Then, we add the extra assertions for any , where
, and refer to Definition 8.1. It is routine to show that the composition modulo rewriting

preserves the properties of associativity, commutativity, and identity w.r.t. 1. More-
over, the properties 3 and 4 of Definition 8.1 ensure that the branch remains non contradictory.
Since now, we cannot have more than occurrences of in the labels, we have treated the re-
dundancy of w.r.t. the constant and we apply the induction hypothesis to obtain the result.

Theorem 8.2 (finite model property). If then there is a finite topological resource model
such that .

Proof. If there is no closed tableau for . Thus, the tableau construction procedure yields
a tableau with a completed branch . Then, by Theorem 8.1, we can build a finite topological
resource model such that .

Hence, we have the following result:

Theorem 8.3 (decidability). Propositional BI is decidable.

Proof. The tableau construction procedure, which is a semi-decision procedure, can be im-
proved into a decision procedure by taking both the liberalized versions of the expansion rules
and the notion of redundancy into account. Since, under the liberalized rules, an open branch
cannot infinitely grow without becoming redundant, the termination of the procedure can be en-
forced by stopping the (potentially infinite) construction of a completed branch as soon as it has
been recognized redundant.

Note that full propositional linear logic, with exponentials, is undecidable even when restricted
to the intuitionistic fragment, that the status ofMELL is unknown, and that neither has the finite
model property (Lafont 1997; Lincoln 1995).
By exploiting the capture of the semantics by labels, we have provided a decision procedure

for BI which builds countermodels in Grothendieck topological semantics. Their study gives us
a better understanding of the semantic information necessary to analyze provability and of the
relationships between the elementary and topological settings.

9. Conclusions

Initially, resource tableaux were introduced for BI without , with labels and constraints that di-
rectly capture the Kripke resource semantics that is complete for this logical fragment (Galmiche
and Méry 2003). This paper has presented new results for full propositional BI (with ), some
of which were partially presented in (Galmiche et al. 2002). In this context, a first non-trivial
problem was: is it possible to define resource tableaux for propositional BI (with ) and then to
capture the Grothendieck topological semantics that is complete for BI. We have provided herein
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a simple solution bases on the existing resource tableaux, without introduction of new expansion
rules but with a particular closure condition, express via labels, to deal with .
We have proven the soundness and completeness of the resource tableaux method with respect

to the Grothendieck topological semantics and, as consequences, we have deduced two strong
new results for BI: the decidability of propositional BI and the finite model property with respect
to Grothendieck topological semantics. These results suggest that resource tableaux provide an
appropriate deductive framework for logics like BI in which different kinds of connectives co-
habit and interact. It follows, from the capture of the semantics by labels, we have been able to
provide a decision procedure for BI which builds countermodels in Grothendieck topological se-
mantics. This study of such countermodels has suggested a better understanding of the semantic
information necessary to analyze provability and of the relationships between the elementary and
topological settings.
From a proof-search perspective, we have considered another non-trivial problem, namely,

how to define a resource tableaux for BI with liberalized rules which improve efficiency in proof-
search by reducing the number of new constants that must be handled. Therefore,we have defined
liberalized resource tableaux that are based on a semantic analysis of the connective together
with a specific treatment that is needed to make liberalized rules work. The related extension
of the label algebra involved a less direct construction of countermodels but surprisingly these
countermodels are closely related to the topological Kripke semantics, that is complete for BI
(Pym et al. 2004; Pym 2004), of which they can be viewed as an algebraic counterpart. These
results emphasize the appropriateness of resource tableaux to deal with the different semantics
that are available for BI.
Another important question arises from these relationships between semantics of BI and re-

source tableaux and mainly from the extraction of countermodels from the dependency graphs:
is it possible to define a new semantics of BI such that a dependency graph can be directly con-
sidered as a countermodel? We have proposed such a new Kripke semantics that can be seen
as intermediate between the elementary and Grothendieck resource semantics. It emphasizes the
central notion of dependency graph that captures the essential information necessary to ana-
lyze the provability in BI and leads to a simple semantics based on partially defined monoids.
The definition of this semantics is important by itself but the most interesting point is that it is
strongly related to the specific models of BI known as (intuitionistic) “pointer logic” (Ishtiaq and
O’Hearn 2001) and “separation logic” (Reynolds 2000), introduced in order to analyze mutable
data structures.
Further work will be devoted to the study tableaux systems for the various classical varia-

tions on BI, such as Boolean BI (i.e., with classical additives). Although pointer logic (Ishtiaq
and O’Hearn 2001) and separation logic (Reynolds 2000) can be formulated with intuitionistic
additives, their main developments have been based on Boolean BI. Thus the development of
tableaux systems for Boolean BI will facilitate the development of tableaux systems for them.
In particular, an important open problem is to provide a complete semantics for Boolean BI,
and so facilitate the extension of the analysis of this paper to the realm of classical pointer and
separation logics. The variations of BI with classical multiplicatives are also intriguing.
We will also study the relationships with other recent work on proof-search in BI based on

free variable tableaux (Galmiche and Méry 2003) and on connection methods (Galmiche and
Méry 2002). Moreover, as BI is conservative over intuitionistic logic (IL) and multiplicative in-
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tuitionistic linear logic (MILL) (O’Hearn and Pym 1999), these results on resource tableaux can
be restricted to both logics in order to propose new proof-search methods based on labels and
constraints. For instance, we will compare such a method for IL with existing methods from the
efficiency and countermodels construction perspectives. In the case of MILL, we will compare
it with methods based on connections and proof nets construction (Galmiche 2000; Galmiche
and Méry 2002). Moreover, from the semantic perspective, the impact of the results on MILL
will be analyzed and compared with previous proposals about resource models (Galmiche and
Larchey-Wendling 2000) and countermodels analysis.
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