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Abstract. Theorem proving, or algorithmic proof-search, is an essential enabling
technology throughout the computational sciences. We explain the mathematical
basis of proof-search as the combination of reductive logictogether with a control
régime. Then we present a games semantics for reductive logic and show how it
may be used to model two important examples of control, namely backtracking
and uniform proof.

1 Introduction to reductive logic and proof-search

Theorem proving, or algorithmic proof-search, is an essential enabling technology through-
out the computational sciences. We explain the mathematical basis of proof-search as
the combination of reductive logic together with a control régime. Then we present a
games semantics for reductive logic and show how it may be used to model two impor-
tant examples of control, namely backtracking and uniform proof. This paper presents,
from our current perspective, a brief introduction to work first published in 2004 in
Chapter 6 of [25]:

D. Pym and E. Ritter.Reductive Logic and Proof-search: Proof Theory, Seman-
tics, and Control. Volume 45, Oxford Logic Guides. Oxford University Press,
2004.

We also summarize the necessary mathematical background developed in the earlier
chapters of [25].

Axiomatizations of logics as formal systems are usually formulated as calculi for
deductive inferences. Deductive inference proceeds from established, or supposed, pre-
misses, or hypotheses, to premisses, or hypotheses, to a conclusion, regulated by the
application ofinference rules, R,

⇓
Premiss1 . . .Premissm

Conclusion
R.

A proof is constructed, inductively, by applying instancesof rules of this form to proofs
of established premisses, thereby constructing a proof of the given conclusion.

A conceptually valuable semantics of proofs is provided by acorrespondence be-
tween the propositions and proofs of a logic, the types and terms of aλ-calculus [13]
and the objects and arrows of a category [16],q.v. Figure 1, in which (e.g., natural
deduction) proofs correspond to (e.g., typedλ-terms) which correspond to classes of
arrows in categories with specified structure.

The leading examples of this form of semantics arise in intuitionistic logic [31],
in which natural deduction proofs correspond to simply-typedλ-terms and to arrows
in cartesian closed categories [16], in intuitionistic linear logic, in which natural de-
duction proofs correspond to linearλ-terms and to the arrows of symmetric monoidal



Φ ⇒ Γ ` φ � - [Γ ] ` [Φ] : [φ]
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[[Γ ]]
[[Φ]]
−→ [[φ]]

Fig. 1. Propositions-as-types-as-objects

closed categories [2], and bunched logic [21, 26, 27], in which natural deduction proofs
correspond toαλ-terms and to arrows of doubly closed categories. Another example,
which underlies much of what we do in this paper, is provided by classical natural
deduction and theλµν-calculus [23, 28, 24].

Theorem proving, or algorithmic proof-search, is both an essential enabling technol-
ogy within the computational sciences and of independent philosophical interest. More
specifically, in computing, many problems are formulated asjudgements about formal
texts, typical representable in logical formalisms. For example, well-formedness (pars-
ing), well-typedness (type-checking), as well as logical consequence (e.g., for specifi-
cation and correctness) itself.

There are, indeed, many useful formal languages and, for each language, typically
many useful procedures for judging properties of sentences. As the complexity of the
languages and their properties increases, the possibilityof obtaining efficient, total pro-
cedures recedes, but partial procedures which fail quicklyare of great value and inter-
active theorem provers, such as the Boyer-Moore system [3],the LCF system [11] and
its derivatives, such as Paulson’s Isabelle system [20], aswell as more complex sys-
tems, such as Coq [4], based on dependent type theory [18] areused in a wide range of
system-critical applications (e.g., [30]).

Although with widely varying complexity and efficiency characteristics, these sys-
tems have, however, a common underlying logical basis:reductive inference.

Reductive inference proceeds from a putative (i.e., supposed) conclusion to suffi-
cient premisses, regulated byreduction operators,OR,

⇑
SufficientPremiss1. . .SufficientPremissm

PutativeConclusion
OR,

corresponding to (admissible) inference rules,R, read from conclusion to premisses.3

Here the idea is the following:

– The putative conclusion is an assertion, or agoal, such as a sequent [10]Γ ` ∆,
the endsequent, in our chosen logic. We should like to know whether or not the
sequent is provable in our chosen logic. Often, we writeΓ ?- ∆, borrowing a
notation from Prolog, to indicateΓ ` ∆ as a putative conclusion;

3 Henceforth we refer to justR rather thanOR.



– Here we are assuming that our given logic comes along with a proof system.4 Each
inference rule in the system, including any admissible rules, gives rise to a reduc-
tion operator. To apply a reduction operator to particular assertion we must find
an instance of a reduction operator such that instance of theputative conclusion
matches the assertion;

– The assertions which must be proved in order to have a proof ofthe initial asser-
tion, or subgoals, are then given by the corresponding instances of the sufficient
premisses of the operator.

We believe that this idea of reduction was first explainedin these termsby Kleene [15].
So, in reductive logic, an attempt to construct a proof,i.e., a reduction, proceeds,

inductively, by applying instances of reduction operatorsof this form to putative conclu-
sions of which a proof is desired, thereby yielding a collection of sufficient premisses,
proofs of which would be sufficient to imply the existence of aproof, obtainable by
deduction, of the putative conclusion.

Note, however, that a reduction may fail to yield a proof: having removed all of the
logical structure,i.e., the connectives, by reduction, we may be left withp ?- q, for dis-
tinct atomsp andq. Such possible failures have no counterpart in deductive logic, but
theorem provers have to have strategies which ensure that a proof of a given endsequent
is found if there exists one. In general, not only the choice of reduction operators but
also the order in which they are applied matters: the application of the same reduction
operators in one order may yield a proof, where after applying the same reduction oper-
ators in a different order a completion to a proof may be impossible. Defining the order
in which reduction operators are applied is only one exampleof how to control proof-
search. These issues are usually very intensional in nature, and so are outside the scope
of pure reductive logic. So modelling proof-search requires both modelling a reductive
logic and modelling the chosen control régime.

The inherent partiality of reductions presents a clear semantic difficulty: we must
be able to interpret those reductions which cannot be completed to be proofs. In par-
ticular, we aim to recover a semantics for proofs of utility comparable to that of the
propositions-as-types-as-objects triangle for proofs.

The desired set-up is summarized in Figure 2, in whichΓ ?- φ denotes a sequent

Φ ⇒ Γ ?- φ � - [Γ ] |∼ [Φ] : [φ]
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[[Γ ]]
[[Φ]]
 [[φ]]

Fig. 2. Reductions-as-realizers-as-arrows

4 We could, however, formulate our subsequent analysis purely semantically.



which is a putative conclusion andΦ ⇒ Γ ?- φ denotes thatΦ is a search with root
Γ ?- φ. The judgement[Γ ] |∼ [Φ] : [φ] indicates that[Φ] is arealizerof [φ] with respect
to assumptions[Γ ].

The provision of a model-theoretically adequate such framework is non-trivial. The
main difficulty is that the objects constructed during a reduction are, in contrast to the
objects,i.e., proofs, constructed during deduction, inherently partial. Whilst any de-
duction proceeds from axioms to a guaranteed conclusion andso constructs a proof,
reductions proceed from a putative conclusion to sufficientpremisses. At any interme-
diate stage, it may be that it is impossible to complete the reduction so as to obtain a
proof.

Such a semantic framework is presented in full in [25]. In this paper, we present
part of this framework, namely a games semantics for reductive logic and proof-search.
We also describe how to use this semantics to model two important concepts of proof-
search, which are backtracking and uniform proofs.

In § 2, we introduce the key control régime in proof-search: backtracking. In§ 3,
we briefly sketch the general proof- and model-theoretic frameworks within which our
work resides, though they are suppressed in this paper. In§ 4, we introduce our no-
tion of game in the setting of intuitionistic reductive propositional logic and then, in
§ 5, we generalize it to classical reductive propositional logic. Then, in§ 6, we give a
games semantics of proof-search in intuitionistic propostional logic via its embedding
in classical propositional logic. In§ 7, we give a game-theoretic semantics for uniform
proofs.

2 Backtracking

In this paper, we concentrate on one particular instance of control, namely backtracking
in intuitionistic propositional logic. We choose backtracking because it is perhaps the
prototypical control régime and because it raises most of the modelling issues of inter-
est. Uniform proofs can be modelled using the same framework, as we show at the end
of this paper.

We have shown in previous work [28, 29] that backtracking in intuitionistic propo-
sitional logic can be done by embedding intuitionistic propositional logic into classical
propositional logic, doing search in classical logic and, finally, deciding whether a clas-
sical derivation has an intuitionistic subderivation.

The embedding of intuitionistic propositional logic into classical logic is based on
Dummett’s multi-conclusioned version of intuitionistic propositional logic [5]. Seen as
a system of reductive logic, this embedding works by adding the side formula∆ also to
the premiss of the⊃ R-rule, thereby obtaining the classical⊃ R-rule and keeping this
side formula∆ in all reduction operators applied to the modified premiss.

As an example, consider the following reduction, in which the use first of⊃ L

on p ⊃ q leaves the subsequent development of the left-hand branch of the reduction



doomed to failure, even though the endsequent is provable:5

fails
(1)

...

p ⊃ q , r ⊃ s ?- p

succeeds

...

r ⊃ s , q , r ?- s

succeeds

...

r ⊃ s , q , r , t ?- t
⊃Ls⊃t

r ⊃ s , s ⊃ t , q , r ?- t
⊃R

r ⊃ s , s ⊃ t , q ?- r ⊃ t
(1) ⊃Lp⊃q

p ⊃ q , r ⊃ s , s ⊃ t ?- r ⊃ t

After the first⊃L, we can see that the left-hand branch will fail, and we must backtrack
to (1) and make a different choice of reduction. We might try⊃ Ls⊃t instead. Such a
control step lies outside the logical structure we have so far established but we can give
a logical account of it by considering the intuitionistic calculus LJ to be embedded in
the classical sequent calculus, LK [10].6

In general, every intuitionistic sequent derivation arises as a subderivation of a clas-
sical sequent derivation via (for example) Dummett’s presentation of intuitionistic logic
as a multiple-conclusioned sequent calculus [5]. Because the classical⊃ R rule al-
lows multiple succedents in the premiss, two different intuitionistic sequent derivations,
which are not identical up to a permutation of inference rules, can be subderivations of
the same classical derivation up to a choice of axioms. For example, consider the fol-
lowing two intuitionistic reductions:

Ax
ψ , φ ?- ψ

⊃ R
ψ ?- φ ⊃ ψ , χ ⊃ ψ

and
Ax

ψ , χ ?- ψ
⊃ R.

ψ ?- χ ⊃ ψ , φ ⊃ ψ

They arise as restrictions to intuitionistic logic of the following classical reduction:

Ax
ψ , φ , χ ?- ψ , ψ

ψ , χ ?- φ ⊃ ψ , ψ
⊃ R.

ψ ?- φ ⊃ ψ , χ ⊃ ψ

Similarly, in LK viewed as reductive system, the⊃L rule has the form

Γ ?- φ,∆ Γ, ψ ?- ∆
Γ, φ ⊃ ψ ?- ∆

,

in which the∆ is retained in both premisses. Using this operator instead of its intuition-
istic counterpart, we are able to restart the computation at(2), and proceed to apply the

5 We adopt the notationRφ to denote the instance of the operatorO generated by the formula
φ, e.g., ⊃Lp⊃q.

6 Our assumed calculi LJ and LK are, in fact, very minor variants of Gentzen’s systems. For
example, in the premiss of∧L, in both LJ and LK, we include both of the components of the
conjunction introduced in the conclusion; similarly, for∨R in LK.



necessary⊃R:

succeeds

...
⊃Ls⊃t

r ⊃ s , s ⊃ t , r ?- t , p
⊃R

r ⊃ s , s ⊃ t ?- r ⊃ t , p
(2)Exchange

r ⊃ s , s ⊃ t ?- p , r ⊃ t

as above
...

⊃R
r ⊃ s , s ⊃ t , q ?- r ⊃ t

(1) ⊃Lp⊃q
p ⊃ q , r ⊃ s , s ⊃ t ?- r ⊃ t

We call such a point, at which the exchange rule is used to restart the computation, a
backtracking point.

In this way we model the backtracking in intuitionistic propositional logic by an
exchange on the right-hand side in classical logic. In the following sections, we present
a games model which captures this approach.

3 The general semantic framework

In the sections following this one, we shall give direct definitions of classes of games
for intuitionistic and classical propositional logics. Weare then able to give a games
semantics for proof-search (i.e., for backtracking and uniform proof) by considering
intuitionistic logic to be embedded in classical logic in the way that we have sketched
for LJ and LK, with the additional computational structure available in LK being used
to represent the control régime.

Before doing so, we mention briefly the general proof- and model-theoretic frame-
works within which our analysis formally resides.

We sonsider the proof-objects of propositional LJ to be represented by simply-typed
λ-terms in the usual way. We consider the proof-objects of propositional LK to be repre-
sented byλµν-terms [28, 29, 24, 25], the extension, by the present authors, of Parigot’s
classicalλ-calculus to include an analysis of classical disjunction,that is a representa-
tion that analyses directly the rule

Γ ` ∆,φ, ψ,∆′

Γ ` ∆,φ ∨ ψ,∆′
,

in which bothφ andψ are present in the premiss.
Beginning with intuitionistic logic, with proofs represented asλ-terms, we interpret

a prooft of a sequentΓ ` φ as a map

[[Γ ]]
[[t]]
−→ [[φ]]

in a bi-cartesian closed category in the usual way [16].
Turning to classical logic, we consider proof-terms as given by theλµν-calculus,

so that we consider sequents of the formΓ ` t : φ,∆. Semantically, such a sequent is
interpreted, essentially, in an indexed or fibred category as follows:



– The base interprets∆. Arrows in the base interpret the structural properties, such
as weakening, of the contexts∆;

– The fibre over (the interpretation of)∆ is cartesian closed, and is used to interpret
Γ ` t : φ, essentially following the pattern of the intuitionistic semantics;

– The structural binding operatorµ and the binding operatorν that handles disjunc-
tion are both interpreted using certain natural isomorphisms between homsets in
fibres determined by weakening maps in the base.

The details of this semantics may be found in [24, 25] (building on [22]). Concrete
examples of this semantics are given by continuations [12, 24] and a class of games, to
which we turn in the next section.

Turning to reductive logic, we must, as we have suggested, provide an interpretation
for reductions, such as those having leaves of the formp ?- q, that cannot be completed
to form proofs. Our semantics handles this situation by introducingindeterminates, via
a polynomial construction over the semantics of the underlying logic, formulated as a
fibration over a category ‘worlds’ corresponding to collections of indeterminates. Then
p ?- q is interpreted by an indeterminate map

[[p]]
α

−→ [[q]].

We then establish that a reductionΦ of Γ ?- φ can be completed to a proof just in case
its semantics determines a suitable instantiation of its indeterminates. The details may
be found in [25].

In our presentation of games models for reductive logic, beginning in the next sec-
tion, we suppress this treatment of indeterminates, concentrating on the structure of the
games themselves and their use in interpreting backtracking and uniform proof.

We conclude this brief summary by remarking that semantics we have described
admits soundness and completeness theorems in a familiar style [24, 25].

4 Games for intuitionistic propositional logic

We describe games for reductive intuitionistic propositional logic. We extend these
games in the next section to games for reductive classical logic. As we shall see later,
these games are intensional enough that we can model controlaspects, such as back-
tracking and uniform proof, quite simply.

We consider games played between two players, Proponent,P , and Opponent,O. In
such games, for a formulaφ, the aim of Opponent is to falsify the given formulaφ, and
the aim of Proponent is to prove it. A game starts by Opponent challenging the given
formula. Proponent wins a game when he can answer Opponent’sinitial challenge, oth-
erwise he loses. The possible moves of both players in a game for φ are determined by
the structure ofφ. A proof of a formula corresponds to awinning strategyfor Proponent.
Such a winning strategy for a formulaφ is a function which for every legal O-move in
a game forφ produces a legal P-move such that if P uses this strategy to determine
his moves he wins every game forφ. Such games for proofs have been described for a
variety of logics, including classical and intuitionisticlogic [17, 6]. Usually, in games
for classical logic, Proponent and Opponent are dual to eachother, whereas this is not
true for games for intuitionistic logic.



These games models for proofs have been adapted to give models of sequential
computations in programming languages [14, 1, 9]. There, the intuition is that Opponent
asks for the value of a computation, and Proponent performs the computation to produce
values as answers. In such games, there is usually a strict alternation between moves by
Proponent and Opponent, corresponding to the absence of concurrent computation. As
computations have a clear direction (from inputs to outputs) there is usually no duality
between Proponent and Opponent in these games.

The key conceptual difference between the games for proofs and the games for
computations is that in logic not all propositions are provable, so that in these games
not all propositions have strategies, whereas in the programming languages considered,
however, all types are inhabited, so that these games have strategies for every type.

The details of how to present games models differ widely, both within games for
proofs and within games for computations. The definition of the games considered in
this paper uses elements of both approaches. We use one important technical notion
from the games introduced by Hyland and Ong, namely the notion of an arena: for
each formulaφ the possible moves for a game forφ are listed in a forest7 called an
arena, and the rules of the game use this forest extensively.Ong [22] introduces also the
notion of ascratchpadto model the multiple conclusions of classical logic. Scrachpads
are additional games that Proponent may start at will.

Herein we give a class of games which combines ideas from those for intuition-
istic provability and those for programming languages to give a class which models
intuitionistic proofsdirectly.8

We begin the definition of our games semantics by defining arenas. For each formula
φ, we define an arena, that is a forest used to characterize legal moves by both players
in our games.

Definition 1. An arenaof typeφ is a forest with nodes having possibly labels defined
inductively by the following:

– The arena of> is the empty forest;

– The arena of⊥ is the forest with one node labelled⊥;

– The arena for a propositional atomp is a forest with one node labelledp;

– The arena forφ ∧ ψ is the disjoint sum of the arenas forφ andψ;

– SupposeA1, . . . ,An are the trees of the arena forφ andB1, . . . ,Bm are the trees
of the arena forψ. Then the arena forφ ∨ ψ is given by

7 A forestis a set of trees.
8 Games models of intuitionistic proof can be recovered from games models of linear proofs [1]

via the exponential! and, for example, Girard’s translation of intuitionistic logic into linear
logic.



A1 An B1 Bm... ...

L R

Note that there are two special nodes calledL andR. In the special case that the
arena forφ or the arena forψ is empty, the arena forφ∨ψ is the empty arena too.
The root node of the arena forφ ∨ ψ is labelled∨;

– SupposeA1, . . . ,An are the trees of the arena forφ andB1, . . . ,Bm are the trees
of the arena forψ. Then the arena forφ ⊃ ψ is the disjoint union of the following
trees

P

An

P

A1

O

Bi

...

In the special case that the arena forφ is empty, the arena forφ ⊃ ψ is the arena
for ψ. All nodes in the arena forφ ⊃ ψ which are root nodes in the arena ofψ are
labelled⊃ in addition to any other label they might have.

We call all root nodes in an arenaO-nodes, and all children ofO-nodesP -nodes, and
all children ofP -nodesO-nodes.

Arenas are used to define possible plays. The definition of moves and plays makes
this precise.

Next, we define possible moves in our games. Each move for a game forφ is asso-
ciated with a node in the arena forφ. There are several types of moves. Firstly, we have
moves by Proponent and Opponent, and secondly there are question and answer moves.
Questions which correspond toO-(P -)nodes are played by Opponent (Proponent), and
answers which correspond toO-(P -)nodes are played by Proponent (Opponent). The
definition is as follows:

Definition 2. A movem for an arenaA is a node which is classified as either ques-
tion or answer. Questions which correspond toO-(P -)nodes are moves by Opponent
(Proponent), and answers which correspond toO-(P -)nodes are moves by Proponent
(Opponent). We call a move by Proponent aP-moveand a move by Opponent anO-
move.

Next, we define plays, which are instances of the game. Each play consists of a
sequence of moves satisfying certain conditions. The intuition is that Opponent starts
the play by challenging Proponent to verify the given formula. Proponent responds by



asking the Opponent to justify the assumptions which Proponent can make in a sequent
calculus proof ofφ. Conjunctive choices are made by Opponent, and disjunctivechoices
by Proponent. Proponent wins a particular game if he can answer Opponent’s initial
question.

The moves in a play forφ follow the structure of arena ofφ closely: AO (P )-
question can be played only if there was already aP -(O)-question corresponding to the
parent node. An answer can only be given if a question with thesame associated node
has already been made.

The precise conditions for a play are as follows:

Definition 3. A play for an arenaA is a sequence of movesm1, . . . ,mn such that:

(i) There exists an indexI ≥ 1 such that all movesm1, . . . ,mI are O-questions with
position1, . . . , I, respectively, and the corresponding nodes are roots in theforest
for A. These moves are calledinitial questions;

(ii) For each questionmi, with i > I, there exists a questionmk, with k < i, such
that the node corresponding tomk is the immediate predecessor of the node cor-
responding tomi in the arenaA. We callmk the justifying questionfor mi;

(iii) For each answermi, with i > I, there exists a questionmk, with k < i, such that
mk andmi are the same node inA. If mj is the justifying question formk, we
call mj the justifying questionfor mi;

(iv) Each question can be answered at most once;
(v) Any initial questions can only be answered if all non-initial questions have already

been answered;
(vi) For any P-answermi there exists a movemj such thatmj is an O-answer with

the same label or⊥ andj < i and that the nodes corresponding tomi andmj in
the arena are on a path which does not contain aP -noden labelled⊃ such that
the nodes corresponding tomi andmj are its children or identical to it;

(vii) If m is anO-question labelled∨, then at most oneP -question is justified bym.

Condition (vi) of this definition merits an explanation. During plays we have to en-
sure that Proponent can answer questions of Opponent only ifthis answer corresponds
to an assumption which Opponent has provided. This matters in the case of Proponent
asking a question labelled⊃, which corresponds to using an assumption of typeφ ⊃ ψ.
The rules of the game work in such a way that in this case two proofs are constructed:
one of the original formula usingψ as an additional assumption, and the second one of
φ. Now we need to ensure thatψ is not available as an assumption during the proof of
φ. Condition (vi) ensures this by making sure that anyO-answer forφ cannot be used
by Proponent.

Conditions (vii) and (vi) ensure that these games capture intuitionistic proofs: con-
dition (vii) enforces the disjunction property of intuitionistic logic, and condition (vi)
makes sure that only one specific formula can be proved at any one given time.

Compared to a games semantics for natural deduction (e.g., [14]), we allow both
Opponent and Proponent more freedom: both players can make several moves at a
time, which are subject to fewer restrictions. In this way, we capture the possibility
of applying reduction operators to several sequents independently. We also capture the
possiblity of sequences of blocks of left- and right-rules in a play.



As usual, left-operators involve operations on the premisses: they are initiated by
P-questions. Similarly, right-operators involve operations on the conclusions: they are
initiated by O-questions. The restriction in Clause (vi) that Proponent can answer ques-
tions only if Opponent has answered a P-question with the same label before ensures
that the axiom rule can be invoked only if there is the same formula on both sides of the
sequent.

Contraction is built in implicitly by allowing both playersto ask the same question
several times. Moreover, Clause (ii) of the definition of a play allows parallel reductions
in different branches of the search tree: A P-question with positionp · n1 · · ·nk · · ·m
with k > 0 andp the position of the justifying O-question represents the application of
⊃ L in all branches which arise by playing moves with positionp · n1 · ni, for i < k.

Note also that our games semantics is capable of representing detailed information
how searches are executed. The level of detail is sufficient not only to model which
reduction operators are applied but also in which order. Some reduction operators are
even modelled by several moves, with the possibility of interleaving the moves corre-
sponding to different reduction operators. Hence a mappingfrom strategies to searches
assigns the same search to several strategies.

As an example, we give a possible play for the arena for the formula((p ⊃ q)∧(r ⊃
s) ∧ (s ⊃ t) ∧ r) ⊃ t (see Figure 3 for the arena). The play starts by Opponent

Ot

PrPt

Os

Ps

Or

Pq

Op

Fig. 3.Arena for((p ⊃ q) ∧ (r ⊃ s) ∧ (s ⊃ t) ∧ r) ⊃ t

asking the initial question. Here, this means that Opponentis asking for a proof of the
formula t. Now Proponent has various choices, namely asking for evidence for one
of the assumptions. Let us assume that Proponent asks the question corresponding to
the node labelledPt. Now Opponent will ask the question labelleds, thereby asking
Proponent to prover. Proponent now needs to use the assumptionr ⊃ s and asks
the question labelleds. Next, Opponent asks the question labelledr and challenges
Proponent to prove the formular in turn, which is the hypothesis in the implication
r ⊃ s. Proponent now asks for the final assumptionr. Opponent now has no choice but
to answer this question, thereby making it possible for Proponent to answer outstanding



questions by Opponent. Now Proponent can use this answer andanswer Opponent’s
questions. Again, Opponent is now forced to answer the questiont. This process of
answering previously asked questions goes on until finally Opponent is forced to answer
the question labelledt, and Proponent can answer the initial question.

The key notion of games semantics is that of astrategy. A strategy describes how
Proponent responds to arbitrary Opponent moves. When related to sequent calculus
reductions, a strategy indicates how Proponent answers challenges from Opponent to
prove the given formula.

Definition 4. A strategyis a function from playsm1, . . . ,mk, wheremk is an O-move,
to a sequence of movesmk+1, . . . ,mn such thatm1, . . . ,mk,mk+1, . . . ,mn is a play,
and the sequencemk+1, . . . ,mn is non-empty if the sequencem1, . . . ,mk contains no
unanswered P-move which could be answered by Opponent in thenext move according
to Definition 3.

Note that this definition makes it possible to force Opponentto answer any unanswered
questions by Proponent if such a move was allowed by choosingthe empty sequence as
a result of the function for sequences with unanswered questions by Proponent.

In the example, a strategy for Proponent would be to answer the initial question
by asking the question labelledt and then play as indicated above in response to any
Opponent move.

Next we show that each strategy for the arena corresponding to a formulaφ gives
rise to an intuitionistic sequent calculus proof ofφ. Note that several strategies give rise
to the same proof: games make significantly finer distinctions than sequent calculus
proofs.

Theorem 1. For any formulaφ and strategyΦ for φ there exists an intuitionistic se-
quent calculus proof ofφ.

5 Games for classical logic

We extend the games considered in the previous section to games for classical logic.
The main difference between the games for intuitionistic logic and those for classical
logic is a consequence of the fact that for classical logic weare working with sequents
with multiple conclusions,Γ ` ∆, with the intuitive meaning that (at least) one of the
formulæ in∆ must to be proved, whereas in intuitionistic logic we work with only one
conclusion. This means that, in classical games, when Opponent challenges a formula
φ in ∆, Proponent might choose to defend a different formulaψ in ∆, which has to be
accepted also as a valid defence ofφ.

The definitions of arena, move, and justification for classical games are the same
as those for intuitionistic games. We call a strategy (play)classical if it is the one for
classical games. Otherwise we call the strategy (play) intuitionistic.

The conditions for classical plays are not as strong as the conditions for intuitionistic
plays. In particular, the rules for disjunction are changedto allow Proponent to select
both disjuncts, thereby possibly violating the disjunction property of intuitionistic logic.
More precisely, we relax Clause (vi) and Clause (vii). We drop the latter clause, and
replace the former as follows:



Definition 5. A play for an arenaA is a sequence of movesm1, . . . ,mn such that
conditions (i) – (v) for intuitionistic plays, and the following additional conditions are
satisfied:

(vi) For any P-answermi, there exists aO-questionmk and anO-answermj such
thatmi is hereditarily justified bymk,mj is an O-answer with the same label as
mk or ⊥, andk < j < i and that the nodes corresponding tomk andmj in the
arena are on a path which does not contain aP -noden labelled⊃ such that the
nodes corresponding tomi andmj are its children or identical to it.

This relaxation captures the possibility of pending O-questions (arising from the multi-
ple conclusions on the right-hand side) being answered as well as the immediate justi-
fying question.

This games semantics is sound for classical logic:

Theorem 2. For any formulaφ and classical strategyΦ for φ there exists a classical
sequent calculus proof ofφ.

Two rules are responsible for the fact that we model LK-reduction and not only
LJ-reductions. The first rule is the ability of Proponent to play arbitrary moves labelled
L andR. For modelling LJ-reductions, one would allow Proponent toplay only one
switching move which is justified by a given O-question. The second rule is the second
part of Clause (vi) of the definition of plays. This rule models the possibility of having
multiple formulæ on the right-hand side and therefore beingable to apply an axiom
rule using any formula on the right-hand side. If we omit these two rules, we obtain a
representation of LJ-reductions.

The games semantics Ong presents in [22] for theλµ-calculus (without disjunc-
tion), which provides proof terms for classical logic with conjunction, negation and
implication, usesscratchpadsto model classical logic. Scratchpads are separate plays
to be started by Proponent whenever he chooses. As we consider disjunction as well, we
have extended the definition of an arena and introduced the concept of switching moves
(the moves labelledL andR). Proponent choosing a move labelledR is captured by
changing to a scratchpad in Ong’s model.

6 A games semantics for proof-search

We can now explain, building on the constructions and observations of the previous sec-
tios, how backtracking can be modelled in our games semantics. Backtracking points
are captured by the possibility of Proponent making disjunctive choices which are not
available when the moves are restricted to intuitionistic games. This is the case when
Proponent plays both switching moves and when Proponent plays a P-questionm cor-
responding to a node arising from a⊃ L-operator. In the first case, playing the other
switching move is not allowed in games for LJ, and in the second case no previously
pending O-question can be used to justify the P-answer to theO-question which is the
immediate successor to the P-questionm.

Backtracking actually occurs when Proponent plays a different switching move, or
actually answers a question with a different label using Clause (vi) of the definition of
a play.



One can show that these game-theoretic notions correspond precisely to the proof-
theoretic notions introduced in§ 2.

Theorem 3. Consider a classical strategyΦ for the arenaφ which corresponds to a
reductionΨ of φ in the reductive classical logic LK.

(i) The strategyΦ contains a backtracking point iff the reductionΨ contains a back-
tracking point;

(ii) The strategyΦ models backtracking in the game-theoretic sense iff there exist
reductionsΨ1 and Ψ2 in the reductive intuitionistic logic LJ such that bothΨ1

andΨ2 are embedded inΨ via the embedding of LJ into LK, andΨ2 arises via
backtracking fromΨ1.

To illustrate this point, consider an example of the previous section, namely the
reduction for the sequent((p ⊃ q) ∧ (r ⊃ s) ∧ (s ⊃ t) ∧ r) ⊃ t. The arena is given in
Figure 3. The play in the previous section corresponds to thefirst reduction described
in § 2, whereas the following play corresponds to the second reduction:

O
Q
t P

Q
q O

Q
r P

Q
t O

Q
s P

Q
s O

Q
r P

Q
r O

A
r P

A
r O

A
s P

A
s O

A
t P

A
r O

A
q P

A
t ,

where moves by Opponent (Proponent) are denoted by the letter O (P ) with subscripts
and superscripts, and the subscript indicates the label of the move and the superscript
indicates whether the move is a question or an answer.

Note first the contraction involved in this play: the movePQ
t models both instances

of the⊃ L-operator reducings ⊃ t. The backtracking points are the P-questions la-
belledq, s andt, and backtracking is reached with the movePA

r : this move is possible
only in games for multiple-conclusioned LK, and models the exchange which is neces-
sary to make the reduction succeed.

7 Uniform Proof

In this section, we show that our games semantics also provides a characterization of
uniform proofs, which give rise to a simple algorithm for proof-search with relatively
little non-determinism.

A uniform proof [19] in (single-conclusioned) LJ is a proof in which, when con-
structed as a reduction, right-reductions are preferred over left-reductions, so that a
left-reduction is applied only if the formula on the right-hand side is atomic. Uniform
proof is complete for hereditary Harrop formulæ [19]. In ourgames semantics, right-
reductions correspond to challenges by Opponent and left-reductions to challenges by
Proponent, so uniform proofs correspond to strategies in which Opponent always plays
as many reductions as possible. The precise definition is as follows:

Definition 6. A strategy forφ in a game for intuitionistic or classical logic is called a
uniform strategyif the following conditions hold:

(i) Opponent always makes as many moves as possible;
(ii) Proponent makes any move labelledL or R if possible.



If we consider games for intuitionistic logic, then a uniform strategy corresponds to
a uniform proof in (single-conclusioned) LJ. If we considergames for classical logic,
then a uniform strategy corresponds to a uniform proof in classical LK (in which left-
reductions are applied only ifall formulæ on the right-hand side are atomic).

Weaklyuniform proofs can be characterized in the same way. Recall that a weakly
uniform proof is a uniform proof where, in addition to the conditions for uniform proof,
∨L rules are applied as close to the root as possible. This can becaptured in the games
semantics by defining a strategy to be aweakly uniform strategyif

– it is uniform, and
– moves by Proponent corresponding to the root node in the arena for the interpreta-

tion of any formulaφ∨ψ (on the left) are played in preference to any other moves,
and

– moves by Opponent labelledL andR are played in preference to any other move.

It turns out that the embedding of a uniform single-conclusioned LJ-proofΦ in LK
is not necessarily uniform, but there exists a uniform multiple-conclusioned uniform
LK-proof Φ′ which contains the LJ-proof as a subproof.

This has an analogue in games: Any strategy for intuitionistic games is also a strat-
egy for classical games. As Opponent has more possibilitiesof challenging Proponent,
a strategy which is uniform for intuitionistic games is not uniform for classical games.
However, any uniform strategy for intuitionistic games gives rise in a canonical way
to a uniform strategy for classical games: Proponent ignores the additional questions
by Opponent and considers only the questions Opponent askedin the original strategy.
Proponent is also able to use the answers he gave in the intuitionistic strategy to answer
the additional questions by Opponent.

8 Directions

The following are obvious extensions to this work:

– Extension to case of the corresponding first- and higer-order predicate logics;
– The case of substructural logics;
– Application to the semantics of logical frameworks;
– More detailed analyses of control régimes (e.g., the order in which reduction oper-

ators are applied, or the order of selection of clauses in resolution).

Our current work concerns the construction of an example of aclassical category
based on games and inspired by ideas from proof-search presented herein. Classical
categories were introduced by Führmann and Pym [8, 7] as symmetric models of the
the sequent calculus LK [10] for propositional classical logic which do not collapse to
a Boolean algebra and which model cut-reductions via an order-enrichment.
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