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Abstract. Theorem proving, or algorithmic proof-search, is an esabemabling

technology throughout the computational sciences. Wea@xthe mathematical
basis of proof-search as the combination of reductive ltggjether with a control
régime. Then we present a games semantics for reductii@dad show how it
may be used to model two important examples of control, namatktracking

and uniform proof.

1 Introduction to reductive logic and proof-search

Theorem proving, or algorithmic proof-search, is an esabenabling technology through-
out the computational sciences. We explain the mathendtisas of proof-search as
the combination of reductive logic together with a contéime. Then we present a
games semantics for reductive logic and show how it may be tesenodel two impor-
tant examples of control, namely backtracking and uniforoof This paper presents,
from our current perspective, a brief introduction to wonlstfipublished in 2004 in
Chapter 6 of [25]:

D. Pym and E. RitteReductive Logic and Proof-search: Proof Theory, Seman-
tics, and Contral Volume 45, Oxford Logic Guides. Oxford University Press,
2004.

We also summarize the necessary mathematical backgrowetbded in the earlier
chapters of [25].

Axiomatizations of logics as formal systems are usuallyrfolated as calculi for
deductive inferences. Deductive inference proceeds fsiabéshed, or supposed, pre-
misses, or hypotheses, to premisses, or hypotheses, tachusion, regulated by the
application ofinference rulesR,

Premiss; ... Premiss,,

4

Conclusion

A proof is constructed, inductively, by applying instanoésules of this form to proofs
of established premisses, thereby constructing a protfeofiven conclusion.

A conceptually valuable semantics of proofs is provided lmpaespondence be-
tween the propositions and proofs of a logic, the types amdgef a\-calculus [13]
and the objects and arrows of a category [16Y, Figure 1, in which €.g, natural
deduction) proofs correspond te.§, typed A-terms) which correspond to classes of
arrows in categories with specified structure.

The leading examples of this form of semantics arise in fiiatnistic logic [31],
in which natural deduction proofs correspond to simplyetyp-terms and to arrows
in cartesian closed categories [16], in intuitionisticelam logic, in which natural de-
duction proofs correspond to linearterms and to the arrows of symmetric monoidal
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Fig. 1. Propositions-as-types-as-objects

closed categories [2], and bunched logic [21, 26, 27], incwhmiatural deduction proofs
correspond taxA-terms and to arrows of doubly closed categories. Anothamgte,
which underlies much of what we do in this paper, is providgcclassical natural
deduction and thauv-calculus [23, 28, 24].

Theorem proving, or algorithmic proof-search, is both aeasial enabling technol-
ogy within the computational sciences and of independeildgdphical interest. More
specifically, in computing, many problems are formulategudgements about formal
texts, typical representable in logical formalisms. Fareple, well-formedness (pars-
ing), well-typedness (type-checking), as well as logicaisequences(g, for specifi-
cation and correctness) itself.

There are, indeed, many useful formal languages and, fdérlaaguage, typically
many useful procedures for judging properties of senterkgshe complexity of the
languages and their properties increases, the possiilaiptaining efficient, total pro-
cedures recedes, but partial procedures which fail quiakdyof great value and inter-
active theorem provers, such as the Boyer-Moore systenth8],CF system [11] and
its derivatives, such as Paulson’s Isabelle system [20jyedsas more complex sys-
tems, such as Coq [4], based on dependent type theory [18katkin a wide range of
system-critical application®(g, [30]).

Although with widely varying complexity and efficiency claateristics, these sys-
tems have, however, a common underlying logical basductive inference

Reductive inference proceeds from a putative,(supposed) conclusion to suffi-
cient premisses, regulated lBduction operatorsOg,

SufficientPremiss; . . .Sufficient Premiss,,

i) Or,

Putative Conclusion

corresponding to (admissible) inference rulsread from conclusion to premisses.
Here the idea is the following:

— The putative conclusion is an assertion, ajaal, such as a sequent [10]+ A,
the endsequentn our chosen logic. We should like to know whether or not the
sequent is provable in our chosen logic. Often, we wiite?- A, borrowing a
notation from Prolog, to indicatE - A as a putative conclusion;

3 Henceforth we refer to jusk rather tharOg.



— Here we are assuming that our given logic comes along witlafsystenf. Each
inference rule in the system, including any admissiblesudgves rise to a reduc-
tion operator. To apply a reduction operator to particukseation we must find
an instance of a reduction operator such that instance gbukegive conclusion
matches the assertion;

— The assertions which must be proved in order to have a protbfedinitial asser-
tion, or subgoals are then given by the corresponding instances of the siitici
premisses of the operator.

We believe that this idea of reduction was first explaiimetthese termby Kleene [15].

So, in reductive logic, an attempt to construct a praef, areduction proceeds,
inductively, by applying instances of reduction operatdthis form to putative conclu-
sions of which a proof is desired, thereby yielding a coitetof sufficient premisses,
proofs of which would be sufficient to imply the existence gbr@of, obtainable by
deduction, of the putative conclusion.

Note, however, that a reduction may fail to yield a proof:ihngwemoved all of the
logical structurei.e., the connectives, by reduction, we may be left witR- ¢, for dis-
tinct atomsp andq. Such possible failures have no counterpart in deductigie |dut
theorem provers have to have strategies which ensure thabbgf a given endsequent
is found if there exists one. In general, not only the choiteeduction operators but
also the order in which they are applied matters: the apjicaf the same reduction
operators in one order may yield a proof, where after apglttie same reduction oper-
ators in a different order a completion to a proof may be insfjds. Defining the order
in which reduction operators are applied is only one exaraplew to control proof-
search. These issues are usually very intensional in natndeso are outside the scope
of pure reductive logic. So modelling proof-search requibbeth modelling a reductive
logic and modelling the chosen control réegime.

The inherent partiality of reductions presents a clear sgimdifficulty: we must
be able to interpret those reductions which cannot be caegplte be proofs. In par-
ticular, we aim to recover a semantics for proofs of utiliymparable to that of the
propositions-as-types-as-objects triangle for proofs.

The desired set-up is summarized in Figure 2, in whHicR- ¢ denotes a sequent
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Fig. 2. Reductions-as-realizers-as-arrows

4 We could, however, formulate our subsequent analysis ypseghantically.



which is a putative conclusion arl = I ?- ¢ denotes tha® is a search with root
I' ?- ¢. The judgementl’] ~ [@] : [¢] indicates thaid] is arealizerof [¢] with respect
to assumption§l].

The provision of a model-theoretically adequate such fraomk is non-trivial. The
main difficulty is that the objects constructed during a it are, in contrast to the
objects,i.e., proofs, constructed during deduction, inherently parthilst any de-
duction proceeds from axioms to a guaranteed conclusiorsarabnstructs a proof,
reductions proceed from a putative conclusion to suffigeamisses. At any interme-
diate stage, it may be that it is impossible to complete tdeicton so as to obtain a
proof.

Such a semantic framework is presented in full in [25]. Irs thaper, we present
part of this framework, namely a games semantics for regritdgic and proof-search.
We also describe how to use this semantics to model two irmpbconcepts of proof-
search, which are backtracking and uniform proofs.

In § 2, we introduce the key control régime in proof-searchklracking. In§ 3,

we briefly sketch the general proof- and model-theoretiméaorks within which our
work resides, though they are suppressed in this papérdlinwe introduce our no-
tion of game in the setting of intuitionistic reductive pogitional logic and then, in

§ 5, we generalize it to classical reductive propositiongldoThen, in§ 6, we give a
games semantics of proof-search in intuitionistic projposi logic via its embedding
in classical propositional logic. 1§17, we give a game-theoretic semantics for uniform
proofs.

2 Backtracking

In this paper, we concentrate on one particular instancerdfal, namely backtracking

in intuitionistic propositional logic. We choose backtam because it is perhaps the
prototypical control régime and because it raises modi@htodelling issues of inter-

est. Uniform proofs can be modelled using the same framewasrive show at the end
of this paper.

We have shown in previous work [28, 29] that backtrackinghimitionistic propo-
sitional logic can be done by embedding intuitionistic mrsiional logic into classical
propositional logic, doing search in classical logic anaklfiy, deciding whether a clas-
sical derivation has an intuitionistic subderivation.

The embedding of intuitionistic propositional logic intlassical logic is based on
Dummett's multi-conclusioned version of intuitionistiogpositional logic [5]. Seen as
a system of reductive logic, this embedding works by addiegside formulaj also to
the premiss of the R-rule, thereby obtaining the classical R-rule and keeping this
side formulaA in all reduction operators applied to the modified premiss.

As an example, consider the following reduction, in whick tise first of> L
onp D q leaves the subsequent development of the left-hand brdribtie ceduction



doomed to failure, even though the endsequent is provable:

succeeds succeeds
fails™V) rDs,q,r ?-8 ros,q,r,t?-t
DLsDt
ros,sDOt,q,r ?-t
pDq, rDSs?p ro>s,sDOt,q?-r>Ot
(1) DLpo,

PDq,rDSs,sDt?-r>Dt

After the firstD L, we can see that the left-hand branch will fail, and we musktrack
to (1) and make a different choice of reduction. We mightiry.,~; instead. Such a
control step lies outside the logical structure we have sedtablished but we can give
a logical account of it by considering the intuitionistidamdus LJ to be embedded in
the classical sequent calculus, LK [10].

In general, every intuitionistic sequent derivation agiae a subderivation of a clas-
sical sequent derivation via (for example) Dummett’s pnéssbon of intuitionistic logic
as a multiple-conclusioned sequent calculus [5]. Becalseclassicab R rule al-
lows multiple succedents in the premiss, two differentitidnistic sequent derivations,
which are not identical up to a permutation of inferencesudan be subderivations of
the same classical derivation up to a choice of axioms. Famgie, consider the fol-
lowing two intuitionistic reductions:

v, ?- Y SR and v, x ?- ¢ SR
Y ?-9D9Y,xDY Y ?2-XD9,¢D9

They arise as restrictions to intuitionistic logic of thdléaving classical reduction:

Ax
¢7¢aX?'¢7¢
¢7X?-¢D¢a¢ S
Y ?2-9D¢,xDY

Similarly, in LK viewed as reductive system, thel rule has the form

R.

2 ¢,A T2 A
Tooy 2-A

in which theA is retained in both premisses. Using this operator instéas imtuition-
istic counterpart, we are able to restart the computati¢®)atind proceed to apply the

® We adopt the notatioR; to denote the instance of the operatdgenerated by the formula
¢,€.9, D Lpog.

5 Our assumed calculi LJ and LK are, in fact, very minor vasaoft Gentzen’s systems. For
example, in the premiss @fL, in both LJ and LK, we include both of the components of the
conjunction introduced in the conclusion; similarly, foR in LK.



necessary R:

succeeds
DLsDt
ros,sDt,r?-t,p
OR as above
rDs,sDt?-,p :
(2) Exchange :
; DR
rDs,sDt?-p, ros,sDOt,q?-r>Ot
1) DLyog

pDqg,rODs,sDt?-r>Dt

We call such a point, at which the exchange rule is used tanteste computation, a
backtracking point

In this way we model the backtracking in intuitionistic pogitional logic by an
exchange on the right-hand side in classical logic. In thieang sections, we present
a games model which captures this approach.

3 The general semantic framework

In the sections following this one, we shall give direct digfims of classes of games
for intuitionistic and classical propositional logics. \&ee then able to give a games
semantics for proof-searchd., for backtracking and uniform proof) by considering
intuitionistic logic to be embedded in classical logic ire tivay that we have sketched
for LJ and LK, with the additional computational structukaigable in LK being used
to represent the control réegime.

Before doing so, we mention briefly the general proof- and ehdigeoretic frame-
works within which our analysis formally resides.

We sonsider the proof-objects of propositional LJ to beesented by simply-typed
A-terms in the usual way. We consider the proof-objects gbpsitional LK to be repre-
sented by\uv-terms [28, 29, 24, 25], the extension, by the present astlodiParigot’s
classical\-calculus to include an analysis of classical disjuncttbat is a representa-
tion that analyses directly the rule

FFA?QS?/Ib?AI
TFA VA

in which both¢ andv are present in the premiss.
Beginning with intuitionistic logic, with proofs represtel as\-terms, we interpret
a prooft of a sequent” - ¢ as a map

[¢]
[T — ¢l
in a bi-cartesian closed category in the usual way [16].
Turning to classical logic, we consider proof-terms as gikg the A\uv-calculus,
so that we consider sequents of the fafiht ¢ : ¢, A. Semantically, such a sequent is
interpreted, essentially, in an indexed or fibred categsifpbows:



— The base interpretd. Arrows in the base interpret the structural propertieshsu

as weakening, of the contextg
— The fibre over (the interpretation aof) is cartesian closed, and is used to interpret

I' -t : ¢, essentially following the pattern of the intuitionistiersantics;
— The structural binding operatarand the binding operaterthat handles disjunc-

tion are both interpreted using certain natural isomorpki®etween homsets in
fibres determined by weakening maps in the base.

The details of this semantics may be found in [24,25] (baddon [22]). Concrete
examples of this semantics are given by continuations [A]2a8d a class of games, to
which we turn in the next section.

Turning to reductive logic, we must, as we have suggestedjge an interpretation
for reductions, such as those having leaves of the forPa ¢, that cannot be completed
to form proofs. Our semantics handles this situation byhticingindeterminatesvia
a polynomial construction over the semantics of the undwgliogic, formulated as a
fibration over a category ‘worlds’ corresponding to colieos of indeterminates. Then
p ?- qisinterpreted by an indeterminate map

[Pl = lql.

We then establish that a reductiérof I" ?- ¢ can be completed to a proof just in case
its semantics determines a suitable instantiation of det@rminates. The details may
be found in [25].

In our presentation of games models for reductive logicjrregg in the next sec-
tion, we suppress this treatment of indeterminates, cdratimg on the structure of the
games themselves and their use in interpreting backtrgekid uniform proof.

We conclude this brief summary by remarking that semantieshewve described
admits soundness and completeness theorems in a famjliaf24, 25].

4 Games for intuitionistic propositional logic

We describe games for reductive intuitionistic proposiéiblogic. We extend these
games in the next section to games for reductive classigad.lds we shall see later,
these games are intensional enough that we can model caspretts, such as back-
tracking and uniform proof, quite simply.

We consider games played between two players, PropaReatd Opponent). In
such games, for a formula the aim of Opponent is to falsify the given formuiaand
the aim of Proponent is to prove it. A game starts by Opponeallenging the given
formula. Proponent wins a game when he can answer Oppoiratiischallenge, oth-
erwise he loses. The possible moves of both players in a gangedre determined by
the structure of. A proof of a formula corresponds taxanning strategyor Proponent.
Such a winning strategy for a formudais a function which for every legal O-move in
a game for¢ produces a legal P-move such that if P uses this strategytéondiee
his moves he wins every game for Such games for proofs have been described for a
variety of logics, including classical and intuitionistagic [17, 6]. Usually, in games
for classical logic, Proponent and Opponent are dual to etiwdr, whereas this is not
true for games for intuitionistic logic.



These games models for proofs have been adapted to give snafdeéquential
computations in programming languages [14, 1, 9]. Theesiittuition is that Opponent
asks for the value of a computation, and Proponent perfdrensdmputation to produce
values as answers. In such games, there is usually a stectation between moves by
Proponent and Opponent, corresponding to the absence aficent computation. As
computations have a clear direction (from inputs to oufptihisre is usually no duality
between Proponent and Opponent in these games.

The key conceptual difference between the games for praufsttee games for
computations is that in logic not all propositions are phieaso that in these games
not all propositions have strategies, whereas in the progriag languages considered,
however, all types are inhabited, so that these games hateges for every type.

The details of how to present games models differ widelyhlvathin games for
proofs and within games for computations. The definitionhaf games considered in
this paper uses elements of both approaches. We use onetamtpi@chnical notion
from the games introduced by Hyland and Ong, namely the naifcan arena for
each formulap the possible moves for a game forare listed in a forestcalled an
arena, and the rules of the game use this forest extengiety[22] introduces also the
notion of ascratchpado model the multiple conclusions of classical logic. Sbyzaxs
are additional games that Proponent may start at will.

Herein we give a class of games which combines ideas fronetfasintuition-
istic provability and those for programming languages te@ class which models
intuitionistic proofsdirectly.?

We begin the definition of our games semantics by definingeardfor each formula
¢, we define an arena, that is a forest used to characterizZenheyas by both players
in our games.

Definition 1. An arenaof type¢ is a forest with nodes having possibly labels defined
inductively by the following:

— The arena ofT is the empty forest;

— The arena ofl is the forest with one node labelled

— The arena for a propositional atomis a forest with one node labelled
— The arena for A v is the disjoint sum of the arenas fgrand;

— Supposed, ..., A, are the trees of the arena fgrand 4, . . ., B,,, are the trees
of the arena fory. Then the arena foe \ ¢ is given by

" A forestis a set of trees.

8 Games models of intuitionistic proof can be recovered framegs models of linear proofs [1]
via the exponential and, for example, Girard’s translation of intuitionistamjic into linear
logic.



Note that there are two special nodes callednd R. In the special case that the
arena for¢ or the arena for) is empty, the arena fap Vv v is the empty arena too.
The root node of the arena farV v is labelledv;

— Supposed, ..., A, are the trees of the arena fgrand 54, . . ., B,,, are the trees
of the arena for). Then the arena fop D v is the disjoint union of the following
trees

In the special case that the arena foris empty, the arena fop O ) is the arena
for 4. All nodes in the arena fop O 1 which are root nodes in the arena gpfare
labelled> in addition to any other label they might have.

We call all root nodes in an aren@-nodes, and all children aP-nodesP-nodes, and
all children of P-nodesO-nodes.

Arenas are used to define possible plays. The definition ofemend plays makes
this precise.

Next, we define possible moves in our games. Each move for & fiam is asso-
ciated with a node in the arena for There are several types of moves. Firstly, we have
moves by Proponent and Opponent, and secondly there aregoquasd answer moves.
Questions which correspond -(P-)nodes are played by Opponent (Proponent), and
answers which correspond &@-(P-)nodes are played by Proponent (Opponent). The
definition is as follows:

Definition 2. A movem for an arenaA is a node which is classified as either ques-
tion or answer. Questions which correspond@e(P-)nodes are moves by Opponent
(Proponent), and answers which corresponditg P-)nodes are moves by Proponent
(Opponent). We call a move by ProponerPanoveand a move by Opponent &+
move

Next, we define plays, which are instances of the game. Eanhdquainsists of a
sequence of moves satisfying certain conditions. Thetintuis that Opponent starts
the play by challenging Proponent to verify the given formiroponent responds by



asking the Opponent to justify the assumptions which Prepbcan make in a sequent
calculus proof ofp. Conjunctive choices are made by Opponent, and disjunchisges
by Proponent. Proponent wins a particular game if he can en®pponent’s initial
question.

The moves in a play fop follow the structure of arena af closely: A O (P)-
guestion can be played only if there was alread3-&0)-question corresponding to the
parent node. An answer can only be given if a question witts#imee associated node
has already been made.

The precise conditions for a play are as follows:

Definition 3. A playfor an arenaA is a sequence of moves,, . . ., m,, such that:

(i) There exists anindek > 1 such that all moves.y, ..., m are O-questions with
positionl, ..., I, respectively, and the corresponding nodes are roots ifdiest
for A. These moves are callégitial questions

(ii) For each questionn;, withi > I, there exists a questiom;, with £ < 4, such
that the node corresponding tay, is the immediate predecessor of the node cor-
responding ton; in the arenaA. We callm,. thejustifying questiorfor m;;

(iii) For each answermn;, withi > I, there exists a question,, with k£ < 4, such that
my, andm; are the same node . If m; is the justifying question fom,,, we
call m; thejustifying questiorfor m;

(iv) Each question can be answered at most once;

(v) Any initial questions can only be answered if all nortiiquestions have already
been answered,;

(vi) For any P-answern; there exists a mover; such thatm; is an O-answer with
the same label o and;j < ¢ and that the nodes correspondingitq andm; in
the arena are on a path which does not contaiff-aoden labelled> such that
the nodes corresponding ta; andm; are its children or identical to it;

(vii) If mis anO-question labelled/, then at most on€-question is justified byn.

Condition (vi) of this definition merits an explanation. [ing plays we have to en-
sure that Proponent can answer questions of Opponent athiig iinswer corresponds
to an assumption which Opponent has provided. This matteteicase of Proponent
asking a question labelled, which corresponds to using an assumption of type .
The rules of the game work in such a way that in this case twofprare constructed:
one of the original formula using as an additional assumption, and the second one of
¢. Now we need to ensure thatis not available as an assumption during the proof of
¢. Condition (vi) ensures this by making sure that @&wanswer fory cannot be used
by Proponent.

Conditions (vii) and (vi) ensure that these games captuugtionistic proofs: con-
dition (vii) enforces the disjunction property of intuititstic logic, and condition (vi)
makes sure that only one specific formula can be proved atagiven time.

Compared to a games semantics for natural deductian [14]), we allow both
Opponent and Proponent more freedom: both players can nesfezas moves at a
time, which are subject to fewer restrictions. In this wag eapture the possibility
of applying reduction operators to several sequents inubgaly. We also capture the
possiblity of sequences of blocks of left- and right-rulesiiplay.



As usual, left-operators involve operations on the preasisthey are initiated by
P-questions. Similarly, right-operators involve opeyasi on the conclusions: they are
initiated by O-questions. The restriction in Clause (v@ttRroponent can answer ques-
tions only if Opponent has answered a P-question with theedabel before ensures
that the axiom rule can be invoked only if there is the sammtda on both sides of the
sequent.

Contraction is built in implicitly by allowing both playets ask the same question
several times. Moreover, Clause (ii) of the definition of ayphllows parallel reductions
in different branches of the search tree: A P-question withitmonyp - nq ---ng---m
with £ > 0 andp the position of the justifying O-question represents thgliaption of
D L in all branches which arise by playing moves with positiom; - n;, fori < k.

Note also that our games semantics is capable of repregefdtailed information
how searches are executed. The level of detail is sufficiehbnly to model which
reduction operators are applied but also in which order.&Smduction operators are
even modelled by several moves, with the possibility ofrete/ing the moves corre-
sponding to different reduction operators. Hence a mapfporg strategies to searches
assigns the same search to several strategies.

As an example, we give a possible play for the arena for thadta((p D ¢)A(r D
s) A (s D t)Ar) Dt (see Figure 3 for the arena). The play starts by Opponent

o

Fig.3.Arenafor(p D) A(r Ds)A(sDt)AT) Dt

asking the initial question. Here, this means that Oppoisestking for a proof of the
formulat. Now Proponent has various choices, namely asking for acieléor one
of the assumptions. Let us assume that Proponent asks tegajueorresponding to
the node labelled®;. Now Opponent will ask the question labelledthereby asking
Proponent to prove. Proponent now needs to use the assumption s and asks
the question labelled. Next, Opponent asks the question labellednd challenges
Proponent to prove the formutain turn, which is the hypothesis in the implication
r D s. Proponent now asks for the final assumptio®pponent now has no choice but
to answer this question, thereby making it possible for Bnemt to answer outstanding



questions by Opponent. Now Proponent can use this answearsvwder Opponent’s
questions. Again, Opponent is now forced to answer the questiorhis process of

answering previously asked questions goes on until fingllg@dent is forced to answer
the question labellet] and Proponent can answer the initial question.

The key notion of games semantics is that aftiategy A strategy describes how
Proponent responds to arbitrary Opponent moves. Wherecetat sequent calculus
reductions, a strategy indicates how Proponent answefkeiggas from Opponent to
prove the given formula.

Definition 4. A strategyis a function from playsn, . . ., mx, wherem, is an O-move,
to a sequence of moves; 1, ..., m, suchthatn,, ..., mg, mgi1,...,my iSaplay,
and the sequencey. 1, ..., m, iS non-empty if the sequengeg, . . ., m, contains no

unanswered P-move which could be answered by Opponent megt@nove according
to Definition 3.

Note that this definition makes it possible to force Oppoterahswer any unanswered
questions by Proponent if such a move was allowed by chodsengmpty sequence as
a result of the function for sequences with unanswered muessby Proponent.

In the example, a strategy for Proponent would be to answeeinilial question
by asking the question labelledand then play as indicated above in response to any
Opponent move.

Next we show that each strategy for the arena correspondiagdarmulag gives
rise to an intuitionistic sequent calculus proof/ofNote that several strategies give rise
to the same proof: games make significantly finer distingtittran sequent calculus
proofs.

Theorem 1. For any formula¢ and strategy® for ¢ there exists an intuitionistic se-
quent calculus proof a.

5 Games for classical logic

We extend the games considered in the previous section tegyéon classical logic.
The main difference between the games for intuitionistgidand those for classical
logic is a consequence of the fact that for classical logi@aveaworking with sequents
with multiple conclusions]” = A, with the intuitive meaning that (at least) one of the
formulae inA must to be proved, whereas in intuitionistic logic we workhnanly one
conclusion. This means that, in classical games, when Gpgamallenges a formula
¢ in A, Proponent might choose to defend a different formuia A, which has to be
accepted also as a valid defencepof

The definitions of arena, move, and justification for cleslsgames are the same
as those for intuitionistic games. We call a strategy (pssical if it is the one for
classical games. Otherwise we call the strategy (play)tiohistic.

The conditions for classical plays are not as strong as théittons for intuitionistic
plays. In particular, the rules for disjunction are chantgedllow Proponent to select
both disjuncts, thereby possibly violating the disjunctwoperty of intuitionistic logic.
More precisely, we relax Clause (vi) and Clause (vii). Wepdtioe latter clause, and
replace the former as follows:



Definition 5. A play for an arenaA is a sequence of moves,, ..., m, such that
conditions (i) — (v) for intuitionistic plays, and the folling additional conditions are
satisfied:

(vi) For any P-answern;, there exists a)-questionm;, and anO-answerm; such
thatm; is hereditarily justified byn;, m; is an O-answer with the same label as
my or L, andk < j < ¢ and that the nodes correspondingrtg, andm; in the
arena are on a path which does not contaiPanoden labelled> such that the
nodes corresponding ta; andm; are its children or identical to it.

This relaxation captures the possibility of pending O-gjoes (arising from the multi-
ple conclusions on the right-hand side) being answered Aawthe immediate justi-
fying question.

This games semantics is sound for classical logic:

Theorem 2. For any formula¢ and classical strateg® for ¢ there exists a classical
sequent calculus proof gf.

Two rules are responsible for the fact that we model LK-réiducand not only
LJ-reductions. The first rule is the ability of Proponent klayparbitrary moves labelled
L and R. For modelling LJ-reductions, one would allow Proponenplay only one
switching move which is justified by a given O-question. Thead rule is the second
part of Clause (vi) of the definition of plays. This rule magl#ie possibility of having
multiple formulae on the right-hand side and therefore beiblg to apply an axiom
rule using any formula on the right-hand side. If we omit theso rules, we obtain a
representation of LJ-reductions.

The games semantics Ong presents in [22] for Xhecalculus (without disjunc-
tion), which provides proof terms for classical logic witbrgunction, negation and
implication, usescratchpad$o model classical logic. Scratchpads are separate plays
to be started by Proponent whenever he chooses. As we codispiction as well, we
have extended the definition of an arena and introduced tieepd of switching moves
(the moves labelled. and R). Proponent choosing a move labell&ds captured by
changing to a scratchpad in Ong’s model.

6 A games semantics for proof-search

We can now explain, building on the constructions and oladg&ms of the previous sec-
tios, how backtracking can be modelled in our games sensarB&cktracking points
are captured by the possibility of Proponent making digjiuechoices which are not
available when the moves are restricted to intuitionistimgs. This is the case when
Proponent plays both switching moves and when Proponeys pl&@-questiom: cor-
responding to a node arising fronta L-operator. In the first case, playing the other
switching move is not allowed in games for LJ, and in the sdamase no previously
pending O-question can be used to justify the P-answer t®thaestion which is the
immediate successor to the P-question

Backtracking actually occurs when Proponent plays a diffeswitching move, or
actually answers a question with a different label usingu€da(vi) of the definition of

a play.



One can show that these game-theoretic notions correspenid@ly to the proof-
theoretic notions introduced 2.

Theorem 3. Consider a classical strategy for the arenap which corresponds to a
reduction? of ¢ in the reductive classical logic LK.

(i) The strategyp contains a backtracking point iff the reductigncontains a back-
tracking point;

(i) The strategy® models backtracking in the game-theoretic sense iff theig e
reductions¥; and ¥, in the reductive intuitionistic logic LJ such that bo#h
and ¥, are embedded i via the embedding of LJ into LK, ank, arises via
backtracking fromZ, .

To illustrate this point, consider an example of the presisaction, namely the
reduction for the sequelitp D ¢) A (r D s) A(s D t) Ar) D t. The arenais givenin
Figure 3. The play in the previous section corresponds tditstereduction described
in § 2, whereas the following play corresponds to the secondciexiu

O PROSPPOYPROIPROAPAOLPAOMPAON P,

where moves by Opponent (Proponent) are denoted by thede(t®) with subscripts
and superscripts, and the subscript indicates the labéleofitove and the superscript
indicates whether the move is a question or an answer.

Note first the contraction involved in this play: the md@@ models both instances
of the > L-operator reducing O ¢. The backtracking points are the P-questions la-
belledq, s andt, and backtracking is reached with the md¥#: this move is possible
only in games for multiple-conclusioned LK, and models tkehange which is neces-
sary to make the reduction succeed.

7 Uniform Proof

In this section, we show that our games semantics also m@ewddcharacterization of
uniform proofs, which give rise to a simple algorithm for pfeearch with relatively
little non-determinism.

A uniform proof [19] in (single-conclusioned) LJ is a proafwhich, when con-
structed as a reduction, right-reductions are preferrad Wft-reductions, so that a
left-reduction is applied only if the formula on the righaid side is atomic. Uniform
proof is complete for hereditary Harrop formulae [19]. In @ames semantics, right-
reductions correspond to challenges by Opponent andddfiations to challenges by
Proponent, so uniform proofs correspond to strategies inm@pponent always plays
as many reductions as possible. The precise definition isliasvé:

Definition 6. A strategy forg in a game for intuitionistic or classical logic is called a
uniform strategyf the following conditions hold:

(i) Opponent always makes as many moves as possible;
(i) Proponent makes any move labelledr R if possible.



If we consider games for intuitionistic logic, then a unifostrategy corresponds to
a uniform proof in (single-conclusioned) LJ. If we consid@mes for classical logic,
then a uniform strategy corresponds to a uniform proof issital LK (in which left-
reductions are applied only#ll formulee on the right-hand side are atomic).

Weaklyuniform proofs can be characterized in the same way. Retatlla weakly
uniform proof is a uniform proof where, in addition to the ditions for uniform proof,
VL rules are applied as close to the root as possible. This caagiared in the games
semantics by defining a strategy to ber@akly uniform strategif

— itis uniform, and

— moves by Proponent corresponding to the root node in theadogithe interpreta-
tion of any formulap Vv ) (on the left) are played in preference to any other moves,
and

— moves by Opponent labellddand R are played in preference to any other move.

It turns out that the embedding of a uniform single-conduned LJ-proof? in LK
is not necessarily uniform, but there exists a uniform rpldticonclusioned uniform
LK-proof ¢’ which contains the LJ-proof as a subproof.

This has an analogue in games: Any strategy for intuitiomgames is also a strat-
egy for classical games. As Opponent has more possibitifiesallenging Proponent,
a strategy which is uniform for intuitionistic games is noiform for classical games.
However, any uniform strategy for intuitionistic gamesegwise in a canonical way
to a uniform strategy for classical games: Proponent ightite additional questions
by Opponent and considers only the questions Opponent @sklee original strategy.
Proponentis also able to use the answers he gave in theantstic strategy to answer
the additional questions by Opponent.

8 Directions

The following are obvious extensions to this work:

— Extension to case of the corresponding first- and higerrqralicate logics;

— The case of substructural logics;

— Application to the semantics of logical frameworks;

— More detailed analyses of control régimesy, the order in which reduction oper-
ators are applied, or the order of selection of clauses wiugsn).

Our current work concerns the construction of an exampleaéssical category
based on games and inspired by ideas from proof-searchnpeeskerein. Classical
categories were introduced by Filhrmann and Pym [8, 7] asr®tnit models of the
the sequent calculus LK [10] for propositional classicaitowhich do not collapse to
a Boolean algebra and which model cut-reductions via anradechment.
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