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ABSTRACT. We develop and estimate a vector equation system of threats to ten important IP services, using
SANS-reported data over the period January 2003 to February 2011. Our results reveal strong evidence of
contagion between such attacks, with attacks on ssh and Secure Web Server indicating increased attack activity
on other ports. Security managers who ignore such contagious inter-relationships may underestimate the un-
derlying risk to their systems’ defence of security attributes, such as sensitivity and criticality, and thus delay
appropriate information security investments.

1. INTRODUCTION

Information systems and their hosted applications are typically subject to information security flaws,
which, if exploited, may lead to substantial losses for the organization. When such threats appear, security
managers will deploy mitigating responses to secure their systems.

We characterize the operational status of systems in terms of their levels of sensitivity and criticality.
Following well-established definitions (see, for example, [18] for a simple and elegant discussion), by
sensitivity, we mean the level of security required for protecting data from access by unauthorized agents;
by criticality, we mean the importance of the availability of accurate information for continuing system
operations.

Security threats to data, its quality and accessibility, represent potential losses to the integrity of the
operations of the organization. Security managers, in assessing the potential risks, should be interested in
the relationship between the contagious threats to these different security attributes. The nature of the inter-
relationship between the threats provides additional information to assist managers in making their choices
of mitigating responses. For example, if the inter-relationship between threats is constant, independently of
the frequency and intensity of threats, security managers can adopt smooth mitigation profiles to meet the
threat. In the absence of such stable relationships, the managers’ responses must be adjusted dynamically:
for given temporal relationships between the number of attacks, their change (or ‘jump’) in frequency, and
their change in size (extent of impact).

Theoretical aspects of contagion in information security have been addressed using game theory in
[16, 14, 15, 7, 2]. These studies refer to the optimality of actions of both attackers and defenders and
diverse system architectures. To our knowledge, there is no published empirical evidence regarding the
statistical behaviour and inter-relationships between reported attacks on specific ports. Other, indirectly
related work includes, for example, [4, 5, 6], where citations to other background work can also be found.

The aim of this paper is to develop a broad statistical framework to analyze the inter-relationship be-
tween the number of threats to (the ports — that is, process-specific software constructd serving as com-
munications endpoints in a computer’s operating system — for) critical services, such as email, databases,
name and directory servers, website operations, and shared storage. We aim to assess the existence of
contagious behaviour between these threats using threat data obtained by DShield and published by SANS
(http://feeds.dshield.org).

In Section 2, we provide a basic causal model that relates the existence of threats to the sensitivity and
criticality security attributes of a system, which focusses on the inter-relationship between the attributes
and, subsequently, between the threats. In Section 3, we provide a characterization of the statistical method-
ology that is based upon the Hawkes process [8, 10, 9, 1], which is a model of contagion [1]. Section 4
discusses the data. The results and their implications for information security are presented in Section 5.
Section 6 presents our conclusions concerning the nature of the relationships between the threats and the
differential informational significance of some threats.
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2. THE BASIC MODEL

We consider a security manager who must trade off criticality (C), sensitivity (S), and investment (K).
Deviations of criticality Ct and sensitivity St (as functions of time, t) from their long-run targets C̄ and
S̄, respectively, are linear functions of attacks on the various technological components of the system
represented by the m-vector Xt. Therefore

(1)
{
Ct − C̄, St − S̄

}
= {w′CXt, w

′
SXt}

where wC and wS are m vectors of weights representing the vulnerability of the system to attacks (and (·)′
denotes transpose). The relative values of these weights are determined, for a given instance of the model,
by the relative intensities of attacks against the ports that are significant for these attributes. For the policy
planner, the weights are assumed to be constant over a planning horizon t, T .

For the purposes of risk management, the security manager trades off total loss from criticality and
sensitivity attacks against an costly investment profile, defined by the current level of investment Kt and a
long-run target K̄, with the appropriate loss functions given by

LCS (t, T ) =

T∫
t

e−rtfC
(
Ct − C̄

)
dω +

T∫
t

e−rtfS
(
St − S̄

)
dω(2)

+

T∫
t

e−rtfCS
(
Ct − C̄, St − S̄

)
dω

LK (t, T ) =

T∫
t

e−rtfK
(
Kt − K̄

)
dω(3)

where r is a global discount factor, ω is the sample space of outcomes, and fC , fS and fCS are affine
functions that scale the measured deviations from target, Ct − C̄ and St − S̄, to a loss deriving from the
deviation,Kt−K̄, from the target profile of investment. The critical tipping point for additional investment
occurs when LK (t, T ) = LCS (t, T ). Similar models and conditions have been given in [11, 12, 13].

Assuming that K̄, wC , and wS are given, the security manager only has one vector stochastic integral
to evaluate,

(4) X (t, T ) =

T∫
t

g (X (t) |θ ) dω

where g(·) characterizes a multivariate càdlàg (continue à droite, limite à gauche) process [3, 17] for the
arrivals of attacks on the system, with vector of parameters θ. Following [13], building on [12, 11], the
system of equations can be uniquely characterized by the stochastic process driving threats:

(5) LCS(t, T ) = fC (w′CX (t, T )) + fS (w′SX (t, T )) + fCS (w′CX (t, T )X ′ (t, T )wS)

That is, a second-order Taylor expansion of the loss functions. Several important aspects emerge from this
decomposition. If the threats are independent diffusions with homogenous moments and co-moments, then
security investment may be approximated by a smooth investment profile. However, two further profiles
may also exist: first, a set of independent, but self exciting, point processed will characterize a set of time
homogenous discontinuities in this investment horizon; second, mutually self-exciting jumps in the attack
process will characterize highly localized discontinuities in the investment profile.

3. THE STATISTICAL METHODOLOGY BASED ON THE HAWKES PROCESS

Vector processes that characterize attacks should allow for the following properties:
• Be represented as a vector stochastic differential equation (or, equivalently, stochastic integral

equation) in order to support dynamic programming for forward-looking simulations and hence
policy planning;

• Exhibit stochastic volatility in the diffusion process in order to capture potential changes in the
variance of attacker behaviour and technological mechanisms of attacks;
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• Exhibit discontinuous jumps that cluster in order to capture sudden changes in the vulnerability
profile of systems/ports;

• Admit jumps that cluster across systems/ports, as attacks will most likely be multi-faceted (conta-
gious).

The mathematical development in the remainder of this section establishes the necessary statistical
methodology to support these features of our approach. The reader not wishing to follow the detailed
mathematical development might proceed directly to Section 4.

We propose that the temporal evolution of the number of attacks incident upon a system can be charac-
terized by the decomposition described below, based on a Brownian motion with stochastic volatility. In
addition to the usual characterization in terms of a geometric Brownian motion, we allow for the existence
of jumps — that is, discrete changes in volatility and size — in the specification. The usual geometric
Brownian motion cannot accommodate such changes and does not admit contagion — that is, changes in
the correlation between attacks based on characteristics such as size or frequency.

We therefore decompose the integral from Equation 4 into mutually self-exciting jump diffusion process,
to capture potential contagion effects between attacks on different ports. Specifically, we adopt the Hawkes
process [8, 10, 9, 1], a very general specification that captures the probability of jumps and allows for the
parametric estimation of mutual self-exciting processes.

Equation 6 denotes the time evolution of an attack, given by the vector stochastic integral (4), which
consists of a deterministic drift term (uidt), its own volatility term (Vi,t), and a jump term, dN of size Z.

(6) dXi,t = uidt+
√
Vi,tdW

X
i,t + Zi,tdNi,t

where dWX
i,t is a Brownian motion. The volatility equation (7) is given a stationary stochastic process:

(7) dVi,t = ki (θi − Vi,t) dt+ ηi
√
Vi,tdW

V
i,t

where dWV
i,t is a Brownian motion, θi denotes the long-term volatility, ki the speed of adjustment, and ηi

denotes the kurtosis.
The jump process dN is assumed to be a Hawkes process, whose evolution can be expressed in terms

of its intensity process λi,t,

(8)

 P [Ni,t+∆ −Ni,t = 0 |Ft|] = 1− λi,t∆ + o (∆)
P [Ni,t+∆ −Ni,t = 1 |Ft|] = λi,t∆ + o (∆)
P [Ni,t+∆ −Ni,t > 1 |Ft|] = o (∆)

where Ni,i+∆ is an m point process counting the number of jumps in (0, t + ∆) for the i = 1, . . . ,m
processes in the system and Fi,t is the conditional mean jump rate per unit of time. The jump intensities
exhibit clustering according to the following dynamics:

(9) λi,t = λi,∞ +
m∑
j=1

t∫
−∞

gi,j (t− s) dNj,s

where i = 1, . . . ,m and s ≤ t, and j = 1, . . . ,m; the distribution of jumps Nj,s is determined by that of
the intensities λi,t, where λi,∞ is the long-term intensity.

(10) λi = λi,∞ +
m∑
j=1

λj

∫ t

−∞
gi,j (t− s)ds = λi,∞ +

m∑
j=1

(∫ ∞
0

gi,j (ω) dω
)
λj

The vector function g us assumed to follow an exponential decay of the form

(11) gi,j (t− s) = βi,je
−αi(t−s)

for coefficients βi,j giving expected instantaneous jump values and decay rates αi. In matrix form,

(12) Λ = Λ∞ + Γ
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The overall association between the jumps of the different attacks is then captured by the matrix G(τ),
where τ = t− s:

(13) G (τ) =

 β11e
−α1τ . . . β1me

−α1τ

...
. . .

...
βm1e

−αmτ · · · β−αmτ
mm


The diagonal elements indicate the self-excitation of the process — that is, when a jump occurs, the like-
lihood of another jump increases — whereas the off-diagonal elements indicate the influence of jumps
in other attacks on the evolution of its own jumps. The existence of non-zero off-diagonal elements is
indicative of the need, as discussed in the introduction, for managers to adjust their security responses
dynamically according to their observations of the total threat environment.

For the system of vector equations,

dXt = udt+
√
VtdW

X
t + ZtdNt

dVt = κ (θ − Vt) dt+ η
√
VtdW

V
t

dλt = α (λ∞ − λt) dt+ βdNt

Sahalia et al. [1] identify the first three moment conditions as the expectations

(14)

E [∆Xt] = (µ+ λM [1]) ∆ + o
(
∆2
)

E
[
(∆Xt − E [∆Xt])

2
]

= (θ + λM [2]) ∆ +
βλ (2α− β)

2 (α− β)
M [1]2 ∆2 + o∆2

E
[
(∆Xt − E [∆Xt])

3
]

= λM [3] ∆

+
3
2

(
ηθρV +

(2α− β)βλM [1]M [2]
(α− β)

)
∆2 + o

(
∆2
)

where ρV is the first-order autocorrelation coefficient of the intensities λi,t and theM [i] indicate the centred
moments matrices, and the fourth moment (kurtosis) as

(15) E
[
(∆Xt − E [∆Xt])

4
]

= λM [4] ∆



3θη2

2κ
+ 3θ2 + 6θλM [2] +

3λ
(
λ+

(2α− β)β
2 (α− β)

)
M [2]2 +

2 (2α− β)βλM [1]M [3]
(α− β)


∆2 + o

(
∆2
)

For more details of the estimation procedure via Generalized Method of Moments (GMM), see Sahalia
et al. [1].

4. DATA

Getting a reliable picture of the attack environment is very difficult. Most organizations are very sensi-
tive about the details of a attacks and how they happen. Information is rarely shared. This makes it very
hard to understand the attack environment and to speculate about how it will evolve as, for example, the
use of cloud increases.

Organizations have many sources of information about attacks that may be incident upon their networks.
One source of particular interest is firewall logs. Most, if not all, corporate networks will run a firewall
that limits the traffic in and out of the corporate intranet according to some set of rules. Firewalls also log
the network activity that they see, particularly the network traffic that is being dropped. Security teams
examine firewall logs to get an indication of what attacks are occurring. The log files may show particular
IP addresses that are running scans or particular network ports that are being attacked.

The dataset upon which this paper draws is taken from the output of the DShield community project
(http://feeds.dshield.org).

• DShield is a community project — sponsored by SANS (http://www.sans.org) — that correlates
firewall log files from many volunteer companies in order to paint a picture of the current treat
environment.
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• DShield consists in a client system that converts firewall log files (from many different vendors)
into a standard format. These are then sent to a data collection engine where the data is aggregated
and used to analyze attack trends.

• DShield has very wide global coverage and has become the dominant attack correlation engine. It
has been used in the early detection of worms and is used to analyse attack patterns. Much of the
work using DShield data has been done to analyze particular events rather than to understand the
overall attack space.

• DSheild has been collecting data for close to a decade so in this paper we take a historical view of
the data looking at its statistical properties rather than individual events.

For our statistical analysis, we picked ten particular services, sampled daily for the period 1 January
2003 to 28 February 2011. The services considered are given in Table 1 and the descriptive statistics are
given in Table 2. Here we looked for ports that would typically be used to run services that we would
expect to see offered as part of a cloud service (either to manage the service or to help build other services).
We also included DNS as its correct functioning is fundamental to the internet. The ports considered are
significant for different security attributes, such as sensitivity and criticality, to varying relative extents.
For example, the Secure Web Server is highly significant for sensitivity and DNS is highly significant for
criticality. A detailed analysis of these relative weightings is beyond out present scope and is not critical to
the level of analysis presented here.

Since the primary purpose of this paper is to illustrate a model, we have not attempted to filter the
DShield data for false positives. A paper with stronger empirical objectives would need to do so.

TABLE 1. Services considered in extracts of DShield attack data (http://feeds.dshield.org)

Service Port Number Description
DNS 53 A service used to find the IP address of a particular service

given its name
ssh 22 Secure shell. A program used to connect to computers remotely
Oracle 80, 443 A popular enterprise database used at the core of many business

applications
SQL 118 Microsoft’s database which is again used at the heart of many

business applications
LDAP 389 A directory service that often contains the name and details of

employees within a company and which is used to determine
employees’ rights to access business applications

Web Server 80 Used to run websites. There are many different
applications that could be used here but popular ones are
IIS and Apache

Secure Web Server 443 The secure part of a web server where traffic is encrypted
using SSL. Usually used for highly sensitive transactions

Samba 139, 455 A shared drive used to store and share information within many
organizations

Email (IMAP) 143, 993 The protocol used by many email clients to access an
email server. Many web based email services also support
this protocol

Email (SMTP) 25, 465 SMTP is used by some email clients to send an email to an email
server, but it is also used to forward emails between different
email servers as email is sent from the sender’s email server to
the recipients

5. RESULTS AND ANALYSIS

Following the statistical methodology outlined in Section 3, we estimated have estimated the vector
equation system given in Equations 14 and 15 by GMM. Inference was undertaken using the estimated
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TABLE 2. Descriptive Statistics of the Attack Series

DNS ssh Oracle SQL LDAP
Mean 331529 2782020 8334 929074 43042

Standard Deviation 307232 2964248 46118 867475 47517
Skewness 4 2 17 6 2

Kurtosis 33 11 345 67 7

Web Server Secure Web Server Samba IMAP SMTP
Mean 787514 69568 200394 1426 20235

Standard Deviation 998963 83628 207624 4468 45661
Skewness 4 11 6 15 5

Kurtosis 22 250 72 329 36

information matrix of the system. Given the challenging dimensionality of the system, we are reporting a
selection of our statistical results, which shed light on our choice of statistical model. Our model incorpo-
rates stochastic jumps to the geometric Brownian motion describing the evolution of attacks and also allows
for the existence of mutually self-exciting processes. The parameters of interest are, therefore, represented
by the estimates of λ∞ that are indicative of the existence of jumps. Contagion is captured by the elements
of the contagion matrix (13).

All of the statistical results that are presented in the tables below are statistically significant at 5%.
Table 3 presents our estimates of λ∞ and the diagonal elements of the contagion matrix (13). Our

estimated long-run intensities, λ∞, are modest and have similar values across all time series of attacks.
Their statistical significance indicates that our choice of the inclusion of jumps in the law of motion of
attacks is justified and that jumps constitute a significant, albeit unobserved, component of attacks.
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FIGURE 1. Attacks
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FIGURE 2. Jumps

Figures 1 and 2 (below) depict, respectively, the number of attacks and the estimated jumps for the first
five listed services. The graphs for the second five would be similar. Informally, the graphs suggest that the
correlation between the jumps will be stronger than can be inferred from the raw data.

The second row of Table 3 reports our estimates of the diagonal elements of the contagion matrix (13)
and provides strong evident of the existence of self-exciting processes. It is remarkable that Secure Web
Server exhibits the highest degree of self-excitation followed closely by ssh and IMAP.

Table 5 presents our estimates of the normalized elements of the correlation (contagion) matrix (13).
By comparing these estimates with the corresponding values in the unconditional correlation (contagion)
matrix given in Table 4, we establish the existence of uniformly high and positive correlations between
attacks, so justifying our choice of the Hawkes process to capture evident of mutual self-excitement.

Once the jumps have been taken into account, the correlations between the intensity of attacks and their
size are presented in Table 6. The structure of this matrix reveals that jumps cluster in both intensity and
size, and that their associated is almost uniform and very strong. This correlation structure indicates that
time evolution of the set of attacks will exhibit periods of intense activity and large size of attacks, and
other periods where such activity is very low.

TABLE 3. Long-run Intensities; Diagonal Elements of G

DNS ssh Oracle SQL LDAP Web Server Secure Web Server Samba IMAP SMTP

λ∞ 0.1143 0.1158 0.1146 0.1114 0.1136 0.1118 0.1125 0.1132 0.115 0.1125
βi,je

−αiτ 0.0714 0.0831 0.17 0.05 0.0632 0.0728 0.1463 0.0443 0.0928 0.0085

We have computed the eigenvalues and corresponding eigenvectors of the contagion matrix (estimated
in Table 5). The two highest eigenvalues (Table 7) associated with the filtered (i.e., to include jumps and
mutual self-excitation) time series are 0.9894 and 7.8643. These represent approximately 90% of all of
the variation in the excitation process. This establishes the differential information content of attacks on
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TABLE 4. Unconditional Correlation Matrix

DNS ssh Oracle SQL LDAP Web Server Secure Web Server Samba IMAP SMTP

DNS 1 0.46 0.02 -0.37 0.21 0.44 -0.01 0.09 -0.10 -0.26
ssh 0.46 1 0.18 -0.14 0.50 0.42 0.03 0.12 0.12 -0.26

Oracle 0.02 0.18 1 0.02 0.18 0.05 0.08 0.01 0.04 0.10
SQL -0.37 -0.14 0.02 1 0.26 -0.37 0.17 0.38 0.51 0.47

LDAP 0.21 0.50 0.18 0.26 1 0.18 0.11 0.32 0.35 -0.06
Web Server 0.44 0.42 0.05 -0.37 0.18 1 0.15 -0.24 -0.23 -0.22

Secure Web Server -0.01 0.03 0.08 0.17 0.11 0.15 1 -0.06 -0.08 0.26
Samba 0.09 0.12 0.01 0.38 0.32 -0.24 -0.06 1.00 0.45 0.01
IMAP -0.10 0.12 0.04 0.51 0.35 -0.23 -0.08 0.45 1 0.04
SMTP -0.26 -0.26 0.10 0.47 -0.06 -0.22 0.26 0.01 0.04 1

TABLE 5. Normalized G Matrix

DNS ssh Oracle SQL LDAP Web Server Secure Web Server Samba IMAP SMTP

DNS 1 0.86 0.84 0.83 0.49 0.91 0.73 0.92 0.81 0.97
ssh 0.86 1 0.72 0.71 0.57 0.94 0.63 0.79 0.95 0.83

Oracle 0.84 0.72 1 0.99 0.41 0.76 0.88 0.91 0.68 0.86
SQL 0.83 0.71 0.99 1 0.41 0.75 0.89 0.89 0.67 0.85

LDAP 0.49 0.57 0.41 0.41 1 0.54 0.36 0.45 0.61 0.48
Web Server 0.91 0.94 0.76 0.75 0.54 1 0.67 0.84 0.89 0.88

Secure Web Server 0.73 0.63 0.88 0.89 0.36 0.67 1 0.79 0.59 0.75
Samba 0.92 0.79 0.91 0.89 0.45 0.84 0.79 1 0.75 0.95
IMAP 0.81 0.95 0.68 0.67 0.61 0.89 0.59 0.75 1 0.79
SMTP 0.97 0.83 0.86 0.85 0.48 0.88 0.75 0.95 0.79 1

TABLE 6. Correlation Between Services

DNS ssh Oracle SQL LDAP Web Server Secure Web Server Samba IMAP SMTP

DNS 1 0.86 0.86 0.89 0.88 0.81 0.84 0.87 0.89 0.87
ssh 0.86 1 0.86 0.86 0.83 0.83 0.84 0.84 0.87 0.87

Oracle 0.86 0.86 1 0.85 0.89 0.83 0.84 0.85 0.87 0.84
SQL 0.89 0.86 0.85 1 0.88 0.8 0.86 0.88 0.9 0.88

LDAP 0.88 0.83 0.89 0.88 1 0.86 0.83 0.87 0.9 0.83
Web Server 0.81 0.83 0.83 0.8 0.86 1 0.86 0.84 0.83 0.85

Secure Web Server 0.84 0.84 0.84 0.86 0.83 0.86 1 0.89 0.87 0.83
Samba 0.87 0.84 0.85 0.88 0.87 0.84 0.89 1 0.89 0.87
IMAP 0.89 0.87 0.87 0.9 0.9 0.83 0.87 0.89 1 0.86
SMTP 0.87 0.87 0.84 0.88 0.83 0.85 0.83 0.87 0.86 1

TABLE 7. Eigenvalues

0.008 0.0219 0.0347 0.0582 0.084 0.1328 0.2664 0.5403 0.9894 7.8643

each port. From the corresponding eigenvectors, we infer that attacks on ssh and Secure Web Server are
indicative of additional intensity and size of attacks on the remaining ports.

The totality of our statistical results supports our choice of filtering and reveals strong positive associa-
tions between attacks on the chosen ports, in contrast to the information suggested by the raw data that is
indicative of weak associations, some of which have negative values. In the absence of our filtering, the use
of the raw data might lead to erroneous responses by security managers in the face of attacks on specific
ports. More specifically, the unconditional correlation between ssh attacks and IMAP is negative, but for
the filtered series the corresponding correlation is positive and three times larger.

6. CONCLUSION

Our statistical analysis has revealed that attacks on individual ports are inter-related, with the relation-
ships being exposed by the estimation of jumps and mutually self-exciting behaviour. From the ten chosen
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TABLE 8. Eigenvectors for the Two Highest Eigenvalues

DNS ssh Oracle SQL LDAP Web Server Secure Web Server Samba IMAP SMTP

-0.0082 -0.0919 -0.4530 0.1689 -0.5110 -0.2563 0.3977 0.2114 -0.3618 0.3118
0.1218 0.7169 -0.0236 0.2244 -0.2364 0.1687 -0.4430 0.1447 0.0546 0.3403

services, attacks on ssh and the Secure Web Server account for almost all of the self-exciting behaviour.
Failure to reveal such relationships may lead to erroneous investment profiles. For example, the uncondi-
tional correlation between ssh (the compromise of which brings high levels of threat to both criticality and
sensitivity) and the Secure Web Server (typically used to support transactions requiring a high level of sen-
sitivity protection) is approximately zero; but, after filtering, it is 63% in the excited state. The responses
of security managers should be based on this latter degree of correlation as it represents the impact of
contagion on the level of risk that must be anticipated. For another example, introduced above, the uncon-
ditional correlation between ssh attacks and IMAP is negative, but for the filtered series the corresponding
correlation is positive and three times larger.

The efforts of security managers to protect sensitivity and criticality at desired levels will necessitate
additional costly investment at irregular intervals when faced with increased volume and diversity of at-
tacks on, in particular, ssh and Secure Web Server. Such additional attacks will be associated with other
additional attacks on all of the services considered.

An extension of the model would be to use the methodology in order to predict future levels of threat,
so helping security managers to anticipate appropriate levels of investment. A refinement of the model
would be to consider in more detail the mapping between the threats to services and the security attributes
(such as sensitivity and criticality, or CIA) that may be compromised. Such an analysis might suggest how
system architecture might be designed in order to limit the transmission of threats between services.

Other further work would be to consider how the behaviour of hackers correlates with our analysis of
attacks. Such consideration is beyond the scope of this short paper.
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