
Under consideration for publication in Math. Struct. in Comp. Science

Bunched Polymorphism

MATTHEW COLLINSON1 , DAVID PYM1 , EDMUND ROBINSON2

1 Hewlett-Packard Laboratories, Bristol, BS34 8QZ, UK.

2 Queen Mary, University of London, E1 4NS, UK.

Received 17th August 2007; Revised 12th May 2008

We describe a polymorphic, typed lambda calculus with substructural features. This

calculus extends the first-order substructural lambda calculus αλ associated with

bunched logic. A particular novelty of our new calculus is the substructural treatment of

second-order variables. This is accomplished through the use of bunches of type variables

in typing contexts. Both additive and multiplicative forms of polymorphic abstraction

are then supported. The calculus has sensible proof-theoretic properties and a

straightforward categorical semantics using indexed categories. We produce a model for

additive polymorphism with first-order bunching based on partial equivalence relations.

We consider additive and multiplicative existential quantifiers separately from the

universal quantifiers.

1. Introduction

Formal languages with substructural inference mechanisms are powerful tools in Logic
and Computer Science. They can be characterized by the absence or restriction of the
traditional structural proof rules of weakening, contraction and exchange. Perhaps the
best known substructural logic is Linear Logic (Girard 1987). This has a strong proof-
theoretic justification, but also admits a resource reading, which concerns the number of
uses of the resources (assumed formulae) in deriving a formula. This interpretation gives
rise to many applications.

Bunched logic (O’Hearn and Pym 1999; Pym 2002; Pym et al. 2004), abbreviated BI, is
another substructural logic. It also has a resource reading, called the sharing interpreta-
tion. Here the resource reading concerns sharing relationships on the resources used by a
formula. This is achieved by decomposing logical connectives into additive/multiplicative
pairs: for example conjunction, ∧, becomes (∧, ∗), and implication, →, becomes (→,−−∗).
The additive variants are intended to be like their traditional, structural versions. In
contrast, the multiplicatives are subject to certain sharing constraints: for example, in
a formula φ ∗ ψ, the two formulae φ and ψ must not share resources. This logic is the
foundation of the assertion language in Separation Logic (Reynolds 2002) which gives an
efficient Floyd-Hoare logic for imperative programs with mutable state.

Bunched logic has a good proof-theory and a natural notion of categorical model. These
models can be realized in certain functor categories based on sets, and this gives rise to

Collinson, Pym, Robinson 2

a host of applications. Some of these functor categories are closely related to possible-
worlds models for higher-order languages with store (Reynolds 1981; Oles 1982). The
bunched type theory αλ corresponding to BI has been developed in (O’Hearn 2003;
Pym 2002). In conjunction with the sharing interpretation and possible-world models it
has been used in (O’Hearn 2003) to give a refined treatment of Idealized Algol, IA, and
a treatment of memory operations on references in functional languages (Berdine and
O’Hearn 2006).

Polymorphic quantifiers and polymorphic lambda-calculi were introduced in (Girard
1971; Girard 1972) and again in (Reynolds 1974), where their use in programming was
emphasized. In logics of this kind formulae have second-order propositional variables, that
is, variables that may be instantiated with propositions. Polymorphic lambda-calculi and
programs may contain second-order variables (also known as type variables) that may
be instantiated with types. Such lambda-calculi also have a mechanism for polymorphic
abstraction: this is used to construct functions with type variables as arguments. These
calculi have a semantics in certain indexed categories. A particular instance of such a
model is constructed using partial equivalence relations (PERs) on the natural numbers,
see for example the early work by Girard (Girard 1972) or the modern treatment in
Jacobs book (Jacobs 1999).

In this paper we study combinations of bunching and polymorphism. We not only
combine ordinary polymorphism with αλ, but also make a bunched treatment of the
second-order variables. Bunching at the first and second-order levels are essentially or-
thogonal, so there are perfectly sensible calculi with bunching at both, either or neither
of the two levels. The presence of bunching at second-order means that there are addi-
tive and multiplicative variants of polymorphism within the calculus. There are additive
polymorphic types ∀α.τ , polymorphic abstraction terms Λα.M : ∀α.τ and instantiations
App(M,σ) : τ [σ/α] that behave in essentially the same way as ordinary polymorphism.
There are also multiplicative polymorphic types ∀∗α.τ , terms Λ∗α.M : ∀∗α.τ and instan-
tiations of the form App∗(M,A, σ) : τ [σ/α]. We give a detailed account of the theory
and models of such calculi by extending carefully the standard treatments for ordinary
polymorphism. We also study polymorphic existential quantifiers as these are well-known
to be related to abstract data-types (Mitchell and Plotkin 1988). An additive existential,
∃, that mimics ordinary existential types may be added as may a multiplicative variant,
∃∗. However, the form of the proof rules for ∃∗ suggested by the proof-theory does not
agree precisely with that which would fit naturally with the indexed category approach.

In §2 we introduce the most basic bunched polymorphic lambda calculus, α2λ2, its
derivation rules and reductions. In §3 we study the metatheory associated with this cal-
culus. We provide appropriate versions of basic proof-theoretic results such as substitu-
tion (cut-elimination), subject-reduction and normalization. In §4 we present categorical
models for α2λ2 in the form of hyperdoctrines (indexed categories). We prove soundness
and completeness theorems for the calculus in such models. In §5 we study polymorphism
in a category of partial equivalence relations. We show that additive polymorphism with
first-order bunching may be interpreted in this category. A calculus with bunched poly-
morphic existential quantifiers is studied in §6. The paper concludes with a summary
and a discussion of further avenues and open problems in §7.

Bunched Polymorphism 3

The work reported herein are results from the project ‘Bunched ML’, funded by the
United Kingdom EPSRC and carried out at the University of Bath and Queen Mary,
University of London. We wish to acknowledge suggestions given by our collaborators
Josh Berdine and Peter O’Hearn and support given by HP Labs, Bristol. We also wish
to thank the anonymous referees for producing a number of helpful comments.

2. The Calculus

The main bunched polymorphic lambda calculus, which we shall call α2λ2, is an extension
of the bunched, simply-typed calculus αλ presented in (O’Hearn 2003) and (Pym 2002).
Bunches are contexts that are structured in a particular way. The calculus α2λ2 produces
judgements of the form

X | Γ `M : τ

saying that a term M is typed with τ , given a bunch of type variables X and a bunch of
(ordinary) variables Γ.

Let us first consider bunches in general. Suppose that we have some given syntactic
category B. A bunch of B-elements is a binary tree with each leaf labelled by a B-element
or one of the symbols ∅ or ∅∗, and each internal node labelled with either of the symbols
‘;’ or ‘,’. Thus bunches are generated by the grammar

B := ∅ | ∅∗ | b | B;B | B,B

where b ranges over B-elements. The symbols ‘;’ and ‘,’ are referred to as additive and
multiplicative combination, respectively. The bunches ∅ and ∅∗ are, respectively, the ad-
ditive and multiplicative units. The formation of bunches is sometimes subject to the
restriction that any B-element may occur at most once in any bunch. We refer to this as
the linearity condition.

A sub-bunch B′ of a bunch B is a subtree of B such that all leaves of B′ are leaves of B.
Let B(B1 | . . . | Bn) be the notation for a bunch B with distinguished, non-overlapping
sub-bunches B1, . . . , Bn. We write B[B′

1/B1, . . . B
′
n/Bn], or sometimes, B(B′

1 | . . . | B′
n)

for the bunch formed by replacing each bunch Bi in B with a bunch B′
i. For any bunch

B(B1 | B2) the bunches B1 and B2 are combined at some minimal internal node. If this
node is labelled with ‘;’ then we say that B1 and B2 are additively combined in B or write
B1;B2 in B for short. If it is labelled with ‘,’ then we say that they are multiplicatively
combined in B or write B1, B2 in B. We use these notations sparingly since, for example,
B1, B2 in B does not entail that B1, B2 is a sub-bunch of B.

A pair of equivalence relations normally appear with bunches. The first equivalence,
≡, is used to build structural rules that allow us to permute leavs. It is a congruence
generated by commutative monoid rules for ‘;’ and ‘,’. Thus the commutative monoid
axioms can be applied at arbitrary depth in any bunch. To be precise ≡ is generated by
the rules

— if B2 ≡ B3 then B[B3/B1] ≡ B[B2/B1], where B(B1) is any bunch
— if B1 ≡ B2 and B2 ≡ B3 then B1 ≡ B3

— B ≡ B; ∅ and B ≡ B, ∅∗

Collinson, Pym, Robinson 4

— B1; (B2;B3) ≡ (B1;B2);B3 and B1, (B2, B3) ≡ (B1, B2), B3

— B1;B2 ≡ B2;B1 and B1, B2 ≡ B2, B1

on bunches. Additional axioms may be required in specific situations. For example, we
often wish to consider affine bunches, in which ∅ ≡ ∅∗ is required.

The second equivalence relation, ∼=, is used to control contraction in the derivation of
judgements. We discuss the relations ∼= used with bunches of type variables and variables
below separately, since they are slightly different.

Assume a countable collection of type variables to be given. We allow the letters α, β
to range over type variables. A hub is an affine bunch of type variables, subject to the
linearity condition. For the sake of brevity we use the unit ∅ but not ∅∗, since hubs are
affine. Thus hubs are generated as follows

X := ∅ | α | X,X | X;X ,

such that every type variable may occur at most once in a bunch. Let the letters X,Y, Z
range over hubs.

The equivalence ∼= on hubs is simply renaming of type variables: X ∼= Y if Y can be
obtained from X by renaming bijectively with type variables. Notice that both X and Y
then have the same internal structure.

The types of the calculus are generated by

τ := > | I | α | τ ∨ τ | τ ∧ τ | τ ∗ τ | τ → τ | τ −−∗ τ | ∀α.τ | ∀∗α.τ ,

where α is a type variable. The constructors >, ∧,→ and ∀ are referred to, respectively, as
the additive unit, product, abstraction and polymorphic abstraction (universal quantifier).
Matching these, there are multiplicative unit I, product ∗, abstraction −−∗ and polymorphic
abstraction (universal quantifier) ∀∗. The additive sum, ∨, is also included. Let the letters
σ, τ, υ range over types.

Assume a countable collection of variables to be given. Let x, y, z range over these
variables. A (typing) context is a bunch of typed variables, subject to a linearity condition.
Contexts are generated by the grammar

Γ := ∅ | ∅∗ | x : τ | Γ,Γ | Γ; Γ ,

where x is a variable, τ is a type and any variable occurs at most once. On the other-hand,
types may occur more than once in a bunch — for example, x : τ, y : τ is a bunch for any
type τ . Note that contexts are not required to be affine, in general, but that requiring
this also leads to a sensible, specialized calculus. This is similar to the situation for αλ.
The units ∅ and ∅∗ are distinct from each other, and from the unit ∅ for hubs. These
contexts are nothing more than the contexts of αλ, but such that types may contain
type variables and be formed using the polymorphic quantifiers. The letters Γ and ∆ are
reserved for contexts.

The relation Γ ∼= ∆ between contexts holds just when ∆ can be obtained by a type-
preserving, bijective relabelling of the leaves of Γ. That is, any leaf x : τ of Γ must
correspond to a unique leaf y : τ of ∆.

Bunched Polymorphism 5

The terms of the language are given by the following grammar

M := x | > | I | let I be M in M
| inl(M) | inr(M) | case M of inl(x) ⇒M or inr(y) ⇒M

| 〈M,M〉 | π1M | π2M |M ∗M | let (x, y) be M in M
| λx : τ.M | app(M,M) | λ∗x : τ.M | app∗(M,M)
| Λα.M | App(M, τ) | Λ∗α.M | App∗(M,A, τ) ,

where τ is a type, x is a variable, α is a type variable and A is a finite set of type-variables.
The forms which we have added to αλ are the additive polymorphic abstraction Λα.M ,
multiplicative polymorphic abstraction Λ∗α.M , additive instantiation App(M, τ), and
multiplicative instantiation App∗(M,A, τ).

Let fv(−) be the operation that produces the set of variables that occur in a context
or free in a term. We use the notation ftv(−) for the operation that returns the set of
type variables which occur in a hub, or free in a type, or free in at least one of the types
of the variables in a context. In particular, in the types ∀α.τ , ∀∗α.τ the type variable α
is not free and

ftv(∀∗α.τ) = ftv(∀α.τ) = ftv(τ) r {α}

holds.
We define the set of free type variables ftvΓ(M) that are free in a term as follows given

in a context Γ that includes all of the variables that are free in M . The idea is that the
set ftvΓ(M) will include all free types of sub-terms used in the construction of M , not
just those types appearing in the type of the term. The recursive definition is as follows:

ftvΓ(>) = ftvΓ(I) = ∅
ftvΓ(x) = ftv(τ) where x : τ is in Γ
ftvΓ(let I be M in N) = ftvΓ(M) ∪ ftvΓ(N)
ftvΓ(inl(M)) = ftvΓ(inr(M)) = ftvΓ(M)
ftvΓ(case M of inl(x) ⇒ N1 or inr(y) ⇒ N2) = ftvΓ(M) ∪ ftvΓ(N1) ∪ ftvΓ(N2)
ftvΓ(〈M,N)〉 = ftvΓ(M ∗N) = ftvΓ(M) ∪ ftvΓ(N)
ftvΓ(π1M) = ftvΓ(π2M) = ftvΓ(M)
ftvΓ(let (x, y) be M in N) = ftvΓ(M) ∪ ftvΓ(N)
ftvΓ(λx : σ.M) = ftvΓ(λ∗x : σ.M) = ftvΓ(M) ∪ ftv(σ)
ftvΓ(app(M,N)) = ftvΓ(M) ∪ ftvΓ(N)
ftvΓ(app∗(M,N)) = ftvΓ(M) ∪ ftvΓ(N)
ftvΓ(Λα.M)) = ftvΓ(Λ∗α.M)) = ftvΓ(M) r α

ftvΓ(App(M,σ)) = ftvΓ(M) ∪ ftv(σ)
ftvΓ(App∗(M,A, τ)) = A ∪ ftvΓ(M) ∪ ftv(τ) .

We usually drop the subscript Γ and write ftv(M) when the context Γ is clear.
We write X ` τ and say that τ is well-formed over X whenever ftv(τ) ⊆ ftv(X).

Similarly, write X ` Γ and say Γ is well-formed over X whenever ftv(Γ) ⊆ ftv(X) holds.
We introduce a syntactic measure µ which assigns to each term the set of type variables

that are free and occur in some application of the multiplicative universal quantifier. This

Collinson, Pym, Robinson 6

may be defined recursively as follows:

µ(>) = µ(I) = µ(x) = ∅
µ(〈M,N〉) = µ(M ∗N) = µ(M) ∪ µ(N)
µ(let (x, y) be M in N) = µ(M) ∪ µ(N)
µ(inl(M)) = µ(inr(M)) = µ(M)
µ(case M of inl(x) ⇒ N1 or inr(y) ⇒ N2) = µ(M) ∪ µ(N1) ∪ µ(N2)
µ(let I be M in N) = µ(M) ∪ µ(N)
µ(app(M,N)) = µ(M) ∪ µ(N)
µ(app∗(M,N)) = µ(M) ∪ µ(N)
µ(π1M) = µ(π2M) = µ(M)
µ(λx : σ.M) = µ(λ∗x : σ.M) = µ(M)
µ(Λα.M) = µ(Λ∗α.M) = µ(M) r {α}
µ(App(M, τ)) = µ(M)
µ(App∗(M,A, τ)) = µ(M) ∪A.

We call µ(M) the instantiation set of M .
The typing of terms uses the type and context formation judgements. The term for-

mation judgements are derived from the system of rules shown in Figure 1. We write
X | Γ `M : τ and say that M is well-formed with type τ over X and Γ if it is produced
by this system.

The rules (>I), (II) introduce the additive and multiplicative units. Together with
(Ax) they are the rules that occur at the leaves of derivations. The rules (>E) and (IE)
eliminate the units. The rules (∧I) and (∧E) give the additive product while the rules
(∗I) and (∗E) give the multiplicative product. The rules for additive and multiplicative
functions are (→ I), (→ E), (−−∗I) and (−−∗E). The additive coproduct is given by
the rules (∨I) and (∨E). There are structural rules of exchange (E), weakening (W),
and contraction (C) for bunches of (ordinary) variables. There are rules for additive
polymorphism (∀I), (∀E) and multiplicative polymorphism (∀∗I), (∀∗E). Finally there
are structural rules of exchange (E2), weakening (W2) and contraction (C2) for hubs.

Notice that all of the first-order rules have been presented relative to a fixed hub X.
They are essentially the familiar rules for αλ, but parametrised by the hub.

Many of the rules are subject to side-conditions. These will sometimes be written as
additional premises of rules. The side-condition on the rules (Ax), (∀E) and (∀∗E) ensure
that in a derivation X | Γ `M : τ all of the free type variables of τ occur in X. Together
with the side-conditions on (W), (∀I) and (∀∗I) we have that all of the free type variables
in Γ occur in X. The elimination rules (>E), (IE), (∧E), (∗E), (→ E), (−−∗E) are each
subject to a side-condition

µ(N) ∩ ftv(M) = ∅ (†)

that requires the separation of certain free type variables. In a similar way, the rule
(∨E) requires the conditions (†i), being µ(Ni) ∩ ftv(M) = ∅, for both i = 1, 2. These
eliminations work through substitutions and, when substituting, we must ensure that
the disjointness conditions on type variables in N are not violated. Such side-conditions
are necessary in order to have a standard substitution property for terms, namely that a

Bunched Polymorphism 7

(>I)
X | ∅ ` > : > (Ax)

X | x : τ ` x : τ
(X ` τ)

X | ∅∗ ` I : I
(II)

(TE)
X | Γ(∅) ` N : τ X | ∆ `M : >

X | Γ(∆) ` N [M/>] : τ
(†)

X | Γ(∅∗) ` N : τ X | ∆ `M : I

X | Γ(∆) ` let I be M in N : τ
(IE)

(∧I)
X | Γ `M : σ X | ∆ ` N : τ

X | Γ;∆ ` 〈M,N〉 : σ ∧ τ
X | Γ `M : σ X | ∆ ` N : τ

X | Γ,∆ `M ∗N : σ ∗ τ (∗I)

(∧E)
X | Γ; (x : φ; y : ψ) ` N : τ X | Γ `M : φ ∧ ψ

X | Γ ` N [π1M/x, π2M/y] : τ
(†)

(∗E)
X | Γ(x : φ, y : ψ) ` N : τ X | ∆ `M : φ ∗ ψ

X | Γ(∆) ` let (x, y) be M in N : τ
(†)

(→ I)
X | Γ;x : σ `M : τ

X | Γ ` λx : σ.M : σ → τ

X | Γ, x : σ `M : τ

X | Γ ` λ∗x : σ.M : σ −−∗ τ (−−∗I)

(∨Il)
X | Γ `M : σ

X | Γ ` inl(M) : σ ∨ τ
X | Γ `M : τ

X | Γ ` inr(M) : σ ∨ τ (∨Ir)

(∨E)
X | Γ `M : τ1 ∨ τ2 X | ∆(x : τ1) ` N1 : σ X | ∆(y : τ2) ` N2 : σ

X | ∆(Γ) ` case M of inl(x) ⇒ N1 or inr(y) ⇒ N2 : σ
(†1, †2)

(→ E)
X | Γ ` N : σ → τ X | ∆ `M : σ

X | Γ;∆ ` app(N,M) : τ
(†)

X | Γ ` N : σ −−∗ τ X | ∆ `M : σ

X | Γ,∆ ` app∗(N,M) : τ
(−−∗E)

(∀I)
X;α | Γ `M : τ

X | Γ ` Λα.M : ∀α.τ (α /∈ ftv(Γ))
X,α | Γ `M : τ

X | Γ ` Λ∗α.M : ∀∗α.τ
(∀∗I)

(∀E)
X | Γ `M : ∀α.τ

X;Y | Γ ` App(M,σ) : τ [σ/α]
(Y ` σ)

(∀∗E)
X | Γ `M : ∀∗α.τ

X, Y | Γ ` App∗(M, ftv(Y), σ) : τ [σ/α]
(Y ` σ)

(W)
X | Γ(∆) `M : τ

X | Γ(∆;∆′) `M : τ
(X ` ∆′) (Γ ≡ ∆)

X | Γ `M : τ

X | ∆ `M : τ
(E)

(C)
X | Γ(∆;∆′) `M : τ

X | Γ(∆) `M [∆/∆′] : τ
(∆ ∼= ∆′) (X ≡ Y)

X | Γ `M : τ

Y | Γ `M : τ
(E2)

(C2)
X(Y ;Y ′) | Γ `M : τ

X(Y) | Γ[Y/Y ′] `M [Y/Y ′] : τ [Y/Y ′]
(Y ∼= Y ′)

Y | Γ `M : τ

X(Y) | Γ `M : τ
(W2)

Fig. 1. Term formation rules

Collinson, Pym, Robinson 8

substitution of a well-formed term for a first-order variable in another well-formed term
produces a well-formed term. The asymmetry of this side-condition (between M and N)
comes from the asymmetry of substitution (of, say, M , for some variable in N). This is
explained in more detail below.

It should be noted that the calculus only allows weakening (W) around ‘;’ in first-order
contexts. In contrast rule (W2) is equivalent to having weakening around both ‘;’ and ‘,’
in a hub. We say that the calculus is affine in the hubs. This is why we use just one unit
for hubs — more discussion of affine calculi may be found in (O’Hearn and Pym 1999;
O’Hearn 2003; Pym 2002). It appears that hubs are required to be affine in order to get
a sensible proof theory. In particular, it seems necessary for the substitution property
(admissibility of the cut-rule). This property is given for α2λ2 in Proposition 1 below.

Contraction is not available around a multiplicative combination. As a consequence
we may regard a hub X,Y as consisting of two hubs whose variables are strongly distin-
guished. The multiplicative quantifier differs from the additive quantifier in that we may
only instantiate with types whose variables are thus distinguished. This lifts the sharing
interpretation for bunched calculi (O’Hearn and Pym 1999) to the second-order level.

Let X be a bunch and A be a set of type variables. Let X�A be the bunch formed by:

— erasing all leaves of X that feature a variable not in A
— deleting edges into such leaves
— if an internal node is not branching then deleting that node and replacing the two

incident edges with a single edge between the two previously adjacent vertices.
— if everything is deleted then insert a ∅.

Introduce the notation X�Y to mean that Y can be recovered from X by weakenings
and equivalences. To be precise Y can be produced from X by attaching a finite number
of bunches using the constructors ‘;’ and ‘,’, and using the congruence rules for ≡.

Recall that bunches are defined here as (binary) trees, and a sub-bunch X of a bunch
Y is defined to be a subtree X of the tree Y . Note that if X is a sub-bunch of Y then
X � Y , but not vice-versa.

Definition 1. Let X and Y be bunches and ftv(Y) = {β1, . . . , βn}. A (type) substitution
s : X −→ Y is a sequence

[σ1/β1, . . . , σn, βn]

such that

— X ` σj for each 1 ≤ j ≤ n

— if Y1 and Y2 are bunches such that Y1, Y2 � Y , then there are bunches X1 and X2

with X1, X2 �X and, for i = 1, 2 and 1 ≤ j ≤ n, if βj ∈ ftv(Yi) then Xi ` σj .

We sometimes use the usual liberal variant of the above sequence notation for substitution
in which only the variables which are not replaced by themselves are mentioned.

It follows that substitutions have the following property: if βi and βj are multiplica-
tively combined in Y then ftv(σi)∩ ftv(σj) = ∅. This reinforces the sharing interpretation
for type variables in such calculi, as the multiplicative combination of type variables re-
quires that they use disjoint resources.

Bunched Polymorphism 9

Any substitution s as above defines a map s∗ from sets of type variables in Y to sets
of type variables in X. This is given by

s∗(A) =
⋃

i∈{i|βi∈A}

ftv(σi)

for any A that is a finite subset of Y .
The substitution s : X −→ Y maps any type Y ` τ to a type X ` s∗(τ) by simulat-

neously replacing each βj with σj for 1 ≤ j ≤ n. We also write τ [σ1/β1, . . . , σn/βn] for
s∗(τ). This assignment is defined to work in the usual way. For example, we have

s∗(σ −−∗ τ) = s∗(σ)−−∗ s∗(τ)

s∗(∀∗α.τ) = ∀∗α.s∗(τ)

for multiplicative function and polymorphic types.
We extend the substitution to act on contexts: any context Y ` Γ is mapped to a

context X ` s∗(Γ) where s∗(Γ) is formed by re-typing the variables of Γ with the images
of the original types under s∗. That is, x : τ is in Γ if and only if x : s∗(τ) is at the
corresponding node in s∗(Γ) and all internal nodes (‘;’ and ‘,’) and units are unchanged.

The substitution s : X −→ Y maps any term M with free type variables in Y to one
with free type variables in X. The substitution is defined in the usual way: in particular,
we have

s∗(Λ∗α.M) = Λ∗α.s∗(M)

s∗(App∗(M,A, τ)) = App∗(s∗(M), s∗(A), s∗(τ))

for dealing with the multiplicative polymorphic abstraction. An important consequence of
this definition is that substitution commutes with both kinds of polymorphic abstraction.
We shall see later that under such a substitution any well-formed term Y | Γ `M : τ is
mapped to a well-formed term X | s∗(Γ) ` s∗(M) : s∗(τ). Notice that in the rule (∀∗E)
the context of the conclusion is extended with the entire hub of the type with which we
are instantiating, but that the substitution used to perform the instantiation only uses
the free type variables of the instantiating type.

For any hub Y , with say ftv(Y) = {β1, . . . , βn} the sequence [β1/β1, . . . , βn/βn] is the
identity substitution. For any pair of substitutions

s = [σ1/β1, . . . , σn/βn] : X −→ Y t = [τ1/α1, . . . , τp/αp] : Y −→ Z

there is a composite substitution

t ◦ s = [s∗(τ1)/α1, . . . , s
∗(τp)/αp] : X −→ Z

from types over Z to types over X. Furthermore, the lemma below holds.

Lemma 1. There is a category with hubs as objects and type substitutions as arrows.

If X ∼= Y then there is a substitution s : Y −→ X, written [Y/X], given by replacing
every free type variable from X with the corresponding variable from Y .

Collinson, Pym, Robinson 10

We will also use the notation

[M1/x1, . . . ,Mn/xn]

for substitutions of terms Mi for variables xi in a term. When Γ ∼= ∆ we use the notation
[∆/Γ] to replace occurrences of variables in a context or term that also occur in Γ with
their correspondents (under the chosen bijection) from ∆.

2.1. Reductions

The usual rules for βηζ-conversions for αλ are retained. They are

(βI) let I be I in N →β N

(ηI) let I be M in I →η M

(β ∧ 1) π1〈M1,M2〉 →β M1

(β ∧ 2) π2〈M1,M2〉 →β M2

(η∧) 〈π1M,π2M〉 →η M

(β∗) let (x, y) be M1 ∗M2 in N →β N [M1/x,M2/y]
(η∗) let (x, y) be M in x ∗ y →η M

(β →) app(λx : σ.N,M) →β N [M/x]
(η →) λx : σ.app(M,x) →η M

(β −−∗) app∗(λ∗x : σ.N,M) →β N [M/x]
(η −−∗) λ∗x : σ.app∗(M,x) →η M

and x /∈ fv(M) for both (η →) and (η −−∗). No rules for > are required. The ζ-rules
(commuting conversions) are required for I, ∗ and ∨ only, and are the same for αλ.

In order to state these we use the notion of context. In brief, a context is just a term-
with-hole. We may substitute terms for the hole, allowing variable capture. We write
C[−] for a such a context (with a hole [−]). It should always be clear from the setting in
which this terminology is used whether we mean such a context or a bunch of variables.
More details on contexts for αλ can be found in (Pym 2002).

Then

C[let I be M in N] →ζ let I be M in C[N]
C[let (x, y) be M in N] →ζ let (x, y) be M in C[N]

C[case M of inl(x) ⇒ N1 or inr(y) ⇒ N2] →ζ case M of inl(x) ⇒ C[N1]
or inr(y) ⇒ C[N2]

where in the second clause we require that C does not bind x, y.
In addition, we have four βη-conversions for polymorphic quantifiers,

(β∀) App(Λα.M, σ) →β M [σ/α]
(β∀∗) App∗(Λ∗α.M,A, σ) →β M [σ/α]
(η∀) Λα.App(M,α) : τ →η M

(η∀∗) Λ∗α.App∗(M, {α}, α) : τ →η M

where these terms are all typed over the same hub X and context Γ such that α is not
free in Γ. Let � be the reduction relation generated by the single step conversions. These

Bunched Polymorphism 11

relations give rise to a system of βηζ-equalities, namely that generated by taking two
terms to be equal when there is a reduction of (either) one to the other.

3. Metatheory

Many of the standard properties (substitution, subject-reduction, normalization) of a
lambda calculus hold for α2λ2. The proofs are refinements of the proofs for αλ and λ2.
We begin with a couple of strengthening lemmas.

Lemma 2. If X | Γ(∆ ; x : σ) `M : τ and x is not free in M then X | Γ(∆) `M : τ .

Proof.
The proof is essentially as for αλ, that is, by induction on derivation of the given

judgement. The essential point to observe is that the variable x must have been added
spuriously using weakening. The rules for polymorphism add no real complications. As
usual, the multinary version is proved in order to deal with contraction (C).

Now whenever X | Γ ` M : τ is derivable then ftv(τ) ⊆ ftv(M) ⊆ ftv(X) and
ftv(Γ) ⊆ ftv(X) hold. However, it is not always the case that ftv(τ) = ftv(M) holds.

Suppose that there is a derivation D of X | ∆ ` M : τ and that X is a sub-bunch of
Y . Then we say that Γ may be recovered from ∆ by weakenings over Y if a derivation
of Y | Γ ` M : τ may be produced by appending some sequence of weakenings — (W2)
and (W) — to the root of D. Note that this definition is really independent of D, M
and τ , since it is the same as saying that, using ‘;’ only, we can append to ∆ all variables
of fv(Γ) \ fv(∆) to recover Γ, and have Γ well-formed over Y . We have the following
strengthening lemma for type variables.

Lemma 3. If X(Z) | Γ ` M : τ is derivable, α /∈ ftv(M) and either Z = Y ;α or
Z = Y, α, then there is a context Γ′ such that X[Y/Z] | Γ′ ` M : τ is derivable,
α /∈ ftv(Γ′), and Γ can be recovered from Γ′ by weakenings over X(Z). Furthermore, if
α /∈ ftv(Γ) then Γ′ = Γ.

Proof. If α /∈ ftv(M) then there are no (free or bound) variables in M which have
types involving free occurrences of α. Therefore any variables x : σ(α) occurring in Γ
have been inserted by weakenings (W) in the derivation of X | Γ ` M : τ . Hence, by
Lemma 2, we can replace this derivation with a derivation of X | Γ′ ` M : τ in which
those extraneous variables are never inserted. Since α does not feature in any of Γ′, M
or τ , it can only have been introduced into X through some weakening using (W2). We
may therefore derive X[Y/Z] | Γ′ `M : τ by not inserting α at any such weakening.

The fact that hubs are affine yields an admissible substitution rule for terms.

Proposition 1. (Substitution)
If X | Γ(x : σ) ` N : τ and X | ∆ ` M : σ are derivable and µ(N) ∩ ftv(M) = ∅ then
X | Γ[∆/x] ` N [M/x] : τ is derivable.

Notice that substitution takes place over a fixed hub. To see the necessity of the
substitution side-condition (†) observe that α, β | x : α ` App∗(Λ∗γ.x, {β}, β) : α and

Collinson, Pym, Robinson 12

α, β | y : β → α; z : β ` app(y, z) : α are both derivable but that α, β | y : β → α; z :
β ` App∗(Λ∗γ.app(y, z), {β}, β) : α is not since the formation of app(y, z) requires β.
The side-condition (†) is used in clause (∀∗E) of the proof in conjunction with Lemma
3. Notice that weakening around ‘,’ in a hub via (W2) is used in clauses (∀∗I) and (∀∗E)
of the proof.

Proof. Let Γ[(∆i/∆′
i)1≤i≤n] and N [(Mi/xi)1≤i≤n] be the respective notations for n

simultaneous substitutions into contexts and terms. The proof of admissibility of substi-
tution is done for the multinary version

X | Γ(x1 : σ1 | . . . | xn : σn) ` N : τ (X | ∆i `Mi : σi)1≤i≤n

X | Γ[(∆i/xi)1≤i≤n] ` N [(Mi/xi)1≤i≤n] : τ
(†1) . . . (†n)

for all n, in order to deal with contraction. Each (†i) says µ(N) ∩ ftv(Mi) = ∅.
We use induction on derivations, by considering cases of the last rule (r) used in the

derivation of the left premise of the substitution. Note that the induction hypothesis is
that the rule is admissible for all substitutions into all derivations of lesser height and
for all n.

All the cases which introduce or eliminate a connective other than a multiplicative
quantifier are straightforward as are the structural rules. We simply push the substitution
towards the leaves, splitting it as appropriate at rules with two premises.

(∀∗I). For simplicity, we present the case with n = 1, that is, where we substitute for
just one variable. The version for arbitrary finite n is no more difficult. Suppose we have
a derivation ending with

X,α | Γ(x : σ) ` N : τ
X | Γ(x : σ) ` Λ∗α.N : ∀∗α.τ

where α is not free in Γ. For any given substitution premise

X | ∆ `M : σ

we can weaken via (W2) to form

X,α | ∆ `M : σ

then apply the induction hypothesis to get

X,α | Γ[∆/x] ` N [M/x] : τ

and, finally, since α is not free in ∆, we may use (∀∗I) to get

X | Γ[∆/x] ` Λ∗α.N [M/x] : ∀∗α.τ

as required.
(∀∗E). Suppose we have a derivation ending with

Y | Γ(x : σ) ` N : ∀∗α.τ
Y, Z | Γ(x : σ) ` App∗(N, ftv(Z), ρ) : τ [ρ/α]

(Z ` ρ)

for the unary substitution case. The matching substitution premise is of the form

Y, Z | ∆ `M : σ

Bunched Polymorphism 13

with

µ(App∗(N, ftv(Z), ρ)) ∩ ftv(M) = ∅
as side-condition. This gives

ftv(Z) ∩ ftv(M) = ∅
in particular. Then, by repeated application of Lemma 3, there is some ∆′ such that

Y | ∆′ `M : σ

is derivable, and ∆ may be recovered from ∆′ by weakenings over Y, Z.
The condition

µ(N) ∩ ftv(M) = ∅
is satisfied, so the induction hypothesis gives

Y | Γ[∆′/x] ` N [M/x] : ∀∗α.τ

derivable. From this it follows by (W2) that

Y, Z | Γ[∆′/x] ` App∗(N [M/x], ftv(Z), ρ) : τ [ρ/α]

by an application of the (∀∗E) rule, and

Y, Z | Γ[∆′/x] ` (App∗(N, ftv(Z), ρ))[M/x] : τ [ρ/α]

is just the same term. Finally, we can weaken using (W) to give

Y, Z | Γ[∆/x] ` (App∗(N, ftv(Z), ρ))[M/x] : τ [ρ/α]

as required.

There is a substitution property for types.

Proposition 2. If Y | Γ `M : τ is derivable and s : X −→ Y is a substitution of types
then X | s∗(Γ) ` s∗(M) : s∗(τ) is derivable.

Proof. The proof is by induction on the derivation of Y | Γ `M : τ . Most of the cases
are straightforward. The rule (C2) means we really prove the multinary simultaneous
substitution to get a strong enough induction hypothesis. The structural rules require a
number of simple results indicating the compatibility of substitution with the relations
∼= and ≡ on both fibres and contexts. The two most difficult cases are given explicitly
below (in unary rather than multinary form).

(∀∗I). Suppose we have a derivation ending

Y, α | Γ `M : τ
Y | Γ ` Λ∗α.M : ∀∗α.τ

(α /∈ ftv(Γ))

and a substitution s = [σ1/β1, . . . , σn/βn] : X −→ Y . There is a substitution t of the form
[σ1/β1, . . . , σn/βn, α/α] : X,α −→ Y, α. The induction hypothesis gives X,α | t∗(Γ) `
t∗(M) : t∗(τ) and from this we get X | t∗(Γ) ` Λ∗α.t∗(M) : ∀∗α.t∗(τ) from which we
may conclude X | s∗(Γ) ` s∗(Λ∗α.M) : s∗(∀∗α.τ). The (∀I) case is very similar.

Collinson, Pym, Robinson 14

(∀∗E). Suppose that we have a derivation ending

Y1 | Γ `M : ∀∗α.τ
Y1, Y2 | Γ ` App∗(M, ftv(Y2), φ) : τ [φ/α]

(Y2 ` φ)

and that ftv(Y1) = {β1, . . . , βm} and ftv(Y2) = {βm+1, . . . , βn}, where both of these sets
may be empty. Further suppose that we have a substitution

s : X −→ Y ; [σ1/β1, . . . , σm/βm, σm+1/βm+1, . . . , σn/βn] .

Let Ai =
⋃
{ftv(σj) | βj ∈ ftv(Yi)} for i = 1, 2. Note that A1 ∩A2 = ∅.

Let Xi = X�Ai
for i = 1, 2, and consider the sequences s1 = [σ1/β1, . . . , σm/βm]

and s2 = [σm+1/βm+1, . . . , σn/βn]. Now X1 ` σj for 1 ≤ j ≤ m and X2 ` σj for
m+ 1 ≤ j ≤ n.

Fix i = 1 or i = 2 and suppose W 1,W 2 � Yi. We have W 1,W 2 � Y1, Y2, so there are
V 1 and V 2 with V 1, V 2 � X and V k ` σj for all 1 ≤ j ≤ n and k = 1, 2 such that
βj ∈ ftv(W k). Define Uk = V k�Xi

for k = 1, 2. Then βj ∈ W k implies Uk ` σj for
k = 1, 2 and 1 ≤ j ≤ n. Further, U1, U2 �Xi since Uk �Xi for k = 1, 2 and U1, U2 �X

and Xi �X. Therefore both s1 : X1 −→ Y1 and s2 : X2 −→ Y2 are substitutions.
We then know that X2 ` s∗2(φ) and, using the induction hypothesis, we have a deriva-

tion of X1 | s∗1(Γ) ` s∗1(M) : s∗1(∀∗α.τ). Since s∗1(∀∗α.τ) = ∀∗α.s∗1(τ) we may apply the
rule (∀∗E) to derive

X1, X2 | s∗1(Γ) ` App∗(s
∗
1(M), ftv(X2), s∗2(φ)) : (s∗1(τ))[s

∗
2(φ)/α] .

Now this is the same as

X1, X2 | s∗(Γ) ` s∗(App∗(M, ftv(Y2), φ) : s∗(τ [φ/α])

and we may apply the rules (W2) and (E2) to give

X | s∗(Γ) ` s∗(App∗(M, ftv(Y2), φ) : s∗(τ [φ/α])

as required.
The additives case (∀E) follows by a simpler version of this argument.

There are inversion properties for all four abstractions.

Proposition 3. The four rules below are admissible.

X | Γ ` λx : σ.M : σ → τ

X | Γ;x : σ `M : τ
X | Γ ` λ∗x : σ.M : σ −−∗ τ

X | Γ, x : σ `M : τ

X | Γ ` Λα.M : ∀α.τ
X;α | Γ `M : τ

X | Γ ` Λ∗α.M : ∀∗α.τ
X, α | Γ `M : τ

Proof. The proof for all four rules is similar. We consider only the ∀∗ case below: this
is the most complicated.

The essential point to observe is that the derivation of X | Γ ` Λ∗α.M : ∀∗α.τ must
finish with the rule (∀∗I) followed a (possibly empty) sequence of uses of rules (W), (C),
(E), (C2), (W2), (E2), (TE) and (∧E). Let (r) range over these rules. We then use

Bunched Polymorphism 15

induction on the length, l, of the sequence of rules following the final (∀∗I). If l = 0
then the derivation we want is just the derivation of the premise of (∀∗I). Now suppose
that l = n + 1. Suppose that the n + 1th rule is an instance of rule (r) with a premise
of the form X ′ | Γ′ ` Λ∗α.M ′ : ∀∗α.τ ′. A suitable induction hypothesis gives that
X ′, α | Γ′ ` M ′ : τ ′. For all cases of (r), rule (r) commutes with (∀∗I). We may then
apply rule (r) to conclude X,α | Γ `M : τ , as required.

The propositions above can be used to prove subject-reduction.

Theorem 1. If X | Γ `M : τ and M � N then X | Γ ` N : τ is derivable.

Proof.
For the proof it is enough to show that each conversion step preserves derivability.

This is done in the usual way using the inversion and substitution properties.
The β-reductions for −−∗ and → require only shallow versions of the substitution law, i.e.

those in which we substitute for x in a typing context Γ, x : τ or Γ;x : τ . However, the β-
reduction relation for ∗ requires the deep form of substitution, as given in Proposition 1.
The side-condition required for the substitutions is guaranteed in cases →, −−∗, ∗ and ∨ by
the side-conditions (†) in the elimination laws (in fact, that is why those side-conditions
are placed on those elimination laws). The cases for the β-reductions for ∀ and ∀∗ make
use of Proposition 2.

The η-reduction cases are proved straightforwardly using inversion and by considering
the forms of derivations which are forced by the given redex terms: derivations must
(without loss of generality) end with the rules corresponding to the pairing of introduction
and elimination in the redex followed by a sequence of structural rules. We can obtain the
desired reduced term from a sub-derivation by means of (some of) the same structural
rules.

We sketch the proof by giving a number of representative cases.
(β −−∗). A derivation of a term app∗(λ∗x : σ.N,M) : τ can be assumed (without loss of

generality) to end as follows

(−−∗E)
(−−∗I)

...
X | Γ, x : σ ` N : τ

X | Γ ` λ∗x : σ.N : σ −−∗ τ

...
X | ∆ `M : σ

X | Γ,∆ ` app∗(λ∗x : σ.N,M) : τ

so we must have (µ(λ∗x : σ.N) ∩ ftv(M) = ∅) in order to apply the final rule. We then
have µ(N) ∩ ftv(M) = ∅ and so we may make a substitution

X | Γ, x : σ ` N : τ X | ∆ `M : σ
X | Γ,∆ ` N [M/x] : τ

instead. The argument for case (β →) is almost identical. The arguments for (β∗) and
(β∧) are similar, except that the full, deep form of substitution is used. In the case of
(β∨) we see that both side-conditions on (∨E) are necessary in order that we may apply
the substitution to the appropriate branch.

Collinson, Pym, Robinson 16

(β∀∗). Without loss of generality we have a derivation ending

X,α | Γ `M : τ
X | Γ ` Λ∗α.M : ∀∗α.τ

X, Y | Γ ` App∗(Λ∗α.M, ftv(Y), σ) : τ [σ/α]
(Y ` σ)

where α /∈ ftv(Γ). By Proposition 2 we have that X,Y | Γ `M [σ/α] : τ [σ/α] is derivable,
since α /∈ ftv(Γ). The case for (β∀) is similar.

(η −−∗). Suppose we have a derivation of X | Γ ` λ∗x : σ.app∗(M,x) : σ −−∗ τ . Then,
using invertibility, we know that there is a derivation that ends with

X | Γ `M : σ −−∗ τ X | x : σ ` x : σ
X | Γ, x : σ ` app∗(M,x) : τ

X | Γ ` λ∗x : σ.app∗(M,x) : σ −−∗ τ

without loss of generality. The result is then immediate. The case (η →) is essentially
the same.

(η∀∗). Without loss of generality we have a derivation ending

...
X1 | Γ1 `M1 : ∀∗α.τ

X1, α | Γ1 ` App∗(M1, {α}, α) : τ
X1 | Γ1 ` Λ∗α.App∗(M1, {α}, α) : ∀∗α.τ

...
X | Γ ` Λ∗α.App∗(M, {α}, α) : ∀∗α.τ

for some X1, Γ1 and M1. We can then recover X | Γ ` M : ∀∗α.τ from X1 | Γ1 ` M :
∀∗α.τ by using the rules from the sequence between the abstraction and the root of the
original derivation, thus omitting the polymorphic abstraction and application.

All reductions of the calculus terminate.

Theorem 2. The calculus is strongly normalizing.

Proof. The proof is by the translation method. A similar proof for αλ is contained
in (Pym 2002). We define recursively a translation of our calculus into the terms of the
ordinary polymorphic lambda calculus in the natural way: additive and multiplicative
variants of connectives are sent to the same connective in the ordinary polymorphic
lambda calculus (for example ∗ is sent to ∧ and Λ∗ is sent to Λ). Each one-step reduction
of our calculus corresponds to a reduction of the ordinary calculus. Since each reduction
sequence of the ordinary calculus is of finite length so must be every reduction sequence
of our calculus.

Confluence (the Church-Rosser property) in α2λ2 has not been studied in detail.

Bunched Polymorphism 17

4. Categorical Semantics

The calculus α2λ2 has a categorical semantics that is a hybrid of the indexed category
(hyperdoctrine) semantics of λ2 with the doubly closed category semantics of αλ. We
omit discussion of disjunction (coproducts) for the remainder of the paper.

Before giving the modified version of hyperdoctrine, we introduce some terminology
for a certain structure on a category. Consider a symmetric monoid, (⊗, I, a, l, r, s), on a
category B: ⊗ is the tensor operation, I is its unit, and r : A⊗ I −→ A, l : I ⊗A −→ A,
aA,B,C : (A⊗B)⊗ C −→ A⊗ (B ⊗ C), sA,B : A⊗B −→ B ⊗ A are the components of
the right-unit, left-unit, associativity and symmetry natural isomorphisms, respectively.

Let 1B : B −→ B be the identity functor. Let B : B −→ B be the constant functor to
any given object B ∈ B. Recall the definitions of monoidal functor and monoidal natural
transformation. The functors 1B, B and 1B ⊗ B are all monoidal. The full definitions
of symmetric monoidal category, monoidal functor and monoidal natural transformation
can all be found in (Mac Lane 1971).

Definition 2. The monoid ⊗ is a pseudoproduct if there is a monoidal natural transfor-
mation ψ1

B : 1B ⊗B =⇒ 1B : B −→ B for every object B in B.

The following lemma provides a useful alternative definition.

Lemma 4. A symmetric monoid (⊗, I, a, l, r, s) on B is a pseudoproduct if for every
object B in B there is a (first) pseudoprojection, that is, a natural transformation ψ1

B :
1B ⊗B =⇒ 1B satisfying the two coherence diagrams given below.

(A⊗B)⊗ C
a- A⊗ (B ⊗ C) A⊗ I

r - A

A⊗B

ψ1

? ψ1
-

�

1A
⊗ ψ

1

A
?

ψ1

A⊗ I

1A⊗I

? ψ1
- A

?

1A

Proof. The proof of this lemma just makes use of the defining diagrams for monoidal
functors and natural transformations and the coherence property for symmetric monoidal
closed categories.

We write the component at an object A as ψ1
A,B : A⊗B −→ A. Using the symmetry

isomorphisms s, it is straightforward to construct a second pseudoprojection ψ2
A : A ⊗

1B =⇒ 1B with components ψ2
A,B where A,B are any objects of B. We frequently omit

both subscripts and superscripts on pseudoprojections.
All products are pseudoproducts, but not vice versa. The category Set⊥ of pointed

sets A⊥ and functions which preserve the distinguished element ⊥ has a pseudoproduct
given by the coproduct. A pseudoprojection from A⊥ + B⊥ to A⊥ may be taken to be
⊥, b 7→ ⊥, a 7→ a for all a ∈ A, b ∈ B.

Lemma 5. If the unit of a symmetric monoid on B is the terminal object, that is I = >,
then that monoid has precisely one pseudoprojection, and

ψ1
A,B = rA ◦ (1A ⊗ !B)

Collinson, Pym, Robinson 18

for any objects A and B, where rA is the component of r at A, and !B is the unique
arrow from B into the terminal object.

Proof. The arrows ψ1
A,B are easily verified to satisfy the conditions of Lemma 4. Fur-

thermore, the left-hand diagram of Lemma 4 together with the coherence conditions for
the monoid (in particular, the isomorphism r) force the arrow ψ1

A,B to be given by the
above equation.

A cartesian doubly closed category (CDCC) is a category with a pair of symmetric
monoidal closed structures, one of which is cartesian. We write the cartesian closed
structure as ×,→ and the other closed structure as ⊗,(. A functor between CDCC’s
is strict if it preserves both the cartesian closed and the monoidal closed structure on-
the-nose. Let CDCC be the category of cartesian doubly closed categories and strict
functors.

A split indexed category consists of a functor

P : Bop −→ C

from a base category B to some category of categories C. For any object B in the base the
category P (B) is called the fibre over B. The functors P (s) : P (B′) −→ P (B) induced
by base arrows s : B −→ B′ are known as reindexings or substitutions. The notation s∗

is often used in place of P (s).
Split indexed categories can be used to model λ2 following (Seely 1987). These models

are called hyperdoctrines and are an extension of the method of modelling quantification
of (Lawvere 1969). A detailed account of split indexed categories and hyperdoctrines is
given in (Jacobs 1999). Hyperdoctrines for λ2 require the fibres to be cartesian closed
and their substitutions to preserve this structure appropriately (usually on-the-nose).
For quantification over types they also require a distinguished base object Ω, called the
generic object, which is characterized by the property that there is a natural bijection

ιJ : (PJ)0
∼=−→ hom(J,Ω) ,

where hom(−,Ω) is the contravariant hom functor for B and (PJ)0 is the set of objects of
the fibre PJ . This corresponds to the substitution of arbitrary types for type variables.
In addition, the right-adjoints to certain of the substitutions are required to satisfy the
Beck-Chevalley condition.

Definition 3. An α2λ2-hyperdoctrine is a split indexed category

P : Bop −→ CDCC

with the following structure and properties:

— a generic object, Ω;
— finite products in B, including terminal object, >;
— a symmetric monoid (⊗, I, a, l, r, s) in B, with I = >;
— for any projection π : B × Ω −→ B in B, the functor P (π) has a right-adjoint, Π;
— each P (π) satisfies the Beck-Chevalley condition (detailed below);

Bunched Polymorphism 19

— for each pseudoprojection ψ : B ⊗ Ω −→ B induced by the monoid and terminal
object, the functor P (ψ) has a right-adjoint, Ψ;

— each P (ψ) satisfies the multiplicative Beck-Chevalley condition (below).

Consider any projection π and pseudoprojection ψ as in Definition 3. Further, suppose
that u : C −→ B is an arrow of B. Let

ε : P (π) ◦Π =⇒ 1P (B×Ω) and ζ : P (ψ) ◦Ψ =⇒ 1P (B⊗Ω)

be the co-units of the adjunctions P (π) a Π and P (ψ) a Ψ, respectively. For each object
τ over P (B × Ω), there is a natural transformation

m : P (u) ◦Π =⇒ Π ◦ P (u× 1)

called the (additive) canonical natural transformation. The transpose of P (u × 1)(ετ)
under the adjunction P (π) a Π,

P (u× 1)(ετ) : (P (π) ◦ P (u) ◦Π)(τ) −→ P (u× 1)(τ)
mτ : (P (u) ◦Π)(τ) −→ (Π ◦ P (u× 1))(τ)

,

gives the component, mτ , at each object τ of P (B×Ω). In a similar way, the adjunction
P (ψ) a Ψ gives rise to the (multiplicative) canonical natural transformation

n : P (u) ◦Ψ =⇒ Ψ ◦ P (u⊗ 1)

using the transpose of P (u⊗ 1)(ζτ) to give the component nτ at each τ in P (B ⊗ Ω).

Definition 4. (The (Additive) Beck-Chevalley Condition). Let u : C −→ B be an arrow
of B. Then the following square commutes.

P (B × Ω)
Π- P (B)

P (C × Ω)

P (u× 1)

? Π- P (C)

P (u)

?

and the canonical natural transformation m is the identity.

For multiplicative quantification we have a modified version of the Beck-Chevalley
condition. This is the same as the ordinary Beck-Chevalley condition in the case where
the monoid is a product.

Definition 5. (The Multiplicative Beck-Chevalley Condition). Let u : C −→ B be an
arrow of B. Then the following square commutes.

P (B ⊗ Ω)
Ψ- P (B)

P (C ⊗ Ω)

P (u⊗ 1)

? Ψ- P (C)

P (u)

?

Collinson, Pym, Robinson 20

JX ` T : T K = > JX ` I : IK = I JX(α) ` αK = ι−1
JXK($X(α))

JX ` τ ∧ τ ′K = JX ` τK× JX ` τ ′K JX ` τ → τ ′K = JX ` τ ′KJX`τK

JX ` τ ∗ τ ′K = JX ` τK⊗ JX ` τ ′K JX ` τ −−∗ τ ′K = JX ` τK (JX ` τ ′K

JX ` ∀α.τK = ΠJX;α ` τK JX ` ∀∗α.τK = ΨJX,α ` τK

Fig. 2. Interpretation of Types

and the canonical natural transformation n is the identity.

We turn now to the interpretation of hubs, types, contexts and terms. This is uniquely
determined by the structure specified in the α2λ2-hyperdoctrine.

Hubs are interpreted as objects in the base B, with

J∅K = > JαK = Ω JX;Y K = JXK× JY K JX,Y K = JXK⊗ JY K

using the objects >, I and operations × and ⊗ in the base.
Types are interpreted as objects JX ` τK of the fibre P (JXK). The interpretation is

given in Figure 2. In that figure >, ×, →, I, ⊗ and (come from the doubly closed
structure of the fibre P (JXK), Π is the right-adjoint to P (π), induced by π : JXK×Ω −→
JXK, and Ψ is the right-adjoint to P (ψ), which comes from ψ : JXK⊗Ω −→ JXK. Finally,
$X(α) : JXK −→ Ω is the arrow in B that tracks the weakening of α to X(α). That is,

$α = 1Ω

$X(α);X′ = $X(α) ◦ π1 $X′;X(α) = $X(α) ◦ π2

$X(α),X′ = $X(α) ◦ ψ1 $X′,X(α) = $X(α) ◦ ψ2

using projections π1 : JX(α)K×JX ′K −→ JX(α)K and π2 : JX ′K×JX(α)K −→ JX(α)K and
pseudoprojections ψ1 : JX(α)K⊗ JX ′K −→ JX(α)K and ψ2 : JX ′K⊗ JX(α)K −→ JX(α)K.

Contexts are interpreted as objects of P (JXK) by extension of the interpretation of
types:

JX ` x : τK = JX ` τK

JX ` Γ;∆K = JX ` ΓK× JX ` ∆K JX ` Γ,∆K = JX ` ΓK⊗ JX ` ∆K

where this uses the product and monoidal structure of fibres.
Before we give the semantics of terms we introduce some auxiliary concepts and nota-

tions. Contexts-with-holes are of the form X ` Γ(−) and defined recursively by

— X ` (−) is a context-with-hole
— if we have the context X ` ∆ and the context-with-hole X ` Γ(−) then

X ` Γ(−);∆ X ` ∆; Γ(−) X ` Γ(−),∆ X ` ∆,Γ(−)

Bunched Polymorphism 21

are contexts-with-holes.

Let

CA : P (JXK) −→ P (JXK)

be the constant functor to the object A of the fibre over JXK. For any context-with-hole
X ` Γ(−) there is a functor

FX`Γ(−) : P (JXK) −→ P (JXK)

as given by the recursive definition

— FX`(−) = idP (JXK), the identity functor on P (JXK).
— FX`Γ(−);∆ = FX`Γ(−) × CJX`∆K
— FX`∆;Γ(−) = CJX`∆K × FX`Γ(−)

— FX`Γ(−),∆ = FX`Γ(−) ⊗ CJX`∆K
— FX`∆,Γ(−) = CJX`∆K ⊗ FX`Γ(−)

where × and ⊗ are taken pointwise.
In a similar way the hubs-with-hole are defined as follows:

— (−) is a hub-with-hole;
— if X(−) is a hub-with-hole then so are

X(−);Y Y ;X(−) X(−), Y Y,X(−) .

Given any arrow m : JY K → JZK and any hub-with-hole X(−) there is an arrow

mX(−) : JX(Y)K −→ JX(Z)K

defined by:

1 if X(−) = (−) then mX(−) = m

2 if X(−) = X ′′; (X ′(−)) then mX(−) = id JX′′K ×mX′(−)

3 if X(−) = (X ′′(−));X ′ then mX(−) = mX′′(−) × id JX′K
4 if X(−) = X ′′, (X ′(−)) then mX(−) = id JX′′K ⊗mX′(−)

5 if X(−) = (X ′′(−)), X ′ then mX(−) = mX′′(−) ⊗ id JX′K.

Terms X | Γ `M : τ are interpreted as morphisms

JX | Γ `M : τK : JX ` ΓK −→ JX ` τK

in P (JXK). The interpretation is given in Figure 3 and Figure 4.
In Figure 3 the arrow π1 is the first projection, the arrow i : JX ` ΓK −→ JX ` ∆K is the

isomorphism from the CDCC structure and δ : JX ` ∆K −→ JX ` ∆K× JX ` ∆′K is the
diagonal. The operators (−)∧ and (−)∨ give the transposes of the additive exponential,
(−)a and (−)` give the transposes of the linear exponential. The functors FX`Γ(−) are
used to lift arrows m : JX ` ∆K −→ JX ` ∆′K into arrows FX`Γ(−)(m) : JX ` Γ(∆)K −→
JX ` Γ(∆′)K.

In Figure 4, the operations (−)M and (−)O give the transposes of P (π) a Π, (−)/

and (−). give the transposes of P (ψ) a Ψ. The morphism ι(B) : JY K −→ Ω in the
base arises because Ω is generic. The arrow w : JY (X)K −→ JXK is weakening (arising
from projections and pseudoprojections). The arrow i : JY K −→ JXK is the isomorphism
induced by X ≡ Y . The arrow δ : JXK −→ JX;X ′K is the diagonal, where X ∼= X ′.

Collinson, Pym, Robinson 22

JX | x : τ ` x : τK = 1JX`τK JX | ∅ ` > : >K = 1> JX | ∅∗ ` I : IK = 1I

JX ` Γ(∅) ` N : τK = n JX | ∆ `M : >K = m

JX | Γ(∆) ` N [M/>] : τK = n ◦ FX`Γ(−)(m)

JX | Γ(∅∗) ` N : τK = n JX | ∆ `M : IK = m

JX | Γ(∆) ` let I be M in N : τK = n ◦ FX`Γ(−)(m)

JX | Γ `M : τK = m JX | ∆ ` N : τ ′K = n

JX | Γ;∆ ` 〈M,N〉 : τ ∧ τ ′K = m× n

JX | Γ `M : τK = m JX | ∆ ` N : τ ′K = n

JX | Γ,∆ `M ∗N : τ ∗ τ ′K = m⊗ n

JX | Γ `M : φ ∧ ψK = m JX | Γ; (x : φ; y : ψ) ` N : τK = n

JX | Γ ` N [π1M/x, π2M/y] : τK = n ◦ 〈1JX`ΓK,m〉

JX | Γ(x : φ, y : ψ) ` N : τK = n JX | ∆ `M : φ ∗ ψK = m

JX | Γ(∆) ` let (x, y) be M in N : τK = n ◦ FX`Γ(−)(m)

JX | Γ;x : φ `M : ψK = f

JX | Γ ` λx : φ.M : φ→ ψK = f∧

JX | Γ, x : φ `M : ψK = f

JX | Γ ` λ∗x : φ.M : φ−−∗ ψK = fa

JX | Γ `M : φ→ ψK = m JX | ∆ ` N : φK = n

JX | Γ;∆ ` app(M,N) : ψK = m∨ ◦ (1JX`ΓK × n)

JX | Γ `M : φ−−∗ ψK = m JX | ∆ ` N : φK = n

JX | Γ,∆ ` app∗(M,N) : ψK = m` ◦ (1JX`ΓK ⊗ n)

JX | Γ(∆) `M : τK = m

JX | Γ(∆;∆′) `M : τK = m ◦ FX`Γ(−)(π1)

JX | Γ `M : τK = m

JX | ∆ `M : τK = m ◦ i (Γ ≡ ∆)

JX | Γ(∆;∆′) `M : τK = m

JX | Γ(∆) ` (M : τ)[∆/∆′]K = m ◦ FX`Γ(−)(δ)
(∆ ∼= ∆′)

Fig. 3. Interpretation of Terms I

Bunched Polymorphism 23

JX;α | Γ `M : τK = g : JX;α ` ΓK −→ JX;α ` τK
JX | Γ ` Λα.M : ∀α.τK = gM : JX ` ΓK −→ JX ` ∀α.τK

JX,α | Γ `M : τK = h : JX,α ` ΓK −→ JX,α ` τK
JX | Γ ` Λ∗α.M : ∀∗α.τK = h/ : JX ` ΓK −→ JX ` ∀∗α.τK

JX | Γ `M : ∀α.τK = m : JX ` ΓK −→ JX ` ∀α.τK JY ` σK = B ∈ P (JY K)
JX;Y | Γ ` App(M,σ)K = P (1JXK × ι(B))(mO)

JX | Γ `M : ∀∗α.τK = m : JX ` ΓK −→ JX ` ∀∗α.τK JY ` σK = B ∈ P (JY K)
JX,Y | Γ ` App∗(M, ftv(Y), σ)K = P (1JXK ⊗ ι(B))(m.)

JX | Γ `M : τK = m

JY (X) | Γ `M : τK = P (w)(m)

JX | Γ `M : τK = m

JY | Γ `M : τK = P (i)(m)
(X ≡ Y)

JY (X;X ′) | Γ `M : τK = m

JY (X) | Γ[X/X ′] ` (M : τ)[X/X ′]K = P (δY (−))(m)
(X ∼= X ′)

Fig. 4. Interpretation of Terms II

4.1. Soundness

We have shown above that every well-formed term X | Γ ` M : τ can be interpreted as
an arrow JX ` ΓK −→ JX ` τK in P (JXK).

The substitution operations for terms and types may be interpreted. We indicate this
for (unary) substitution of a type in another type and for a term in another term. As
usual, term substitution corresponds (essentially) to composition whilst type substitution
makes use of the generic object. The substitution of a term for a variable takes place in
a fixed hub, and its interpretation is modelled in the corresponding CDCC as in (Pym
2002).

Proposition 4. (Substitution)
The operations of type and term substitution have interpretations in P . Furthermore,

these agree with the interpretations of substitutions in the syntax.

1 A substitution s = [σ1/β1, . . . , σn/βn] : X −→ Y gives a functor JsK : P (JY K) −→
P (JXK). In the particular case s = [σ/β] the generic object gives JsK = P (ι(A)) :
P (Ω) −→ P (JXK), where JX ` σK = A ∈ P (JXK). If JY (β) ` τK = B ∈ P (JY K) and
JX ` σK = A ∈ P (JXK) then

JY (X) ` τ [σ/β]K = P ((ι(A))Y (−))(B) .

2 If JX | Γ(x : τ) ` N : σK = n : JX ` Γ(x : τ)K −→ JX ` σK and JX | ∆ ` M : τK =
m : JX ` ∆K −→ JX ` τK and µ(N) ∩ ftv(M) = ∅, then JX | Γ(∆) ` N [M/x] : σK is
given by the arrow

JX ` Γ(∆)K
FX`Γ(−)(m)

−→ JX ` Γ(x : τ)K n−→ JX ` σK

Collinson, Pym, Robinson 24

over JXK.

Proof. The proof of the first is an induction on the structure of types. The proof of
the second of these is a lengthy induction, that consists of pushing substitutions to the
leaves of derivations.

The equalities that arise from reductions are sound in the model.

Proposition 5. (Equational Soundness) If an equality X | Γ `M = M ′ : τ is derivable
then JX | Γ `M : τK = JX | Γ `M ′ : τK holds in P (JXK).

Proof. The syntactic equalities are generated by the βηζ-conversions and all of these
take place over a fixed hub, except for the reductions for the quantifiers. We know that
the equalities over any hub (which are just the equalities for αλ) are all validated in the
corresponding CDCC.

The β- and η-rules for the multiplicative quantifier are witnessed, respectively, by the
equations

(P (1JXK ⊗ 1Ω))((m/).) = m ((P (1JXK ⊗ 1Ω))(n.))/ = n ,

given interpretations JX,α | Γ ` M : τK = m : JX,α ` ΓK −→ JX,α ` τK and JX |
Γ ` N : ∀∗α.τK = n : JX ` ΓK −→ JX ` ∀∗α.τK. These equations hold because the
indexed category is split. The equalities for additive quantification follow by the obvious
modifications.

We have not explicitly given a coherence theorem for interpretations. Strictly speaking,
the interpretations above are defined for derivations of sequents; we have not shown that
all interpretations of the same sequent are equal, and we shall not do so here. We are not
aware of a detailed coherence proof for the interpretation of αλ in CDCCs either, although
it is suggested by both (Pym 2002) and (O’Hearn 2003) that this is unproblematic.
Supposing this to be the case, we also believe that the coherence property holds for
our hyperdoctrine interpretation of bunched polymorphism. This is in view of the Beck-
Chevalley conditions, the soundness of interpretation of substitution and the soundness
of syntactic equality. We can see no reason why the standard categorical, cut-elimination-
like, method cannot be used to complete the proof.

4.2. Completeness

We now turn our attention to the issue of completeness of the hyperdoctrine interpreta-
tion. We prove this by the usual method, following the construction for λ2-hyperdoctrines.
That is, we build a generic (term) model from the syntax such that if an equation holds
between interpreted terms then it must also hold in the theory.

We construct the base B from the syntax of hubs, types and substitutions. The objects
of B are taken to be the equivalence classes of hubs under the congruence relation ∼= (this
handles α-conversion of type variables). Throughout this construction, we use hubs as
representatives of their equivalence classes. Let Ω be the equivalence class of α and > be
the equivalence class of ∅.

Bunched Polymorphism 25

The congruence ∼= on hubs extends to well-formed types, type substitutions and terms:

(X ` σ) ∼= (Y ` τ) ⇐⇒ X ∼= Y & τ = σ[Y/X]

(s = [σ1/β1, . . . , σn/βn] : X −→ Y) ⇐⇒ X ∼= X ′ & Y ∼= Y ′ &
∼= (t = [τ1/β′1, . . . , τn/β

′
n] : X ′ −→ Y ′) (X ` σi) ∼= (X ′ ` τi)

(X | ∆ `M : σ) ∼= (Y | Γ ` N : τ) ⇐⇒ X ∼= Y & Γ = ∆[Y/X] &
N = M [Y/X] & τ = σ[Y/X]

for all hubs X and Y . Again, we will tend to use representatives for equivalence classes in
what follows and will often just write τ , for example, rather than X ` τ . Taking quotients
as above gives a version of Lemma 1.

Definition 6. The category B has objects consisting of equivalence classes of hubs and
arrows consisting of equivalence classes of type substitutions.

It is a straightforward matter to verify that the category is well-defined, in partic-
ular that ∼= is a congruence for composition. It is also straightforward to verify that
the category has the structure required for the base of an α2λ2-hyperdoctrine. The
category has a product: the product of X and Y is given by X;Y (renaming as appro-
priate so that X and Y are disjoint), the first projection is given by the substitution
π : [α1/α1, . . . , αm/αm] : X;Y −→ X, where ftv(X) = {α1, . . . , αm} and the second
projection is given in the evident way. There is also a diagonal map δX : X −→ X;X ′

whenever X ∼= X ′, given by [α1/α1, . . . , αm/αm, α1/α
′
1, . . . , αm/α

′
m]. In a similar way,

there is also a symmetric monoid: the monoidal product of X and Y is X,Y and the
unit and symmetry isomorphisms are the evident ones. The pseudoprojection is given
by ψ : [α1/α1, . . . , αm/αm] : X,Y −→ X, where ftv(X) = {α1, . . . , αm}. However, there
is no analogue of the diagonal map above because of the disjointness condition on type
substitutions.

Lemma 6. B has finite products and a symmetric monoid which is a pseudoproduct.

Write P (X) for the fibre over the equivalence class ofX. The construction of each P (X)
follows the construction of a CDCC from αλ, see (Pym 2002). Objects are equivalence
classes of types τ that are well-formed over X under the equivalence relation ∼=. A
morphism from σ to τ is an equivalence class of term formations X | x : σ ` M : τ ,
and we write such an arrow as a pair (x,M). The equivalence is generated by α-equality
for variables, the βηζ-rules of α2λ2 and the congruence ∼= on hubs extended to terms.
Taking equivalence classes with respect to ∼= ensures that the objects and morphisms of
fibres are well-defined. Composition of morphisms is achieved through substitution: α-
conversion is used to rename variables and type variables of representatives as necessary,
thus avoiding unwanted variable capture and ensuring that the side-condition (on the
free type variables, see Proposition 1) for substitutions is achieved.

Lemma 7. Each fibre P (X) is a CDCC.

Every arrow u : X −→ Y of B yields a substitution functor P (u) : P (Y) −→ P (X)

Collinson, Pym, Robinson 26

between fibres. The functor is just substitution of types (up to equivalence classes under
∼=). It is defined by

P (u)(τ) = u∗(τ)

P (u)((x,M)) = (y, u∗(M [y/x])) : u∗(σ) −→ u∗(τ)

for any type τ and arrow (x,M) : σ −→ τ in P (Y), and any y : ∀∗α.σ that is not bound
by substitution for x in M . Both the object and arrow assignments can be verified to be
well-defined and calculations can be performed to show that P (u) is indeed functorial.
Further calculations (which rest upon simple properties of type substitutions) show that
the functors P (u) preserve the CDCC structure on-the-nose.

Lemma 8. Each arrow u : X −→ Y of B yields a substitution functor P (u) : P (Y) −→
P (X) that preserves the chosen CDCC structure on-the-nose.

The identity arrow in the base category corresponds to the identity substitution. Con-
sidering the identity 1Z : Z −→ Z or the composite of two arrows

X
u−→ Y

v−→ Z

in B we have that

P (1Z)(τ) = (1Z)∗(τ) = τ

P (u)(P (v)(τ)) = u∗(v∗(τ)) = (v ◦ u)∗(τ) = P (v ◦ u)(τ)

for any type τ in P (Z). A similar calculation for arrows shows that P defines a (con-
travariant) functor out of B.

Lemma 9. The object and arrow assignments above constitute a functor P : Bop −→
CDCC.

The projection and pseudoprojection

π : X × Ω −→ X and ψ : X ⊗ Ω −→ X

give rise to weakenings. These are functors

P (π) : P (X) −→ P (X × Ω) and P (ψ) : P (X) −→ P (X ⊗ Ω)

respectively, that are inclusions on both objects and arrows.

Lemma 10. The functors P (π) and P (ψ) have right-adjoints

Π : P (X × Ω) −→ P (X) and Ψ : P (X ⊗ Ω) −→ P (X)

respectively.

Proof. We only give the proof for pseudoprojection. The proof for projection is a trivial
modification.

The right-adjoint

Ψ : P (X ⊗ Ω) −→ P (X)

Bunched Polymorphism 27

is defined so that

Ψ(τ) = ∀∗α.τ
Ψ((x,M)) = (y,Λ∗α.M [App∗(y, {α}, α)/x])

for all objects τ and arrows (x,M) : σ −→ τ over X,α. The choice of variable y is
irrelevant, so long as it has type ∀∗α.σ.

Consider the identity morphism (x, x) : τ −→ τ over X. Now

Ψ((x, x)) = (y,Λ∗α.(x[App∗(y, {α}, α)/x])
= (y,Λ∗α.App∗(y, {α}, α))
= (y, y)

using the η-rules. So Ψ maps identity arrows to identity arrows.
Consider any two arrows (x,M) : σ −→ τ and (z,N) : τ −→ υ over X. These have

composite (x,N [M/z]) : σ −→ υ. Now

Ψ((z,N) ◦ (x,M))) = Ψ(x,N [M/z])
= (y,Λ∗α.(N [M/z])[App∗(y, {α}, α)/x])
= (y,Λ∗α.N [M [App∗(y, {α}, α)/x]/z])

holds, using an η-rule. On the other hand,

Ψ(z,N) ◦Ψ(x,M) = (w,Λ∗α.N [App∗(w, {α}, α)/z]) ◦ (y,Λ∗α.M [App∗(y, {α}, α)/x])
= (y, (Λ∗α.N [App∗(w, {α}, α)/z])[(Λ∗α.M [App∗(y, {α}, α)/x])/w]
= (y,Λ∗α.N [App∗(Λ∗α.M [App∗(y, {α}, α)/x], {α}, α)/z])
= (y,Λ∗α.N [M [App∗(y, {α}, α)/x]/z])

holds, using a β-rule. Therefore Ψ is functorial.
There is a bijection

σ = P (ψ)(σ) −→ τ

σ −→ Ψ(τ) = ∀∗α.τ
between arrows, and this is natural in σ over Ω and τ over X ⊗ Ω.

Define, for any σ and τ , the function

fσ,τ : P (X ⊗ Ω)(P (ψ)(σ), τ) −→ P (X)(σ,Ψ(τ))

by

fσ,τ (x,M) = (x,Λ∗α.M)

for all arrows (x,M) of P (X ⊗ Ω). Define the inverse

f−1
σ,τ : P (X)(σ,Ψ(τ)) −→ P (X ⊗ Ω)(P (ψ)(σ), τ)

so that

f−1
σ,τ (x,N) = (x,App∗(N, {α}, α))

for every arrow (x,N) of P (X). The βη-rules for Λ∗ show fσ,τ to be a bijection.
Naturality of the bijection is established using a β-rule as follows. Let (y,N) : σ′ −→ σ

Collinson, Pym, Robinson 28

be an arrow over X and (z,Q) : τ −→ τ ′ be an arrow over X ⊗ Ω. Let

β =P (X)((y,N),Ψ(z,Q)) :P (X)(σ,Ψ(τ)) −→ P (X)(σ′,Ψ(τ ′))

α =P (X ⊗ Ω)(P (ψ)(y,N), (z,Q)) :P (X ⊗ Ω)(P (ψ)(σ), τ) −→ P (X ⊗ Ω)(P (ψ)(σ′), τ ′)

be the evident functions induced using the hom-functors. The commutativity of the
square

P (X ⊗ Ω)(P (ψ)(σ), τ)
fσ,τ- P (X)(σ,Ψ(τ))

P (X ⊗ Ω)(P (ψ)(σ′), τ ′)

α

?

fσ′,τ ′

- P (X)(σ′,Ψ(τ ′))

β

?

for fσ,τ is established by the calculations below.
Let (x,M) : P (ψ)(σ) −→ τ be an arrow in P (X ⊗ Ω). We have

(β ◦ fσ,τ)(x,M) = β(x,Λ∗α.M)
= (w,Λ∗α.Q[App∗(w, {α}, α)/z]) ◦ (x,Λ∗α.M) ◦ (y,N)
= (w,Λ∗α.Q[App∗(w, {α}, α)/z]) ◦ (y,Λ∗α.M [N/x])
= (y,Λ∗α.Q[(App∗(Λ∗α.M [N/x], {α}, α))/z])
= (y,Λ∗α.Q[(M [N/x])/z])

where w : ∀∗α.τ and the final step is by a β-rule. On the other hand,

(fσ′,τ ′ ◦ α)(x,M) = fσ′,τ ′((z,Q) ◦ (x,M) ◦ (y,N))
= fσ′,τ ′((y,Q[(M [N/x])/z]))
= (y,Λ∗α.Q[(M [N/x])/z])

and this completes the proof.

Lemma 11. The Beck-Chevalley conditions hold for Π and Ψ.

Proof. We give the proof for Ψ only. The proof for Π is almost identical. Given a
substitution u = [σ1/β1, . . . , σn/βn] : X −→ Y we perform a couple of straightforward
calculations. Note that there is a substitution u⊗1 = [σ1/β1, . . . , σn/βn, α/α] : X,α −→
Y, α, which we usually write as [σ1/β1, . . . , σn/βn]. We have

(P (u) ◦Ψ)(τ) = u∗(∀∗α.τ) = ∀∗α.((u⊗ 1)∗τ) = (Ψ ◦ P (u⊗ 1))(τ)

Bunched Polymorphism 29

for any object τ of P (Y ⊗ Ω). Also,

(P (u) ◦Ψ)((x,M)) = u∗(Ψ((x,M)))
= u∗((y,Λ∗α.M [App∗(y, {α}, α)/x]))
= (z, (Λ∗α.M [App∗(y, {α}, α)/x])[z/y][σ1/β1, . . . σn/βn])
= (z, (Λ∗α.M [App∗(z, {α}, α)/x])[σ1/β1, . . . σn/βn])
= (z,Λ∗α.((M [w/x][σ1/β1, . . . σn/βn])[App∗(z, {α}, α)/w]))
= Ψ((w,M [w/x][σ1/β1, . . . σn/βn]))
= Ψ((u⊗ 1)∗((x,M)))
= (Ψ ◦ P (u⊗ 1))((x,M))

for any arrow (x,M) : σ −→ τ in P (Y ⊗ Ω) and any variables y : ∀∗α.σ in P (Y),
z : ∀∗α.σ[σ1/β1, . . . , σn/βn] in P (X) and w : σ[σ1/β1, . . . , σn/βn] in P (X ⊗ Ω) that are
not bound by the above substitutions.

The evident calculations show that the additive and multiplicative canonical natural
transformations are both identities.

An arrow from X to Ω in B simply consists of a type τ such that X ` τ . Hence, the
identity gives a natural bijection between the hom-sets B(X,Ω) and fibres P (X).

Lemma 12. The indexed category P has a generic object Ω.

Putting all of the above information together we have established that P has the
required structure for a model.

Theorem 3. The functor P : Bop −→ CDCC is an α2λ2-hyperdoctrine.

The completeness theorem is an immediate corollary, since P is constructed from the
syntax and each term is interpreted by its own αβηζ-equivalence class.

Theorem 4. (Completeness) If JX | Γ ` M : τK = JX | Γ ` M ′ : τK holds in every
α2λ2-hyperdoctrine then X | Γ `M = M ′ : τ is derivable in the calculus.

5. Hyperdoctrine Structure on Partial Equivalence Relations

Partial equivalence relations on the natural numbers give rise to one of the simplest
and most elegant models of the polymorphic lambda calculus. This was shown early-on
by (Girard 1972) but has been much studied since. Building upon this we show how the
category of partial equivalence relations supports a model for additive polymorphism and
first-order bunching. As usual this is structured as a suitable hyperdoctrine. We exhibit
a system of pseudoprojections and adjoints between the fibres that is distinct from those
used to model additive polymorphism. The idea is to take multiplicatively combined type
variables to refer to disjoint PERs, thus providing a disjointness reading for multiplicative
polymorphism. However, the system of adjoints (for the pseudoprojections) fails to satisfy
the required Beck-Chevalley condition, for which we give an example.

Collinson, Pym, Robinson 30

5.1. The Category of PERs

A partial equivalence relation, PER for short, consists of a symmetric, transitive, binary
relation R ⊆ N× N on the natural numbers. Define the domain of R to be the set

dom(R) = {n ∈ N | nRn}

and write

dom(R)/R = {[n] | n ∈ dom(R)}
for the set of (non-empty) equivalence classes of R.

Recall the elementary fact from recursion theory that natural numbers may be used as
codes for recursive functions. The letter e is traditionally used for such codes. We write
{e} for the partial function coded by e.

Let R and S be PERs. A partial function f : N −→ N is said to track (from R to S) if

mRn =⇒ (fm)S(fn)

for all natural numbers m,n.
We define an equivalence relation ∼ between codes for such functions by

e ∼ e′ iff ∀n. nRn =⇒ ({e}n)S({e′}n)

for any codes e and e′. We write [e]R,S for the equivalence class of such a code (and often
omit the subscripts). A map between PERs consists of just such an equivalence class of
codes. Let PER be the category of partial equivalence relations and let PER0 be its set
of objects.

The category PER is cartesian closed. The terminal PER is such that every number
is related to every other. Let

(−,−) : N× N −→ N
be one of the standard recursive operations for encoding pairs of natural numbers as
natural numbers. Then the product R× S of PERs R and S is given by the condition

(m,n)(R× S)(m′, n′) ⇐⇒ mRm′ & nSn′

for all m,n,m′, n′ ∈ N and their are corresponding first and second projections with
codes p1 and p2, respectively. In fact PER has all finite limits. The exponent R → S is
defined by

n(R→ S)n′ iff ∀m,m′. mRm′ =⇒ ({n}m)S({n′}m′)

for any two pers R and S. The intersection of any (set-indexed) family of PERs is a PER.
The category PER has binary coproducts: embed isomorphically the two given PERs

into PERs with disjoint domains, then take the union of the relations. Since PER is
cartesian closed and has a symmetric monoid (given by the coproduct) we might think
that we can use these two structures to model αλ. However, the monoid fails to be closed.
This can be remedied by moving to a model based on pairs of PERs, motivated by a
similar construction for sets.

The category Set×Set of pairs of sets (and pairs of functions) is a CDCC (O’Hearn and
Pym 1999; Pym 2002). Finite products and exponentials are given pointwise. Moreover,

Bunched Polymorphism 31

there is an additional symmetric monoidal closed structure with

(A0, A1)⊗ (B0, B1) = ((A0 ×B0) + (A1 ×B1), (A0 ×B1) + (A1 ×B0))

(A0, A1) ((B0, B1) = ((A0 → B0)× (A1 → B1), (A0 → B1)× (A1 → B0)) ,

for all A0, A1, B0, B1 ∈ Set , where A+ B is the coproduct of A and B in Set . This can
be viewed as an instance Set2 of Day’s closure construction (Day 1970; Day 1973), where
2 = {0, 1} is the discrete category with monoid given by addition modulo two.

Definition 7. Define the category PER × PER to have objects consisting of pairs R =
(R0, R1) of PERs. Arrows of PER × PER are equivalence classes

[e]R,S : R −→ S

of codes, where

— R = (R0, R1) and S = (S0, S1)
— e = (e0, e1) ∈ N, where [e0] : R0 −→ S0 and [e1] : R1 −→ S1

— the partial equivalence relation on such codes for pairs of codes is given by

e ∼ f ⇐⇒ e0 ∼ f0 and e1 ∼ f1

for any two suitable codes for pairs of codes e, f .

As before, we usually omit the subscripts on equivalence classes. Note also that an
arrow between objects is really just a coding for the evident pair of PER arrows.

The category PER×PER can be viewed as PER2 and so is known to be doubly closed,
following (Day 1970; Day 1973). The product and exponential are lifted pointwise from
PER. That is

R× S = (R0 × S0, R1 × S1)

R→ S = (R0 → S0, R1 → S1)

for all R = (R0, R1) and S = (S0, S1). The monoidal closed operations (⊗,() are
defined in the same way as those of Set × Set . Note that the + in the definition of ⊗ is
now the coproduct in PER.

For any pair (A0, A1) of PERs let (A0, A1)0 = A0 and (A0, A1)1 = A1. Extend the
notion of domain to pairs of PERS by taking

dom(A,B) = dom(A)× dom(B)

for any PERs A and B. For any function f : A −→ B and C ⊆ A let f�C be the
restriction of f to C.

5.2. A Hyperdoctrine

Let X be a bunch of type variables. Let

dom(ρ) =
⋃

α∈ftv(X)

dom(ρ(α))

Collinson, Pym, Robinson 32

for any function ρ : ftv(X) −→ PER0 × PER0.

Definition 8. An environment for X is a function ρ : ftv(X) −→ PER0 × PER0 such
that if any (Y, Z) is a sub-bunch of X then

dom(ρ�Y) ∩ dom(ρ�Z) = ∅

holds. Let Env(X) be the set of environments for X.

Definition 9. A semantic type (over X) is a function τ : Env(X) −→ PER0 × PER0

from environments to pairs of PERs.
A map from τ to τ ′ (over X) is an equivalence class [e] of codes for pairs of codes,

e = (e0, e1), where the recursive function corresponding to each ei is a PER map from
(τρ)i to (τ ′ρ)i for all environments ρ. If we have maps [e] : τ −→ τ ′ and [f] : σ −→ τ

then we have a composite map [e] ◦ [f] : σ −→ τ ′ given by [e] ◦ [f] = [e.f] where
e.f = (e0.f0, e1.f1) and ei.f i is a code for the recursive function defined by composite
of the functions {ei} and {f i} for i = 1, 2. This gives a category P (X) of semantic types
over X.

These definitions give a natural generalization of a standard PER model of polymor-
phism, in which an environment consists of a tuple of PERs and a semantic type consists
of a map from environments to PERs.

Definition 10. Let β1, . . . , βn be the variables of Y . A (semantic) substitution

s = [τ1/β1, . . . , τn/βn] : X −→ Y

for Y consists of a sequence of semantic types τ1, . . . , τn over some bunchX. Furthermore,
if βi and βj are multiplicatively combined in Y then

dom(τiρ) ∩ dom(τjρ) = ∅

holds for every environment ρ ∈ Env(X).

Note the special case of the nullary substitution, [] : ∅ −→ ∅, when n = 0.

Lemma 13. Suppose τ is a semantic type over Y and s = [τ1/β1, . . . , τn/βn] : X −→ Y

is a substitution. Then there is a map

(−)s : Env(X) −→ Env(Y)

given by

ρs(βi) = τi(ρ)

for every environment ρ for X. Moreover,

s∗(τ) = τ [τ1/β1, . . . , τn/βn]

is a semantic type over X with

s∗(τ)(ρ) = τ(ρs)

for every environment ρ of X.

Bunched Polymorphism 33

The proof is immediate and uses the disjointness condition for substitution.
For each type variable α let τα be a semantic type defined over any hub X containing

α by

τα(ρ) = ρ(α)

for each environment ρ for X.
Let X have free variables α1, . . . αn for some n ≥ 0. Then identity map from X to X

is given by the substitution

[τα1/α1, . . . , ταn/αn]

which may, of course, be nullary.
Given substitutions

s = [σ1/β1, . . . , σn/βn] : X −→ Y t = [τ1/γ1, . . . , τp/γp] : Y −→ Z

we can form a composite substitution

t ◦ s = [τ ′1/γ1, . . . , τ
′
p/γp] : X −→ Z

where

τ ′i = s∗(τi)

for 1 ≤ i ≤ p.

Definition 11. Let Bun be the category of hubs and semantic substitutions.

Let X be a hub with ftv(X) = {α1, . . . , αn}. Then

[τα1/α1, . . . , ταn
/αn]

defines maps

π : X;α −→ X and ψ : X,α −→ X

in Bun.

Lemma 14. The map π is a projection. The map ψ is a pseudoprojection.

Lemma 15. If s is the identity substitution on X then ρs = ρ for every environment ρ
for X. Given substitutions s : X −→ Y and t : Y −→ Z we have

ρt◦s = (ρs)t

for every environment ρ for X.

The proofs of both of the above lemmas are routine verifications.

Proposition 6. The assignments above define a functor P : Bun
op

−→ CDCC (so is a
strict indexed category) and this has a generic object.

Proof. Every category P (X) is doubly closed with operations inherited pointwise from
PER × PER.

Suppose we are given a substitution s = [τ1/β1, . . . , τn/βn] : X −→ Y in Bun. The
substitution defines object and arrow assignments from P (Y) to P (X). Given any object

Collinson, Pym, Robinson 34

τ of P (Y) we have P (s)(τ) = s∗(τ) in P (X). Given any map f : σ −→ τ in P (Y) we
define a map P (s)(f) : P (s)(σ) −→ P (s)(τ) in P (X) by P (s)(f)(ρ) = s∗(f)(ρ) = f(ρs)
for any ρ ∈ ftv(X). The fact that P (s) is functorial follows almost immediately from the
fact that composition is defined pointwise (with respect to environments) in the fibres.
That P is functorial follows immediately from Lemma 15.

The generic object is given by (any choice of) a bunch consisting of a single type
variable. Indeed, the arrows of the base category have been chosen so as to make this
generic.

Lemma 16. There are functors

P (π) : P (X) −→ P (X;α) P (ψ) : P (X) −→ P (X,α)

induced by projection π : X;α −→ X and pseudoprojection ψ : X,α −→ X. For,
respectively,

ρ ∈ Env(X;α) ρ ∈ Env(X,α)

we have

P (π)(τ)(ρ) = τ(ρ�ftv(X)) P (ψ)(τ)(ρ) = τ(ρ�ftv(X))

and

P (π)([e])(ρ) = [e] P (ψ)([e])(ρ) = [e]

for types τ and arrows [e] : τ −→ τ ′ over X.

If ρ is an environment for X and A ∈ PER0 × PER0 then define a function

ρA : ftv(X) ∪ {α} −→ PER0 × PER0

by

ρA(β) =
{
A if β = α

ρ(β) if β 6= α

Now ρA is an environment for X;α. If A satisfies dom(A) ∩ dom(ρ) = ∅ then ρA is also
an environment for X,α.

Lemma 17. There are functors

Π : P (X;α) −→ P (X) Ψ : P (X,α) −→ P (X)

between fibres.
The object assignments are, respectively,

(Π(τ))(ρ) =
⋂

A∈PER0×PER0

τ(ρA) (Ψ(τ))(ρ) =
⋂

A∈PER0×PER0

dom(A)∩dom(ρ)=∅

τ(ρA) ,

for each semantic type τ in the fibre that is the domain in each case and environment ρ
for X.

The arrow assignments are, respectively,

Π([e]) = [e] Ψ([e]) = [e]

Bunched Polymorphism 35

where [e] : τ −→ τ ′ is an arrow in the domain.

These functors describe the additive and multiplicative polymorphic quantifiers.

Proposition 7. The functor Π is right-adjoint to P (π). The functor Ψ is right-adjoint
to P (ψ).

Proof. Let τ be a semantic type over X and τ ′ be a semantic type over X;α or X,α
respectively. In the first case, a map from τ to Π(τ ′) is a code that defines an arrow
from P (π)(τ) to τ ′. In the second case, a map from τ to Ψ(τ ′) is a code that defines an
arrow from P (ψ)(τ) to τ ′. The disjointness condition in the indexing of the intersection
defining Ψ(τ ′) over X matches precisely the disjointness conditions on environments for
X,α. In fact, it easy to verify that

τ −→ Π(τ ′)
P (π)(τ) −→ τ ′

τ −→ Ψ(τ ′)
P (ψ)(τ) −→ τ ′

are natural bijections.

Proposition 8. The Beck-Chevalley condition for additives holds.

We omit the proof, which consists of routine calculations.

Theorem 5. The functor P : Bun
op

−→ CDCC is a model for additive polymorphism
and first-order bunching.

To summarize, we have shown that there is the appropriate structure on PER to pro-
vide a model of additive polymorphism. Our claim that additive polymorphism is just
ordinary polymorphism is supported by the interpretation in this model: it is essen-
tially just the standard interpretation of a polymorphic quantifier. This claim is further
reinforced by the way that additive quantification and weakening interact.

On the other-hand, there are counterexamples to the Beck-Chevalley condition for
multiplicative quantification. For example, consider the empty PER 0 (empty relation)
and total PER 1 (all pairs related). Let τ be the semantic type over the bunch >, α that
maps every environment to 0. Let ρ be the environment over the bunch >, β that maps
β to 1. Consider the pseudoprojection ψ : 1Bun ⊗ β =⇒ 1Bun . We find that

(P (ψ) ◦Ψ)τρ =
⋂

A∈PER0×PER0
τ((ρ�>)A) =

⋂
A∈PER0×PER0

0 = 0

(Ψ ◦ P (ψ))τρ =
⋂

A∈{PER0×PER0|A∩ρ(β)=∅} τ((ρ
A)�α) =

⋂
A∈∅ 0 = 1

which are clearly not equal.

6. Existential Quantifiers

Existential quantifiers are available in the polymorphic lambda calculus λ2 and are closely
connected to the concept of abstract data type (Mitchell and Plotkin 1988). First-order
additive and multiplicative existential quantifiers have been studied in (O’Hearn and Pym
1999; Pym 2002). Here we describe additive and multiplicative polymorphic existential
quantification

Collinson, Pym, Robinson 36

Additive existential quantification, ∃, is quite straightforward to add to the system
α2λ2 but the multiplicative quantifier, ∃∗, is very delicate. In particular, it requires
a number of side-conditions that interfere with the side-condition (†) used throughout
α2λ2. Rather than attempting to describe such a system in its full complexity, we first
remove the universal quantifiers and instances of (†) before adding the existentials.

The grammars generating types and terms are extended as follows:

τ ::= . . . | ∃α.τ | ∃∗α.τ
M ::= . . . | 〈φ,M〉 | unpack M as 〈α, x〉 in M

| 〈X,φ,M〉∗ | unpack∗ M as 〈α, x〉 in M ,

where α and x are bound in unpack and unpack∗ terms. Notice that terms may now
contain bunches of type variables.

The notion of free type variable is extended so that

ftv(∃α.τ) = ftv(∃∗α.τ) = ftv(τ) r {α}

ftv(〈φ,M〉 : ∃α.τ) = (ftv(φ) ∪ ftv(M)) r {α}

ftv(〈X,φ,M〉 : ∃∗α.τ) = (ftv(X) ∪ ftv(φ) ∪ ftv(M)) r {α}

ftv(unpack M as 〈α, x〉 in N) = ftv(M) ∪ (ftv(N) r {α})
= ftv(unpack∗ M as 〈α, x〉 in N) .

Just as with the multiplicative universal quantifier, we are forced to use an additional
syntactic measure with the multiplicative existential. The set WR(M) of witnessing re-
sources of a term M is the set of type-variables that occur in the component X of any
sub-term 〈X,φ,N〉∗.

The rules for existentials, which follow the generalized forms for natural deduction
introduced in (Prawitz 1978), are presented in Figure 5. Both of (∃E) and (∃∗E) are
subject to the side-condition

α /∈ ftv(∆) ∪ ftv(σ)

which is standard for the elimination of existentials. In addition, both are subject to the
side-condition

WR(M) ∩WR(N) = ∅ α /∈ WR(N)

because of the presence of the multiplicative. Furthermore, both rules (∃I) and (∃∗I)
are subject to the condition ftv(τ) ⊆ ftv(X) ∪ {α}. Finally, we require that X,Z ` Γ
for (∃∗I). The typed terms (M : τ)[φ/α] in the premises of (∃I) and (∃∗I) are formed
by taking the raw (i.e. untyped term) M and replacing all occurrences of α by φ, and
similarly in the type.

The additive quantifier behaves essentially as the standard polymorphic existential.
The multiplicative is more unusual. This partially hides the resources (type variables)
used in its formation. The work on first-order BI suggests a form in which Y is completely
hidden. This rule is derivable from the one given. The more general version is adopted
in order to give a corresponding η-rule.

Bunched Polymorphism 37

(∃I)
X | Γ ` (M : τ)[φ/α]

X | Γ ` 〈φ,M〉 : ∃α.τ

(∃E)
X | Γ `M : ∃α.τ X;α | ∆(x : τ) ` N : σ

X | ∆(Γ) ` unpack M as 〈α, x〉 in N : σ

(∃∗I)
X,Y (Z) | Γ ` (M : τ)[φ/α] Y (Z) ` φ

X,Z | Γ ` 〈Y (Z), φ,M〉∗ : ∃∗α.τ

(∃∗E)
X | Γ `M : ∃∗α.τ X, α | ∆(x : τ) ` N : σ

X | ∆(Γ) ` unpack∗ M as 〈α, x〉 in N : σ

Fig. 5. Existential rules

We must be a little bit careful with substitution because of the occurrences of bunches
of witnessing resources in the terms. We use the notationM [(Y, ψ)/α] for the term formed
by substituting Y for all witnessing occurrences of α and ψ for all other occurrences of
α in M . We write M [ψ/α] when there are no witnessing occurrences of α in M .

The βη-conversions for existentials are

(X | unpack 〈φ,M〉 as 〈α, x〉 in N) →β (X | N [M/x][φ/α])
(X | unpack M as 〈α, x〉 in (N [〈α, x〉/z])) →η (X | N [M/z])

(X | unpack∗ M as 〈α, x〉 in (N [〈α, α, x〉∗/z]) →η (X | N [M/z])
(X,Z | unpack∗ 〈Y (Z), φ,M〉∗ as 〈α, x〉 in N) →β (X,Y (Z) | N [M/x][φ/α])

and suitable ζ-conversions for existentials are also possible, provided no universal quan-
tifiers are present. Notice how the hub changes in the β-conversion for the multiplicative.
Let � be the reduction relation generated by →β and →η.

Most of the metatheory goes through as it did for the system with universals rather
than existentials. In particular, strong normalization can again be proved by the trans-
lation method. However, there are a few important changes, notably to substitution and
subject-reduction.

Proposition 9. (Substitution)

— IfX | Γ `M : τ andW ` ψ are derivable,X[W/β] is well-formed,W does not contain
any bound variables from Γ or τ , W is free from all witnessing resources in M and β
is not among the witnessing resources of M then X[W/β] | Γ[ψ/β] ` (M : τ)[ψ/β] is
also derivable.

— If X | Γ(x : τ) ` N : σ and X | ∆ `M : τ are both derivable and WR(M)∩WR(N) =
∅ then X | Γ(∆) ` N [M/x] : σ is derivable.

Both parts are proved by the standard kind of induction and we omit them for brevity.
The only point worth noting is that the side-conditions on the existential rules have been

Collinson, Pym, Robinson 38

chosen to match the conditions on these substitution rules so that we may permute all
substitutions towards the leaves of derivations.

Proposition 10. (Subject-reduction) If X | Γ ` M : τ is derivable and there is a
reduction (X |M) � (Y | N) then Y | Γ ` N : τ is derivable.

The Proposition follows more-or-less immediately from the substitution laws once one
has correctly established the side-conditions on rules. The condition on the substitution
law for terms forces us to place the side-condition WR(M) ∩WR(N) = ∅ on the binary
elimination rules (∧E), (→ E), (∗E), (−−∗E) and is the reason why we need the same
condition for the existentials.

The multiplicative existential does not have a simple interpretation in a hyperdoctrine
and, in particular, we cannot just use a left-adjoint to the pseudoprojection substitution.

The introduction rule (∃∗I) for the multiplicative existential hides not only the rep-
resentation type, but also the resources associated with the representation type. Once
hidden, these resources are not visible to terms formed over the same hub (see the sub-
stitution rule) and are only revealed by a subsequent use of the elimination rule (∃∗E),
leading to a hub-changing β-conversion, as above.

There are two special cases of (∃∗I). The first is

X,Y | Γ ` (M : τ)[φ/α] Y ` φ
X | Γ ` 〈Y, φ,M〉 : ∃∗α.τ

together with the usual side-condition. In this case, the resources Y are completely hidden
in the package 〈Y, φ,M〉. This cannot be described as an adjoint in a hyperdoctrine in a
straightforward way.

The second special case is

X,Y | Γ ` (M : τ)[φ/α] Y ` φ
X, Y | Γ ` 〈Y, φ,M〉 : ∃∗α.τ

(1)

with the usual conditions. Note, that none of the resources Y are hidden. This rule,
together with (∃∗E), is precisely that which corresponds to existential quantification as
left-adjoint to the substitution induced by a pseudoprojection.

Lemma 18. (Mate forms of existentials)

— The rules (∃I), (∃E) are equivalent to the pair of rules

X;α | Γ(x : τ) ` N : σ
X | Γ(z : ∃α.τ) ` unpack 〈α, x〉 as z in N : σ

X | Γ(z : ∃α.τ) ` N : σ
X;α | Γ(x : τ) ` N [〈α, x〉/z] : σ

together with appropriate side-conditions.
— The rule (∃∗E) together with the restricted rule (1) above are equivalent to the rules

X,α | Γ(x : τ) ` N : σ
X | Γ(z : ∃∗α.τ) ` unpack∗ 〈α, x〉 as z in N : σ

X | Γ(z : ∃∗α.τ) ` N : σ
X,α | Γ(x : τ) ` N [〈α, α, x〉/z] : σ

together with appropriate side-conditions.

Bunched Polymorphism 39

This lemma is established by standard proof-theoretic drudgery using both parts of the
substitution rules of Proposition 9.

To be a little more precise about the categorical structure required for existentials to
be the expected adjoints in a α2λ2-hyperdoctrine P : Bop −→ CDCC, we assume that
there is a left-adjoint Σ to π∗ arising from every projection π : X × Ω −→ X. Similarly,
we assume that there is a left-adjoint Σ∗ to every ψ∗ arising from a pseudoprojection
ψ : X ⊗ Ω −→ X. We also require Frobenius isomorphisms

A× ΣB
fr×−→ Σ((π∗A)×B) A⊗ ΣB

fr⊗−→ Σ((π∗A)⊗B)

for the additive, and, whenever there is a multiplicative,

A× Σ∗B
fr×∗−→ Σ∗((ψ∗A)×B) A⊗ Σ∗B

fr⊗∗−→ Σ∗((ψ∗A)⊗B) ,

where A ∈ P (JXK) and B ∈ P (JXK × Ω) in the first case and B ∈ P (JXK ⊗ Ω) in the
second. The interpretations then work in essentially the standard way: in particular, com-
binations of fr× and fr⊗ are used for the additive because of the depth of the existential
type in the mate form of the rules for ∃; a similar comment applies to fr×∗ and fr⊗∗ for
∃∗.

7. Discussion

Polymorphic lambda-calculi have been the subject of a great deal of study since their
introduction (Girard 1971; Girard 1972; Reynolds 1974), most often as extensions of an
additive, first-order lambda-calculus. A number of authors have considered polymorphic
extensions of linear type theories (Plotkin 1993; Bierman et al. 2000; Maneggia 2004;
Birkedal et al. 2006). More recently, Biering, Birkedal and Torp-Smith have considered
higher-order extensions of the bunched lambda calculus αλ (Biering et al. 2007). Further
to this they have developed higher-order extensions of Separation Logic.

To our knowledge, all such calculi have used a form of polymorphism that is addi-
tive. The work presented in this paper diverges from those calculi because we consider
multiplicative polymorphism. Of course, we also consider αλ extended with additive
polymorphism — this was done independently of Biering, Birkedal and Torp-Smith. Fur-
thermore, the two forms of polymorphism can be combined through the use of bunches
of type variables. There are variant calculi with bunching at both, either or none of the
two levels, all of which have sensible substitution and subject-reduction properties.

In order to get a version of the first-order substitution property (Proposition 1) in
the presence of multiplicative polymorphism, we introduced a syntax for instantiation
which is rather cumbersome. In particular, all type variables used in any application
of the multiplicative quantifier are recorded within the term, and we place the side-
condition (†) on the formation of certain terms in Figure 1. Thus the logic underlying
the calculus is not particularly well-behaved. This appears to be a feature of multiplicative
polymorphism rather than the bunched structure of contexts — the problem remains if we
allow ordinary linear contexts, rather than bunches, and drop the additive quantifier. One
way to eliminate the side-conditions would be to take a more restrictive, multiplicative

Collinson, Pym, Robinson 40

version of substitution, in which the two arguments of the substitution are terms that
must be typed over hubs that may be multiplicatively combined. Those rules of Figure 1
featuring (†) would be modified correspondingly by typing the premises over distinct hubs
X and Y , and the conclusions over the multiplicative combination X,Y . However, this
does not appear to sit well with our intention that the fibres over X should be CDCCs
in any model (including the term model). Indeed, it is not even clear that the usual kind
of indexed categorical model (hyperdoctrine) would be appropriate for such a calculus.

It has been shown above that partial equivalence relations provide a model of addi-
tive polymorphism together with first-order bunching. We have not shown that PER
can support the structure required to model multiplicative polymorphism. Indeed, per-
haps the fundamental outstanding problem regarding this work is to find a model that
satisfies the multiplicative Beck-Chevalley condition of Definition 5. It seems that the
technique we have used in §5 (ensuring environments of type variables map multiplica-
tively combined type variables to disjoint PERs) is incompatible with the multiplicative
Beck-Chevalley condition. A comparsion with the way that αλ-contexts are often in-
terpreted may be helpful. The Day tensor construction (Day 1970; Day 1973) provides
many useful doubly-closed categories. In particular, the functor category SetF , where
F is the discrete category of finite sets is discussed in detail in (O’Hearn 2003). The
category F carries a partial monoid that is given by union just when the arguments are
disjoint sets, and that is undefined otherwise. An assignment is a mapping from vari-
ables to objects of SetF . Contexts are interpreted as maps from assignments to objects
of SetF . In particular, for any assignment η and finite set S the set JΓ,∆KηS consists
of pairs of elements y ∈ JΓKηT and z ∈ J∆KηU where S = T ∪ U and T ∩ U = ∅. The
fact that (additive) weakening commutes with abstraction (for variables other than the
variable abstracted) is related to the fact that the disjointness condition in this model
regards the additional arguments (the finite sets) rather than the assignment. This is in
contrast to the environments for hubs that we have used above, where the interpretation
of the environment itself splits. As yet, we have been unable to adapt this method to
multiplicative polymorphic abstraction.

Many types are known to be definable using polymorphic abstraction in λ2. For exam-
ple, the important class of computational types known as inductive types are definable
from ∀ and →: this includes the empty type, booleans, natural numbers, lists, and in-
ductive (free) structures, see for example (Girard et al. 1989; Pierce 2002). Now consider
definability in α2λ2. The empty type, booleans, natural numbers, additive products and
inductive types are all definable (from ∀ and →) by immediate adaptations of the stan-
dard constructions. On the other-hand, it is unclear if ∨, ∃ or ∗ can be defined from ∀,
→, ∀∗ and −−∗. Let the depth of a node of a tree be defined in the usual way. Say that a
leaf of a tree is deep if there are nodes of lesser depth, otherwise say that it is shallow.
The elimination rules for ∨, ∃ and ∗ in α2λ2 and αλ allow the type being eliminated to
occur deep inside a context. In contrast, the standard encodings of ∨ and ∃ give rise to
elimination laws in α2λ2 in which the eliminated variable is shallow in the context.

An outline of some possible applications to calculi for memory-management has ap-
peared (Collinson and Pym 2006). This calculus has primitives for the allocation and
freeing of regions (sets of machine memory locations). It uses multiplicative polymorphic

Bunched Polymorphism 41

types to ensure that allocation always uses a fresh region (not overlapping other regions
in use) and that a region must be disjoint from the others in use before it can this can
happen. The calculus is an extension of a lambda-calculus presented for allocating and
freeing individual memory locations (Berdine and O’Hearn 2006).

References

M. Abadi and G.D. Plotkin. (1990) A per model of polymorphism and recursive types. In Logic

in Computer Science, LICS ’90, pages 31–46. IEEE Press.

R. Atkey. (2004) A λ-Calculus for Resource Separation. In Automata, Languages and Program-

ming: 31st International Colloquium, ICALP 2004, volume 3142 of LNCS, pages 158-170.

Springer.

J. Berdine and P. O’Hearn. (2006) Strong update, disposal and encapsulation in bunched typing.

In Mathematical Foundations of Programming Semantics, MFPS ’06, volume 158 of Electronic

Notes in Theoretical Computer Science. Elsevier.

B. Biering, L. Birkedal, and N. Torp-Smith. (2007) BI-hyperdoctrines, higher-order separation

logic, and abstraction. To appear in ACM Transactions on Programming Languages and Sys-

tems. An earlier version appeared in Proceedings of European Symposium on Programming

(ESOP’05) (2005) pages 233-247, Springer-Verlag.

G.M. Bierman, A.M. Pitts and C.V. Russo. (2000) Operational Properties of Lily, a Polymorphic

Linear Lambda Calculus with Recursion. In Proceedings, Fourth International Workshop on

Higher Order Operational Techniques in Semantics (HOOTS 2000), volume 41 of Electronic

Notes in Theoretical Computer Science, pages 70–88.

L. Birkedal, R.E. Møgelberg, and R.L. Petersen. (2006) Linear Abadi & Plotkin logic. Logical

Methods in Computer Science, 5(2):1–48.

L. Birkedal and H. Yang. (2007) Relational parametricity and separation logic. To appear in

Logical Methods in Computer Science.

L. Cardelli and G. Longo. (1990) A semantic basis for quest. Technical Report 55, Systems

Research Center, Digital Equipment Corporation.

M. Collinson and D. Pym. (2006) Bunching for regions and locations. In Mathematical Founda-

tions of Programming Semantics, MFPS ’06, volume 158 of Electronic Notes in Theoretical

Computer Science, pages 171–197. Elsevier.

M. Collinson, D. Pym, and E. Robinson. (2005) On Bunched Polymorphism (Extended Ab-

stract). In Computer Science Logic, CSL ’05, volume 3634 of LNCS, pages 36–50. Springer.

B.J. Day. (1970) On closed categories of functors. In Proceedings of the Midwest Category

Seminar, volume 137 of LNM. Springer.

B.J. Day. (1973) An embedding theorem for closed categories. In Proceedings of the Sydney

Category Seminar 1972/73, volume 420 of LNM. Springer.

M.J. Gabbay and A.M. Pitts. (2002) A new approach to abstract syntax with variable binding.

Formal Aspects of Computing, 13:341–363.

J.-Y. Girard. (1971) Une extension de l’interprétation de Gödel à l’analyse et son application

à l’élimination des coupres dans l’analyse et la théorie des types. In J.E. Fenstad, editor,

Proceedings of the 2nd Scandinavian Logic Symposium, pages 63–92. North-Holland.

J.-Y. Girard. (1972) Interprétation fonctionelle et élimination des coupures dans l’arithmétique

d’ordre supérieur. PhD thesis, Université Paris VII.

J.-Y. Girard. (1987) Linear logic. Theoretical Computer Science, 50(1):1–102.

J-Y. Girard, Y. Lafont, and P. Taylor. (1989) Proofs and Types. Cambridge University Press.

Collinson, Pym, Robinson 42

J.M.E. Hyland. (1988) A small complete category. Annals of Pure and Applied Logic, 40:135–

165.

B. Jacobs. (1999) Categorical Logic and Type Theory, volume 141 of Studies in Logic and the

Foundations of Mathematics. Elsevier.

F.W. Lawvere. (1969) Adjointness in foundations. Dialectica, 23:281–296.

S. Mac Lane. (1971) Categories for the Working Mathematician. Springer. Second edition 1998.

S. Mac Lane and I. Moerdijk. (1992) Sheaves in Geometry and Logic: A First Introduction to

Topos Theory. Springer.

D.B. MacQueen, G. Plotkin, and R. Sethi. (1986) An ideal model for recursive polymorphic

types. Information and Control, 71:95–130.

P. Maneggia (2004) Models of linear polymorphism. PhD. thesis, School of Computer Science,

The University of Birmingham.

J.C. Mitchell and E. Moggi. (1991) Kripke style models for typed lambda calculus. Ann. Pure

and Appl. Logic, 51(1):99–124.

J.C. Mitchell and G.D. Plotkin. (1988) Abstract types have existential type. ACM Transactions

on Programming Languages and Systems, 10:470–502.

P. O’Hearn. (2003) On bunched typing. Journal of Functional Programming, 13:747–796.

P. O’Hearn and D. Pym. (1999) The logic of bunched implications. Bulletin of Symbolic Logic,

5(2):215–244.

F.J. Oles. (1982) A Category-Theoretic Approach to the Semantics of Programming Languages.

PhD thesis, Syracuse University, Syracuse, USA.

B.C. Pierce. (2002) Types and Programming Languages. M.I.T. Press.

G.D. Plotkin. (1993) Type theory and recursion. In Logic in Computer Science, LICS ’93, page

374. IEEE Press.

D. Prawitz. (1978) Proofs and the meaning and completeness of logical constants. In J. Hintikka,

I. Niiniluoto, and E. Saarinen, editors, Essays on mathematical and philosophical logic, pages

25–40. D. Reidel.

D. Pym, P. O’Hearn, and H. Yang. (2004) Possible worlds and resources: The semantics of BI.

Theoretical Computer Science, 315(1):257–305.

D.J. Pym. (2002) The Semantics and Proof Theory of the Logic of Bunched Implications,

volume 26 of Applied Logic Series. Kluwer Academic Publishers. Errata at: http://www.

cs.bath.ac.uk/~pym/BI-monograph-errata.pdf.

J.C. Reynolds. (1974) Towards a theory of type structure. In Programming Symposium, vol-

ume 19 of Lecture Notes in Computer Science, pages 408–425. Springer, Berlin.

J.C. Reynolds. (1981) The essence of algol. In J.W. de Bakker and J.C. van Vliet, editors,

Algorithmic Languages, pages 345–372. North-Holland.

J.C. Reynolds. (2002) Separation logic: a logic for shared mutable data structures. In Logic in

Computer Science, LICS ’02, pages 55–74. IEEE Press.

R.A.G. Seely. (1987) Categorical semantics for higher order polymorphic lambda calculus.

Journal of Symbolic Logic, 52:969–989.

M. Tofte. (1998) A brief introduction to regions. In International Symposium on Memory

Management ’88, pages 186–195. ACM Press

