On Bunched Polymorphism
(Extended Abstract)

Matthew Collinson', David Pym', and Edmund Robinson?

! University of Bath, BA2 7AY, United Kingdom
2 Queen Mary, University of London, E1 4NS, United Kingdom

Abstract. We describe a polymorphic extension of the substructural
lambda calculus aX associated with the logic of bunched implications.
This extension is particularly novel in that both variables and type vari-
ables are treated substructurally, being maintained through a system
of zoned, bunched contexts. Polymorphic universal quantifiers are intro-
duced in both additive and multiplicative forms, and then metatheo-
retic properties, including subject-reduction and normalization, are es-
tablished. A sound interpretation in a class of indexed category models is
defined and the construction of a generic model is outlined, yielding com-
pleteness. A concrete realization of the categorical models is given using
pairs of partial equivalence relations on the natural numbers. Polymor-
phic existential quantifiers are presented, together with some metatheory.
Finally, potential applications to closures and memory-management are
discussed.

1 Introduction

In recent years, substructural logics and type systems have become firmly estab-
lished as fundamental tools in the analysis of programming languages. The most
prominent are linear logics and types [5], but there are more ad hoc systems,
designed for low-level languages and memory management, for example [18].

The logic of bunched implications, BI, as exposed in [10], [11], [13] is a
substructural logic of growing importance. BI provides a logic of resource, which
treats the sharing of resource, rather than the number of uses treated by linear
logic. The resource-sensitive aspect of BI has led to it being adopted as the basis
of the assertion language of new program logics, notably separation logic [15],
which allow for safe-reasoning about imperative languages with pointers.

BI has several well-understood classes of models, both truth-functional and
categorical, and like linear logics, has an elegant proof-theory. In particular, there
is an associated lambda calculus, a), giving a propositions-as-types correspon-
dence. The calculus is presented using derivations of typing judgements in which
contexts of typed variables are certain trees, called bunches. The way to under-
stand a is through a reading of the terms known as the sharing interpretation
which emphasizes the use of some computational resource. As an example of
this, aX has both additive and multiplicative function types. A function of the
additive kind may make use of the same computational resource as its argument,

but this is not the case for the multiplicative. In [10], aA was used to unify the
Algol-like languages Syntactic Control of Interference (SCI) and Idealized Algol
(TA), which had hitherto appeared to have irreconcilable features.

Whilst it has been demonstrated that BI has applications to program logic
for imperative programming and to type systems for small, idealized languages,
the full power of the type-system remains unexploited. The possibility exists to
build a functional programming language along the lines of ML, but based on
bunched rather than simple types. The typing of a program should then make
guarantees about the use of resources (for example, memory, in the presence
of references) as well as the compatibility of sub-expressions. This paper takes
some of the first steps in that direction.

Polymorphism must be added to a) in order to give a language with the
expressivity of ML. We present a calculus which bears the same relationship to
a as the Girard-Reynolds polymorphic lambda calculus A2 [3], [14] does to the
simply-typed lambda calculus. Adding ordinary, impredicative polymorphism to
aA amounts to adding a further zone to typing contexts which manages the use
of type variables. In this paper we take a further step, by considering a calculus
in which the type variable zone consists of a bunch. This gives extra flexibility
in the type system, for it allows us to consider both additive and multiplicative
polymorphism. The additive polymorphism allows us to recover all standard uses
of polymorphism, whilst the multiplicative polymorphism enforces non-sharing
of resources associated with type variables. Multiplicative quantification closely
resembles the freshness quantifier of Pitts and Gabbay [6]. Further steps and
features are required before we have a genuinely ML-like type system, including
predicative polymorphism, recursive types, references and typechecking.

In §2, we add polymorphic universal quantifiers to aA. We follow this with
some of the more important metatheoretical results in §3. In §4, we describe an
extension of the usual notion of categorical model. The additives are modelled
in the usual way, and in a similar way, the multiplicatives are modelled by the
right-adjoints to certain substitutions. In §5, we give an instance of such a model
using the category PER of partial equivalence relations on the natural numbers.

In §6, we introduce polymorphic existential quantification. The desire to ex-
tend the sharing interpretation, together with metatheoretic concerns, governs
the design of the multiplicative quantifier. The multiplicative existential is less
semantically neat than the universal, but hints strongly at a number of appli-
cations, for it enables the hiding not just of a type, but also of the resources
that accompany it. Thus there is an appealing intuition for multiplicative exis-
tentials as a kind of closure. We discuss connections to work on type systems for
memory-management, specifically alias types [18] and regions [17], [19], where
the use of location and region variables leads to forms of polymorphism. For
alias types, this polymorphism appears to be multiplicative.

The work reported herein was carried out under the project ‘Bunched ML’,
funded by the United Kingdom EPSRC. We acknowledge help and suggestions
given by our collaborators, Josh Berdine and Peter O’Hearn of Queen Mary
University London, during numerous discussions.

2 The Calculus

The calculus, which we shall call @22, has three levels of judgement. A first level
judgement X F 7 gives a type 7 over a bunch of type variables X. The second
level, which has judgements of the form X F I' generates the contexts I' of
ordinary variables over X . The third level comprises judgements X | I'+ M : 7
which show that a term M is well-typed with 7, given X and I

Assume a countable collection of type variables «,3,... to be given. The
types used in the calculus are generated by

r=T|I|a|TAT|T*x7|T—=7|7—kT7|Va.r | Va1 ,

where « is any type variable. The connectives T, A, — and V are the additive
unit, product, function space and polymorphic universal quantifier, respectively.
There are multiplicative unit I, product *, function space — and universal V.,
connectives. We allow the letters o, 7 to range over types.

A fibre (context) is a bunch of type variables, generated as follows

X=0|a|X,X|X;X ,

subject to the restriction that every type-variable may occur at most once in a
bunch. Let X,Y, Z range over fibres.

Assume a countable collection of variables x,y, z, ... to be given. A (typing)
context is a bunch of typed variables, generated by

r=9|0|z:7 |, |T;T,

where z is a variable, 7 is a type and any variable occurs at most once. The units
¢ and @, are distinct from the unit @ for fibres. The typing contexts are nothing
more than the contexts of a\, but such that types may contain type variables.

Bunches are always subject to a pair of equivalence relations [13]. The first
equivalence = on bunches is used to build structural rules that allow us to per-
mute variables in fibres or contexts. It is given by commutative monoid rules for
7 for “” and by a congruence to ensure that the monoid rules can be applied
at arbitrary depth in any bunch. The second relation 22 is used to control con-
traction rules. The equivalence = on fibres is simply renaming of type variables:
X 2 Y if Y can be obtained from X by renaming bijectively with type variables.
The relation I' =2 A between contexts holds just when A can be obtained by
relabelling the variables of the leaves of I" in a type preserving way: any leaf
z : 7 of I' must correspond to a node y : 7 of A.

There is an obvious notion of sub-bunch of a bunch. Let B(Bj | ... | By) be
the notation for a bunch B with distinct, distinguished sub-bunches By, ..., B,.
Write B[B} /B, ... B! /B,] for the bunch formed by replacing each bunch B; in
B with B..

The rules for generating type formation judgements, which specify types
which are well-formed over fibres, are shown in Figure 1. A critical design deci-
sion is evident at this level. The formation rules for A, —, * and — are kept as
simple as possible, in that formation takes place over a single, fixed fibre.

(TAz) @) g7 gr1 D
T XFo XbErT . .
(To) Xtoor (® is any of X, —, %, —k)

v X;abkT X,akT ™
(1) X FVa.r X FVa.r (1)
X(Y;YY kT o Yk o ZFT
T syry CEY) U xeyer =2 grpr (T6)

Fig. 1. Type formation rules

The construction of contexts which are valid over fibres is generated from
the type-formation judgements. These are presented as judgements of the form
X + I' where X is a fibre and I' is a context and are characterised by: X + I
holds if and only if X F 7 for each variable z : 7 in I".

The terms of the language are given by the following grammar

M:=x|T|I|letIbeMinM
[(M, M) | m M | oM | M x M | let (x,y) be M in M
| Az : .M | app(M, M) | \ex : 7.M | app, (M, M)
| Aa.M | App(M, X,7) | Ava.M | App, (M, X,T) ,

where « is a type variable, 7 is a type, X is a fibre and x is a variable.

Let FV(—) be the set of variables which are in a context (—) or free (not
bound by a lambda abstraction) in a term (—). We use the notation FTV(—)
for the set of type variables which occur free in a bunch (=), type (=), the types
of the variables in the context (—) or the type of the term (—), respectively.
In a term App(M, X,7) or App,(M, X,), the type variables of X are free, so
substitution must take account of this.

We introduce a syntactic measure p which assigns to each term the set of type
variables which are free and which occur in some application of the multiplicative
universal quantifier. Formally, this is given by a recursive definition, where

p(AaM) = p(Asa. M) = p(M)~{a} w(App. (M, X, 7)) = p(M)UFTV(X)

are the informative clauses.

The typing of terms uses the term and context formation judgements. The
term formation judgements are derived according to a system of rules, a sam-
ple of which are shown in Figure 2. In addition to the rules shown, there are
introduction and elimination rules for rules for additive (T) and multiplicative
(I) units, additive (A) and multiplicative (*) conjunction, additive lambda ab-
straction (—), contraction (C) and equivalence (E) for contexts. All of the rules

other than the quantifier rules and the fibre structurals use a fixed fibre X. That
is to say, they are essentially the familiar rules for a\, but parameterised by the
fibre. All the elimination rules, other than (VE) and (V.E) are subject to the
side-condition

u(N) N FTV (M) =0 1)

which requires the separation of certain of the free type variables present.

Xbka:T X|r(AFM:7 XA
X|z:tha:T X | I'(AAYEM:T

(Az) W)

X|ae:obM:7
X|I'kXz:0M:0—T1

X|I'N:o—17 X|AFM:o
X |IAFapp, (N, M): 7 (

(—+I)

(1) —E)

X;a|I'FM:7 Xa|I'FM:7

(v1) X | I'k Aa.M :Va.tT (a g FTV(I)) X|I'kAca.M Voot (v-1)
X|I'FM:Yar YFko X|I'FM:Vear Yo
(VE) (V.)
X;Y | I'E App(M,Y,0): 7[o/a] X,Y |I'F App,(M,Y,0): 7[o/a]
Y|I'FM:7 X|I'EM:7
(FW) (X=2) (FE)

XY)|I'EM:T Z|I'tFM:7

XY;Y)Y|TEM: T

(FC) XY) | I'Y/Y'NFM[Y/Y"]:7[Y/Y"]

(Y 2Y)

Fig. 2. Sample of the term formation rules

The usual rules for Sn¢-conversions for a\ are retained, see [13]. In addition,
we have four conversions for quantifiers,

App(da.M, o) -5 M Aa.App(M, @) : 7 =g M
App*(/l*on, Ol) -8B M A*aApp*(M, Oé) T g M,

where these terms are all typed over the same fibre X and context I" such that
« is not free in I'. Let — be the reduction relation generated by the single step
conversions. As usual, these relations give rise to a system of gn(-equalities.

3 Metatheory

Many of the standard properties of a lambda calculus hold for a2A2.

Proposition 1. (Substitution Laws)

1.IfX|I'(z:0)FN:Tand X | A+ M : o are derivable and the condition
w(N)NFTV (M) =0 holds then X | I'[AJx] - N[M/z] : 7.
2 IfY|I'tM:1mand Zto thenY[Z/a] | I'o/a] - M[(Z,0)/a] : T[o/a].

The side-condition on the first part is essential. This makes the side-condition
(t) on the elimination laws necessary in order to prove subject-reduction.

Proposition 2. The four rules below are admissible.

X|I'tX:oM:0—>T X|I'tXz:oM:0—xT

X|Ie:obM: 71 X|e:ob-M:71
X |I'k Aa.M : Vot X |I'k A M Voot
X;a|'FM: 7 X,a|TEFM:1

The propositions above make it possible to prove subject-reduction.
Theorem 1. If X | ' M :7 and M — N then X | '+ N : 7 is derivable.

All reductions of the calculus terminate, as is shown by translation into the
polymorphic lambda calculus A\2.

Theorem 2. The calculus is strongly normalizing.

The reduction relation can be extended to include (-reductions (commuting
conversions) for x, following [13], and the subject-reduction and normalization
theorems continue to hold. Similarly, the extension of a2A2 with the additive
disjunction V of a\ causes no difficulties.

4 Categorical Semantics

We now give a categorical semantics to «2A2. This is a hybrid of the indexed
category semantics of A2 with the doubly closed category semantics of a\.

Before giving the modified version of hyperdoctrine, we introduce some ter-
minology for a certain structure on a category. Consider a symmetric monoid
(®,1,a,l,r,8) on a category B. Let 1 : B — B be the identity functor. The
monoid ® is a pseudoproduct if for every object B in B there is a (first) pseudo-
projection, that is, a natural transformation ¢} : 13 ® B = 1p satisfying the
two coherence diagrams given below.

XoY)©Z—Xa(e2) Xel ——X
(U ! 1xer 1x
1 1
XY i X X®I ¥ X

We write the component at an object A as ¢,14,B : A® B — A. Using
the symmetry isomorphisms s, it is easy to construct a second pseudoprojection

9% : A® 1y => 1p with components zpf{’ 5 Where A, B are any objects of B. We
frequently omit both subscripts and superscripts on pseudoprojections.

All products are pseudoproducts, but not vice versa. The category Set, of
pointed sets X | and functions which preserve the distinguished element L has
a pseudoproduct given by the coproduct. A pseudoprojection from X, + Y, to
X may be taken tobe L,y— 1, z—~xforallz e X,y €Y.

A cartesian doubly closed category (CDCC) is a category with a pair of sym-
metric monoidal closed structures, one of which is cartesian. A functor between
CDCC’s is strict if it preserves both the cartesian closed and the monoidal
closed structure on-the-nose. Let CDCC be the category of cartesian doubly
closed categories and strict functors.

A split indexed category consists of a contravariant functor from a base cat-
egory B to some category of categories, see [8] for a detailed account. A hy-
perdoctrine [16] is a categorical model of A2 consisting of a split indexed cat-
egory with certain properties, including a system of adjunctions for modelling
quantification. It also requires a distinguished base object (2, called the generic
object, which is characterized by the property that there is a natural bijection
Ly (PJ)o = hom(J, £2), where hom(—, 2) is the contravariant hom functor
for B and (PJ)g is the set of objects of the fibre PJ.

An a2)2-hyperdoctrine is a split indexed category P : B°? — CDCC with:
generic object; finite products and binary pseudoproducts in the base; for any
projection 7 in the base, the functor P(7) has a right-adjoint IT which satis-
fies the Beck-Chevalley condition; for any pseuduoprojection 1) in the base, the
functor P(¢) has a right-adjoint ¥ which satisfies the Beck-Chevalley condition.

Interpret fibre-contexts X as objects in the base B, with

Pl=T [lo]=0 [XY]=[X]x[¥] [XY]=[X]eY].

Interpret type formations as objects [X F 7] of the fibre P([X]). An instruc-
tive fragment of the interpretation is given by

PFT:T]=T [PFI:I]=1 [akao]=15"(0a)
[XFrxr]=[XF71]@[X F 7] [XErT—=7]=[XF7] = [XF7]
[X FVar] =O[X;at 7] [X FVear] =9[X,ab 1],

where T, I, ® and — are from the doubly closed structure of fibres, IT is
adjoint to 7 : [X] x 2 — [X], and ¥ is adjoint to ¢ : [X] @ 2 — [X].
The interpretations of the omitted rules are quite standard. In particular, the
interpretation of the rule (T'W') makes use of projections and pseudoprojections.
Interpret contexts as objects [X F I'] of P([X]) by extension of the inter-
pretation of types, using the product and monoidal structure of the fibre.
Morphisms [X |I'F M : 7] : [X F I'] — [X F 7] in P([X]) are used to
interpret term formations. A fragment of the interpretation is given below.

[X|z:7ka: 7] =1xrqg [X|0FT:T]=17 [X|0.FI:1]=1;

[X|Lhz:pbM:Yp]=f:[XFI]Q[XF ¢] — [X F o]
[X|TEXMNX ¢ M:¢p—yp]=f":[XFT]— ([XFS] —[XF])

[Xa|I'FM:1]l=g:[X;at- 1] — [X;at 1]
[X|T'F A M :Var]=g2:[XFT] — [X FVa.7]

[X,a| TEFM:7]=h:[X,abFT] — [X,a k1]
[X| It AvaM :Viar]=h: [XEFT] — [X F Vea.]

[X|T'EM:VYar]=m:[XFI] — [XF Vo] [YFp]l=B¢€eP(Y])
[X,Y | I'F App(M, Y, p)] = P(1pxy x «(B))(m7) : [X;Y F I' — [X5Y F 7[p/a]]

[X|I'FM:Viar]=m:[XFI]— [XF Via.7] [YFpl=BeP(Y])
[X.Y | I'F App, (M, Y, p)] = P(1x) @ «(B))(m”) : [X,Y = I'l — [X,Y F 7[p/a]]

Here, f~ is the linear exponential mate of f, (—)* and (—)V give the transposes
of 7* 4 II, (=) and (—)" give the transposes ¢¥* 4 ¥, and «(B) : B — 2 is the
base morphism arising from the fact that (2 is generic.

4.1 Soundness and Completeness
In any a2A2-hyperdoctrine, every judgement can be interpreted.

Proposition 3. (Weak Soundness) Every judgement X | I' = M : 7 has an
interpretation as o morphism [X F I'] — [X + 7] in P([X]).

The interpretations of types and terms are coherent because of the split-
ting of the indexed category, the naturality and coherence conditions for the
pseudoprojections and the Beck-Chevalley conditions.

Substitution of a term for a variable takes place in a fixed fibre, so its inter-
pretation is modelled in that CDCC as in [13]. Interpreting substitution of types
for type variables uses reindexing functors and the generic object.

Proposition 4. (Equational Soundness) If X | '+ M = M' : 7 is derivable
then [X | T’ M :7]=[X|I'F M :7] holds.

The syntactic equalities are generated by the Bn{-conversions. All of these
take place over a fixed fibre, except for the reductions for the quantifiers. Over
any fibre we have a CDCC and we know that the equalities over that fibre are
all validated. The - and n-rules for the multiplicative quantifier are witnessed,
respectively, by the equations

(P(1pxy @ 12))((m%)”) =m (POApxy ®10))(n") =n ,

given interpretations [X,a | ' F M : 7] = m : [X,a F '] — [X,a F 7]
and [X | [F N :Vear] =n: [X FI] — [X F V.a.7]. These equalities

follow because the indexed category is split. The relevant equalities for additive
quantification follow by the obvious modifications.

Completeness with respect to a2A2-hyperdoctrines is established by the usual
method. That is, we build a generic model from the syntax such that if an
equation holds between interpreted terms then it must also hold in the theory.
The main novelty here is the construction of the base category, although this
follows essentially the same pattern as the construction for A2 hyperdoctrines:
objects are (bunches of) type variables and morphisms are substitutions derived
from type formation judgements.

We construct the base B from the syntax of fibres and type formations.
The objects of B are taken to be the equivalence classes of fibres under the
congruence relation 2, which handles a-conversion of type variables. Throughout
this construction, we use fibres as representatives of equivalence classes. Let {2
be the equivalence class of & and T be the equivalence class of 0.

The congruence 2 on fibres extends to type formation judgements using
substitution: (X F7) 2 (Y F 7') <= (X 2Y) & (7' = 7[Y/X]) for all fibres X
and Y. Again, we will tend to use representatives for equivalence classes in what
follows. Define a mapping (—) : (X F 7) — 7 from type formations to types.

The morphisms of B from X to Y are certain trees with the same shape
(internal node structure) as Y and with equivalence classes of type formations
at the leaves. These morphisms are generated by an inductive definition.

There are a number of parts to the base case. These are identity, terminal,
diagonal, projection, pseudoprojection, right unit, associativity, associativity in-
verse, symmetry. For brevity, we give only the diagonal and pseudoprojection
clauses below. From these, the forms of the other cases may be easily inferred.
Diagonal: for every X there is a morphism Ax : X — X; X' where X' is
any fibre which is disjoint from X and with X’ = X. The morphism is given
by fx;fx: where fx is formed by replacing every leaf a of X with X F «a.
Pseudoprojection: for all X and Y there is an arrow ¢! : X, Y — X formed by
replacing each leaf o of X with XY F a.

The inductive definition has three step cases: product, pseudoproduct and
composite. Product: if there are arrows f : X — Y and g : X — Y’ then

there is a morphism X; X' EEA Y;Y'. It is formed as the tree f’; ¢ where f' is
formed from f by replacing each leaf X F 7 with X; X' F 7, and similarly for
g'. Pseudoproduct: If there is a morphism f : X — Y and there is a morphism

g : X' — Y’ then there is a morphism X, X' EEN Y,Y'. Tt is formed as the tree
f', g’ where f' is formed from f by replacing each leaf X + 7 with X, X’ + 7, and
similarly for g’. Composite: the composite in B of a pair of arrows f: X — Y,
9:Y — Zis an arrow go f : X — Z constructed by replacing each leaf Y - p
of g with the leaf X F p[f/Y], where the mapping (—) is extended to trees in
the obvious way.

Some comments and observations about the above definition are in order. In
a number of the clauses above we have formed a morphism from X to Y using
some words like “replace any variable @ of Y with the judgement X F 7” and it
is to be understood that any leaves of Y which are units @ should be replaced

by the judgement X F T. Composition is a well-defined operation, independent
of choices of representatives. The hom-sets of B are guaranteed to remain small.

It is a matter of lengthy calculation to verify that B is a category, has finite
limits and has a symmetric monoid which is a pseudoproduct. These structures
are suggested by the notation in the recursive definition.

Write P(X) for the fibre over the equivalence class of X. The construction
of each P(X) follows the construction of a CDCC from al, see [13]. Objects
are equivalence classes of type formations X F 7, represented by pairs (X, 7).
A morphism from (X,0) to (X, 7) is an equivalence class of term formations
X |z :0F M : 7, where the equivalence is generated by a-equality for variables,
the Bn¢-rules (without the quantifier cases) and the congruence extended from
the congruence 2 on fibres.

Every arrow u : X — Y of B yields a functor P(u) : P(Y) — P(X)
between fibres. The functor acts as P(u)(Y,7) = (X, 7[a/Y]) on any object (Y, 1)
in P(Y). The arrow assignment is given by P(u)(Y,z, M) = (X,z, M[u/Y]) for
any arrow (Y,z, M) in P(Y). Both the object and arrow assignments can be
verified to be well-defined and calculuations can be performed to show that
P(u) is indeed functorial.

Further calculations show that the functors P(u) preserve the CDCC struc-
ture on-the-nose. Moreover, the functors induced by projections 7w : X x 2 — X
and pseudoprojections ¢ : X ® 2 — X can be shown to have right-adjoints
which satisfy the Beck-Chevalley conditions. The identity gives a natural bijec-
tion between the hom-sets B(X, £2) and fibres P(X).

Theorem 3. The functor P : B°? — CDCC is an a2A2-hyperdoctrine.

The completeness theorem follows as a corollary, since P is constructed from
the syntax and each term is interpreted, essentially, by itself.

Corollary 1. (Completeness) If [X | T+ M : 7] =[X | ' F M' : 7] holds in
every a2A2-hyperdoctrine then X | I' = M = M' : 7 is derivable in the calculus.

5 A PER Model

Partial equivalence relations on the natural numbers give rise to one of the
simplest and most elegant models of the polymorphic lambda calculus [4]. We
show how to produce a PER model for a2A2.

A partial equivalence relation, PER for short, consists of a binary relation
R C N x N on the natural numbers. Define dom(R) = {n € N | nRn}, the
domain of R. A map between PERs consists of an equivalence class of codes
for recursive functions that track from the source PER to the target PER, that
is, functions which preserve the relation. Let PER be the category of partial
equivalence relations and PER, be its set of objects. The category is cartesian
closed. It also has binary coproducts: embed isomorphically the two given PERs
into PERs with disjoint domains, then take the union of the relations.

Since PER is cartesian closed and has a symmetric monoid (given by the
coproduct) we might think that we can use these two structures to model a\.
However, the monoid fails to be closed. This can be remedied by moving to a
model based on pairs of PERs, motivated by a similar construction for sets. The
category Set x Set of pairs of sets is a CDCC, see [11], [13]. Finite products and
exponentials are given pointwise. Moreover, there is an additional symmetric
monoidal closed structure with

(A% AY) ® (B, B') = ((A° x B?) + (A' x B'),(A° x B') + (A' x B%))
(A%, AY) — (B, B') = ((A° — B%) x (A! — B'),(A° — B') x (A! — BY)) ,

for all A%, A, B®, B! € Set, where A + B is the coproduct of A and B in Set.
This can be viewed as an instance Set? of Day’s closure construction [1], [2],
where 2 = {0, 1} is the discrete category with monoid given by addition modulo
two. Now PER x PER can be viewed as PER? and so is doubly closed by [1]. Its
operations are defined in the same way as those of Set x Set, remembering that
the + in the definition of ® is now the coproduct in PER. For any pair (A°, A!)
of PERs let (A%, A1)% = A and (A%, A')! = A!. Extend the notion of domain
to pairs of PERS with dom (A, B) = dom(A) x dom(B) for any PERs A and B.
For any function f: A — B and C C A let f[- be the restriction of f to C.

Let X be a bunch of type variables. Let dom(p) = Uueprv(x) p(a) for any
function p : FTV(X) — PERg X PERy. An environment for X is a function
p: FTV(X) — PERg x PERg such that if any (Y, Z) is a sub-bunch of X then
dom(ply) N dom(pl,) = 0 holds. Let Env(X) be the set of environments for X.

A semantic type (over X) is a function 7 : Env(X) — PERy X PERg from
environments to pairs of PERs. These definitions give a natural generalization
of the ordinary PER model of polymorphism, in which an environment consists
of a tuple of PERs and a semantic type consists of a map from environments
to PERs. A map from 7 to 7' (over X) is an equivalence class [e] of codes for
pairs of codes, ([¢"],[e']), where the recursive function corresponding to each e’
tracks from (7p)¢ to (7'p)* for all environments p. This gives a category P(X)
of semantic types over X.

Let ay, ..., a, be the type variables in X. A subsitution (—=)[11/0a, ... Tn/x]
for X consists of semantic types 71, . .., 7, over some bunch Y such that: if X has
asub-bunch (W, Z), where W has type variables with a;,, ..., a;, and Z has type
variables with Qjyy - -5 Oy then (—)[Til/ail yee - ,Tip/Oé,‘p,le /O{jl, <o Thg /Ctjq] is
a substitution for (W, Z) if (—=)[r;, /e, ... 7, /au,] is a substitution for W and
() fagys - - .75, /0,] is a substitution for Z and dom (7, (p))Ndom (7, (p)) = 0
forall pe Fnv(Y)and 1 <l <pand 1 <m < g¢. A map from Y to X is just
such a substitution. This gives a category Bun of bunches of type variables.

If p is an environment for X and A € PERy X PER, then define a function
p? : FTV(X)U{a} — PERy x PERy by a — A and 8 = p(p) for 8 # a. Now
p? is an environment for X;a. If A satisfies A N dom(p) = @ then p* is also an
environment for X, a.

Define semantic types 7,, over X,a by 74, (p) = p(a;), for each 1 < i <
n. Now (=)[Tay/Q1,- -+ Ta, /an] defines a map from X;a to X, called m, and

also a map from X,«a to X, called 9. Each of these induces a functor, with
P(rm)(1)(p) = T(erTV(X)) for p € Env(X;a) and P(y)(7)(p) = T(erTV(X))
for p € Env(X, «), respectively.

If 7' is a semantic type over X;a or, respectively, X, @ then

(= () T @M= () 0",
AEPERyXPER AEPERoXPERy
ANdom(p)=0

for each environment p for X, defines a semantic type over X.

Let 7 be a semantic type over X and 7' be a semantic type over X;a or
X, a respectively. In the first case, a map from 7 to II(7') is precisely the same
thing as a map from P(7)(7) to 7’. In the second case, a map from 7 to ¥(7') is
precisely the same thing as a map from P(v)(7) to 7’. We therefore have natural
bijections between arrows

T — (7" T— ¥(7")
P(r)(1) — 7 PW)(r) — 1’

given by identity maps.

The above model is not quite a categorical model as described in the previ-
ous section. We produce a a2A2-hyperdoctrine by taking a suitable quotient on
bunches to make the interpretation of all type variables identical.

6 Existential Quantifiers

Existential quantifiers may be defined in the polymorphic lambda calculus A2 and
are closely connected to the concept of abstract data type [9]. In this section, we
describe existential quantification in the bunched polymorphic setting, leading
to both additive and multiplicative existentials.

First-order additive and multiplicative existential quantifiers have been stud-
ied in [11], [13]. Proof-theoretic considerations drive the design of the polymor-
phic existentials, just as they do in the first-order case.

Additive existential quantification, 3, is quite straightforward to add to the
system a2)2. However, the multiplicative quantifier, 3, is very delicate. In par-
ticular, it requires a number of side-conditions which can interfere with the
side-condition (f) used for a2A2. Rather than describing such a system in its full
complexity, we first remove the universal quantifiers and instances of (1) before
adding the existentials. However, in general, both universals and existentials can
be considered together.

The grammars generating types and terms are extended with

T o=...| a7 | Jia.T
M :=...| (¢, M) | unpack M as { a,z) in M
| (Y, ¢, M), | unpack, M as {a,z) in M ,

where o and z are bound in unpack and unpack, terms.

Just as with the multiplicative universal quantifier, we are forced to use an
additional syntactic measure with the multiplicative existential. The set WR(M)
of witnessing resources of a term M is the set of type-variables which occur in
in the left component Y of any sub-term (Y, @, N).. This can be made precise
with a recursive definition.

The rules for existentials, which follow the generalized forms for natural de-
duction introduced by Prawitz [12], are presented in Figure 3. Both of (3E)
and (3, E) are subject to the side-condition o ¢ FTV(A) U FTV (o), which is
standard for the elimination of existentials. In addition, both are subject to the
side-condition WR(M)U WR(N) = (), because of the presence of the multiplica-
tive. Furthermore, the condition a ¢ WR(N) is required for (3. E).

(T3) X;ab T X|I'FM:3ar X;a|A(z:T)FN:o 1B
X F 3Ja.r X | A(I') F unpack M as (a,z) in N : o (3E)
27 X|I'k(M:71)[¢/q] X F Ja.r
(D X |I'k{¢,M): Ja.T
X,ab T X|I'tM:Jiart X,a|Ax:T)FN:o
(T3.) - (3.E)
X F 3.t X | A(I") F unpack, M as {(a,z)in N : o
@.n XY Z)| ' (M :71)[¢p)a] Y(Z)F¢ X, ZFT XF It

X, Z | I'+(Y(Z),¢, M) : Tya.T

Fig. 3. Existential rules

The additive quantifier behaves essentially as the standard polymorphic ex-
istential. The multiplicative is more unusual. This partially hides the resources
(type variables) used in its formation. The work on first-order BI suggests a
form in which Y is completely hidden. This rule is derivable from the one given.
The more general version is adopted in order to give a corresponding n-rule.

The fBn-conversions for existentials are

(X | unpack (6, M) as (a,z) in N) 5 (X | N[M/a][¢/a))
(X | unpack M as {a, a:) in (N[(a x)/z])) =y (X | N[M/Z])
(X | unpack, M as (o, z) in (N[{a, «, a:) /2]) = (X | N[M/2])
(X, 7 | unpack, (Y(Z), 6, M), as (a,2) in' N) = (X,Y(Z) | N[M/z][4/a))

and suitable {-conversions for existentials are also possible, provided no universal
quantifiers are present. Notice how the fibre changes in the g-conversion for the
multiplicative. Let —» be the reduction relation generated by —3 and —,.
Most of the metatheory goes through as it did for the system with universals
rather than existentials. In particular, strong normalization can again be proved

by the translation method. However, there are a few important changes, notably
to substitution and subject-reduction.

Proposition 5. If X |I'(x : 7) F N :0 and X | A+ M : 7 are both derivable
and WR(M)N WR(N) =0 then X | I'(A) F N[M/x] : o is derivable.

The condition on the substitution law forces us to place the side-condition
WR(M)N WR(N) = 0 on the binary elimination rules (AE), (— E), (xE), (=E)
and is the reason why we need the same condition for the existentials.

Proposition 6. If X | I' b M : 7 is derivable and (X | M) - (Y | N) then
Y | I't N :7 is derivable.

The existential does not have a simple a2A2-hyperdoctrine interpretation
and, in particular, we cannot just use a left-adjoint to the pseudoprojection
substitution. However, an interpretation can be given to each judgement by
requiring the existence of certain assignments and arrows.

The introduction rule (3,I) for the multiplicative existential hides not only
the representation type, but also the resources associated with the representation
type. Once hidden, these resources are not visible to terms formed over the same
fibre (see the substitution rule) and are only revealed by a subsequent use of the
elimination rule (3, E), leading to a fibre-changing [-conversion, as above. In
this respect the formation of multiplicative existentials is reminiscent of the
formation of function closures. Furthermore, the elimination of 3, is reminiscent
of the application of function closures, though perhaps with some side-effects.

We conjecture that bunched polymorphism is an appropriate setting to de-
velop type systems for memory-management. One approach to this is alias typing
[18] which allows the programmer to issue instructions that safely allocate and
deallocate chunks of memory, known as locations. Locations are used as param-
eters in types, for example z : ptr(l), which asserts that a program variable is
a pointer to the location I. A form of polymorphism is introduced through the
use of location variables, which range over locations. Instructions are typed in
contexts of aliasing constraints: these specifiy the types of entities contained in
certain locations and location variables. It is difficult to formalize direct trans-
lations of such systems into the bunched setting because of the complexity of
their type systems. However, it seems relatively clear that what the authors in-
tend to enforce are non-sharing (anti-aliasing) constraints on chunks of memory.
Consider, for example, the following statement, taken from [18].

The existential I[p : Loc | {p — 71}].72 may be read “there exists some
location p, different from all others in the program, such that p contains
an object of type 71, and the value contained in this data structure has
type 72.”

What is intended to be different is surely not the location variable p itself, but
rather the memory assigned to it by the environment. Under such a reading, it
would seem more appropriate to use bunching rather than linearity as a founda-
tion for the type system. Bunched alternatives to the linear approaches to type
systems for regions [17], [19], should be equally interesting.

References

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

. B.J. Day. On closed categories of functors. In Lecture Notes in Mathematics 137,

pages 1-38. Springer-Verlag, Berlin-New York, 1970.

. B.J. Day. An embedding theorem for closed categories. In Lecture Notes in Math-

ematics 420, pages 55-65. Springer-Verlag, Berlin, 1973.

J.-Y. Girard. Une extension de l'interprétation de Godel a 'analyse et son appli-
cation & ’élimination des coupures dans I’analyse et la théorie des types. In Proc.
2nd Scandinavian Logic Symposium, pages 63-92. North-Holland, 1971.

J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l’arith-
métique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

J.-Y. Girard. Linear logic. Theoretical Computer Science 50, pages 1-102, 1987.
M.J. Gabbay and A.M.Pitts A new approach to abstract syntax and variable
binding. Formal Aspects of Computing 13, pages 341-363, 2002.

J.M.E. Hyland. A small complete category. Annals of Pure and Applied Logic,
40:135-165, 1988.

B. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic and
the Foundations of Mathematics. Elsevier, 1999.

J.C. Mitchell and G.D. Plotkin. Abstract types have existential type. ACM Trans-
actions on Programming Languages and Systems, 10:470-502, 1988.

P. O’Hearn. On bunched typing. J. Functional Programmaing., 13:747-796, 2003.
P. O’'Hearn and D. Pym. The logic of bunched implications. Bulletin of Symbolic
Logic, 5(2):215-244, 1999.

D. Prawitz. Proofs and the meaning and completeness of logical constants. In
Essays on mathematical and philosophical logic, pages 25—40. D. Reidel, 1978.
D.J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications,
volume 26 of Applied Logic Series. Kluwer Academic Publishers, 2002. Errata at:
http://www.cs.bath.ac.uk/~pym/Bl-monograph-errata.pdf.

J.C. Reynolds. Towards a theory of type structure. In Lecture Notes in Computer
Science 19, pages 408-425. Springer, 1974.

J.C. Reynolds. Separation logic: a logic for shared mutable data structure. In Proc.
LICS °02, pages 55—74. IEEE Computer Science Press, 2002.

R.A.G. Seely. Categorical semantics for higher order polymorphic lambda calculus.
Journal of Symbolic Logic, 52:969-989, 1987.

M. Tofte and J.-P. Talpin Region-based memory management. Information and
Computation, 132(2):109-176, 1997.

D. Walker and J.G. Morrisett. Alias types for recursive data structures. In Lecture
Notes in Computer Science 2071, pages 177-206. Springer-Verlag, 2001.

D. Walker and K. Watkins On regions and linear types In Proc. International
Conference on Functional Programming, 181-192. 2001.

