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Abstract

Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools
in logic because — in addition to elegant abstraction — they strengthen soundness and completeness to a
categorical equivalence, yielding a framework through which both algebraic and topological methods can be
brought to bear on a logic. We give a systematic treatment of Stone-type duality theorems for the structures
that interpret bunched logics, starting with the weakest systems, recovering the familiar Boolean BI, and
concluding with Separation Logic. Our results encompass all the known existing algebraic approaches to
Separation Logic and prove them sound with respect to the standard store-heap semantics. We additionally
recover soundness and completeness theorems of the specific truth-functional models of these logics as
presented in the literature. This approach synthesises a variety of techniques from modal, substructural
and categorical logic and contextualises the ’resource semantics’ interpretation underpinning Separation
Logic amongst them. As a consequence, theory from those fields — as well as algebraic and topological
methods — can be applied to both Separation Logic and the systems of bunched logics it is built upon.
Conversely, the notion of indexed resource frame (generalizing the standard model of Separation Logic) and
its associated completeness proof can easily be adapted to other non-classical predicate logics.

Keywords: Separation logic, bunched logic, substructural logic, program logic, categorical logic, algebraic
logic, representation, Stone duality, complex systems, hyperdoctrine, relational semantics, topological
semantics, completeness.

1 Introduction

Bunched logics, beginning with O’Hearn and Pym’s BI [36], have proved to be

exceptionally useful tools in modelling and reasoning about computational and

information-theoretic phenomena such as resources, the structure of complex sys-

tems, and access control [14,15,21]. Perhaps the most striking example is Separation

Logic [38,41] (via BI Pointer Logic [30]), a specific theory of first-order Boolean BI

with primitives for mutable data structures. Other examples include layered graph

logics [14,15,21], modal and epistemic systems [20,25], and Hennessy–Milner-style

process logics that have applications in security [15] and systems modelling [16,2].
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Fig. 1. A layered graph H @E K

The weakest bunched systems are the so-called layered graph logics [14,21].

These logics have a multiplicative conjunction that is neither associative nor com-

mutative, together with its associated implications, and additives that may be clas-

sical or intuitionistic. These systems can be used to describe the decomposition of

directed graphs into layers (see Fig 1), with applications such as complex systems

modelling (e.g., [14,21]) and issues in security concerning the relationship of policies

and the systems to which they are intended to apply (e.g., [15,21]). Strengthen-

ing the multiplicative conjunction to be associative and commutative yields BI,

for intuitionistic additives, and Boolean BI (BBI), for classical additives. Further

extensions include additive and multiplicative modalities and, with the addition of

parametrization of modalities on actions, Hennessy–Milner-syle process logics [16,2].

Yet further extensions include additive and multiplicative epistemic modalities [25],

with applications in security modelling.

All of the applications of bunched logics to reasoning about computational and

information-theoretic phenomena essentially rely on the interpretation of the truth-

functional models of these systems known as resource semantics. Truth-functional

models of bunched logics are, essentially, constructed from pre- or partially ordered

partial monoids [28] which, in resource semantics, are interpreted as describing how

resource-elements can be combined (monoid composition) and compared (order).

The program logic known as Separation Logic [30,38,41] is a specific theory of first-

order Boolean BI (FOBBI) based on the partial monoid of elements of the heap

(with the order being simply equality). Separation Logic has found industrial-

strength application to static analysis through Facebook’s Infer tool (fbinfer.com).

Stone’s representation theorem for Boolean algebras [39] establishes that every

Boolean algebra is isomorphic to a field of sets. Specifically, every Boolean algebra A
is isomorphic to the algebra of clopen subsets of its associated Stone space [32] S(A).

This result generalizes to a family of Stone-type duality theorems which establish

equivalences between certain categories of topological spaces and categories of par-

tially ordered sets. From the logical point of view, Stone-type dualities strengthen

the semantic equivalence of truth-functional (such as BI’s resource semantics or

Kripke’s semantics for intuitionistic logic) and algebraic (such as BI algebras or

Heyting algebras) models to a dual equivalence of categories. This is useful for

a number of reasons: on the one hand, it provides a theoretically convenient ab-

stract characterization of semantic interpretations and, on the other, it provides a

systematic approach to soundness and completeness theorems, via the close rela-

tionship between the algebraic structures and Hilbert-type proof systems. Beyond
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this, Stone-type dualities set up a framework through which techniques from both

algebra and topology can be brought to bear on a logic.

In this paper, we give a systematic account of resource semantics via a family of

Stone-type duality theorems that encompass the range of systems from the layered

graph logics, via Boolean BI, to Separation Logic. Our analysis can also be extended

to the intuitionistic variants of each logic, variants with additional multiplicatives

[6,7,10] and, we conjecture, the modal and epistemic systems described in [20,25].

As corollaries we retrieve the soundness and completeness of the standard truth-

functional models in the literature.

Soundness and completeness theorems for bunched logics and their extensions

tend to be proved through labelled tableaux countermodel procedures [28,34,20,25]

that must be specified on a logic by logic basis, or by lengthy translations into auxil-

liary modal logics axiomatised by Sahlqvist formulae [12,7,10]. A notable exception

to this (and precursor of the completeness result for BBI given in the present work)

is [26]. We predict our framework will increase the ease with which completeness

theorems can be proved, as the family of duality theorems can be extended in a

modular fashion. Our results also yield the equivalence of labelled tableaux sys-

tems for bunched logics with sequential proof systems that directly present the

algebraic semantics [6], as well as provide a foundation for a direct, Sahlqvist-style

notion of canonicity for bunched logics, via the canonical extension construction we

employ. More generally, the notion of indexed resource frame (generalizing the stan-

dard model of Separation Logic) and its associated completeness proof can easily

be adapted to other non-classical predicate logics.

All of the structures given in existing algebraic approaches to Separation Logic

— including [13], [22], [29], [8] and [23] — are instances of the structures used in

the present work. Thus these approaches are all proved sound with respect to the

standard semantics on store-heap pairs by the results of this paper. In particular,

we strengthen the result of [3] interpreting Separation Logic in BI hyperdoctrines.

To do so we synthesise a variety of related work from modal [33], relevant [1], sub-

structural [4] and categorical logic [18]. Much of the theory these areas enjoy is

produced by way of algebraic and topological arguments. We hope by recontextu-

alising the resource semantics of bunched logics in this way similar theory can be

given for both Separation Logic and its underlying systems.

The route map for the paper is as follows. In Section 2 we introduce LGL,

BBI and Separation Logic. In Section 3 we define the algebraic, relational and

topological structures suitable for interpreting LGL and BBI and give represen-

tation and duality theorems relating them. In Section 4 we strengthen the results

of the previous section to Separation Logic by considering FOBBI. We recall how

FOBBI can be interpreted on hyperdoctrines and define new structures called in-

dexed resource frames. Crucially, we show that the standard model of Separation

Logic is an instantiation of an indexed resource frame. We show that the semantics

on hyperdoctrines and indexed resource frames are equivalent and strengthen this

relationship to a dual equivalence of categories. In Section 5 we consider possibili-

ties for further work as a result of the duality theorems. Proofs of the main results

of the paper can be found in the appendix.
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1. φ ` φ 2. φ ` > 3. ⊥ ` φ

4. (φ→ ⊥)→ ⊥ ` φ 5.
η ` φ η ` ψ
η ` φ ∧ ψ

6.
φ ` ψ1 ∧ ψ2

φ ` ψi

7.
η ` ψ φ ` ψ
η ∨ φ ` ψ

8.
φ ` ψi

φ ` ψ1 ∨ ψ2
9.

η ∧ φ ` ψ
η ` φ→ ψ

10.
η ` φ→ ψ η ` φ

η ` ψ
11.

φ ` ψ
η ∧ φ ` ψ

12.
ξ ` φ η ` ψ
ξ � η ` φ� ψ

13.
η � φ ` ψ
η ` φ−−Iψ

14.
ξ ` φ−−Iψ η ` φ

ξ � η ` ψ
15.

η � φ ` ψ
φ ` ηI−−ψ

16.
ξ ` φI−−ψ η ` φ

η � ξ ` ψ

Fig. 2. The LGL Hilbert system, LGLH. In 6. and 8. i = 1, 2.

G � p iff G ∈ V(p) G � > always G � ⊥ never

G � φ ∧ ψ iff G � φ and G � ψ G � φ ∨ ψ iff G � φ or G � ψ
G � φ→ ψ iff G � φ implies G � ψ

G � φ I ψ iff there exists G1, G2 s.t. G = G1 @E G2, G1 � φ and G2 � ψ
G � φ−−Iψ iff for all H, G@E H ↓ and H � φ implies G@E H � ψ
G � φI−−ψ iff for all H, H @E G ↓ and H � φ implies H @E G � ψ

Fig. 3. Satisfaction on layered graphs for LGL

2 Preliminaries

2.1 Layered Graph Logic

We begin by presenting the classical logic of layered graphs, LGL [14]. The in-

tuitionistic version of LGL, ILGL, is presented in [21]. We begin with a formal,

graph-theoretic definition of layered graph that, we claim, captures the concept as

used in modelling complex systems [14,15,21]. Informally, two layers in a directed

graph are connected by a specified set of edges, each element of which starts in the

upper layer and ends in the lower layer.

Given a directed graph, G, we refer to its vertex set and its edge set by V (G) and

E(G) respectively, while its set of subgraphs is denoted Sg(G), with H ⊆ G iff H ∈
Sg(G). For a distinguished edge set E ⊆ E(G), the reachability relation ;E on

Sg(G) is defined H ;E K iff a vertex of K can be reached from a vertex of H by

an E-edge. This generates a partial composition @E on subgraphs, with H @E K ↓
(where ↓ denotes definedness) iff V (H)∩V (K) = ∅, H ;E K and K 6;E H. Output

is given by the graph union of the two subgraphs and the E-edges between them.

We say G is a layered graph (with respect to E) if there exist H, K such that

H @E K ↓ and G = H @E K (see Fig 1). Layering is evidently neither commutative

nor associative.

Let Prop be a set of atomic propositions, ranged over by p. The set of all
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12′.
ξ ` φ η ` ψ
ξ ∗ η ` φ ∗ ψ

13′.
η ∗ φ ` ψ
η ` φ−∗ ψ

14′.
ξ ` φ−∗ ψ η ` φ

ξ ∗ η ` ψ
15′. φ ∗ (ψ ∗ ξ) a` (φ ∗ ψ) ∗ ξ

16′. φ ∗ ψ ` ψ ∗ φ 17. φ ∗ I a` φ

Fig. 4. Rules for the BBI Hilbert System, BBIH

r � p iff r ∈ V(p) r � > always r � ⊥ never

r � φ ∧ ψ iff r � φ and r � ψ r � φ ∨ ψ iff r � φ or r � ψ
r � φ→ ψ iff r � φ implies r � ψ

r � I iff r = e

r � φ ∗ ψ iff there exists r1, r2 s.t. r ∈ r1 ◦ r2, r1 � φ and r2 � ψ
r � φ−∗ ψ iff for all r′, r′′ s.t. r′′ ∈ r ◦ r′, r′ � φ implies r′′ � ψ

Fig. 5. Satisfaction on partial resource monoids for BBI

formulae of LGL is generated by the following grammar:

φ ::= p | > | ⊥ | φ ∧ φ | φ ∨ φ | φ→ φ | φ� φ | φ−−Iφ | φI−−φ.

The connectives above are the standard (classical additive) logical connectives, to-

gether with (non-commutative and non-associative) multiplicative conjunction, �,

and its associated implications −−I and I−−. We define ¬φ as φ→ ⊥. A Hilbert-type

system for the logic is given in Fig 2.

LGL is interpreted on layered structures called scaffolds. A scaffold is a structure

X = (G, E , X) where G is a directed graph, E is a distinguished edge set and X ⊆
Sg(G) is such that H,K ∈ X iff H @E K ∈ X if H @E K ↓. Given a scaffold X and

a valuation V : Prop → P(X) (where P(X) is the power set of X) the satisfaction

relation � is inductively defined in Fig 3.

2.2 Boolean BI

Let Prop be a set of atomic propositions, ranged over by p. The set of all formulae

of BBI is generated by the following grammar:

φ ::= p | > | ⊥ | I | φ ∧ φ | φ ∨ φ | φ→ φ | φ ∗ φ | φ−∗ φ.
Once again we have the standard classical additives, this time joined by a multi-

plicative conjunction ∗ and implication −∗, as well as a constant I. By extending

rules 1–11 of Fig 2 with the rules of Fig 4 we obtain a system for BBI. These rules

enforce commutativity and associativity of the multiplicative conjunction ∗, as well

as specifying that I is a unit for ∗.
BBI is interpreted on partial resource monoids R = (Res, ◦, e), where Res is

a set of resources, ◦ : Res × Res → P(Res) is a non-deterministic composition

satisfying commutativity and associativity, and e is a unit for ◦: for all r ∈ Res,

r ◦ e = {r}. Given a partial resource monoid R and a valuation V : Prop→ P(Res),

the satisfaction relation � is inductively defined in Fig 5.
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s, h � > always s, h |= ⊥ never s, h |= E = E′ iff {{E}}s = {{E′}}s
s, h |= E 7→F iff {{E}}s = dom(h) and h({{E}}s) = {{ F }}s

s, h |= emp iff h = [ ] (the empty heap)

s, h |= φ ∗ ψ iff there are h0,h1 s.t. h0#h1, h0 ·h1 =h,s, h0 |= φ and s, h1 |= ψ

s, h |= φ−∗ψ iff for all h′, h#h′ and s, h′ |= φ, implies s, h · h′ |= ψ

s, h |= φ→ ψ iff s, h |= φ implies s, h |= ψ

s, h |= ∃v . φ iff for some v∈Val, [s | v 7→ a], h |= φ

The remaining classical connectives are defined in the usual way: ¬φ = φ→ ⊥;

φ ∨ ψ = (¬φ)→ ψ; φ ∧ ψ = ¬(¬φ ∨ ¬ψ); and ∀x . φ = ¬∃x .¬φ.

Fig. 6. Satisfaction for BI Pointer Logic

2.3 Separation Logic

Separation Logic [35], introduced by Ishtiaq and O’Hearn [30], and Reynolds [38],

is an extension of Hoare’s program logic which addresses reasoning about programs

that access and mutate data structures. The usual presentation of Separation Logic

is based on Hoare triples — for reasoning about the state of imperative programs

— of the form {φ }C {ψ } , where C is a program command, φ is pre-condition for

C, and ψ is a post-condition for C. Reynolds’ programming language is a simple

language of commands with a Lisp-like set-up for creating and accessing cons cells:

C ::= x := E | x := E.i | E.i := E′ | x := cons(E1, E2) | ... . Here the expressions

E of the language are built up using booleans, variables, etc., cons cells, and atomic

expressions. Separation Logic thus facilitates verification procedures for programs

that alter the heap.

A key feature of Separation Logic is the local reasoning provided by the so-called

Frame Rule,
{φ }C {ψ }

{φ ∗ χ }C {ψ ∗ χ }
,

where χ does not include any free variables modified by the program C. Static

analysis procedures based on the Frame Rule form the basis of Facebook’s Infer

tool (fbinfer.com) that is deployed in its code production. The decomposition

of the analysis that is facilitated by the Frame Rule is critical to the practical

deployability of Infer.

Separation Logic can usefully and safely be seen (see [41] for the details) as a

presentation of BI Pointer Logic [30]. The semantics of BI Pointer Logic, a theory of

(first-order) BBI, is an instance of BBI’s resource semantics in which the monoid

of resources is constructed from the program’s heap. In detail, this model has two

components, the store and the heap. The store is a partial function mapping from

variables to values a ∈ Val, such as integers, and the heap is a partial function

from natural numbers to values. In logic, the store is often called the valuation,

and the heap is a possible world. In programming languages, the store is sometimes

called the environment. Within this set-up, the atomic formulae of BI Pointer

Logic include equality between expressions, E = E′, and, crucially, the points-to

predicate, E 7→ F .

We use the following additional notation: dom(h) denotes the domain of def-

inition of a heap h and dom(s) is the domain of a store s; h#h′ denotes that

dom(h) ∩ dom(h′) = ∅; h · h′ denotes the union of functions with disjoint domains,
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which is undefined if the domains overlap; [f | v 7→ a] is the partial function that is

equal to f except that v maps to a; expressions E are built up from variables and

constants, and so determine denotations {{E}}s ∈ Val. With this basic data, the

satisfaction relation for BI Pointer Logic is defined as in Figure 6. The judgement,

s, h � φ, says that the assertion φ holds for a given store and heap, assuming that

the free variables of φ are contained in the domain of s.

Note that the semantics of E 7→ F requires that E be the only active address

in the current heap. Descriptions of larger heaps can be built up using ∗: this

corresponds to the local reasoning provided by the Frame Rule. For example, (9 7→
5) ∗ (10 7→ 7) describes two adjacent cells whose contents are 5 and 7.

3 Representation and Duality for LGL and BBI

By abstracting from the Hilbert systems and the semantics given in Section 2 we

can obtain algebraic and relational semantics (respectively) for the logics LGL and

BBI. We begin with algebraic semantics.

Definition 3.1

(i) A layered algebra A is an algebra A = (A,∧,∨,¬,>,⊥,I,−−I,I−−) such that

(A,∧,∨,¬,>,⊥) is a Boolean algebra and I,−−I and I−− are binary operations

on A satisfying, for all a, b, c ∈ A, a I b ≤ c iff a ≤ b−−I c iff b ≤ aI−− c.
(ii) A resource algebra is a layered algebra A extended with a constant I such that

a) I is associative and commutative; and b) for all a ∈ A: a I I = a.

We note that for resource algebras, commutativity of I entails −−I = I−−. LayAlg

(ResAlg) denotes the category of layered (resource) algebras and homomorphisms

between them. 2

Given a valuation V : Prop→ A on a layered algebra, we obtain an interpretation

J−K for LGL on A as follows: JpK = V(p), J>K = >, J⊥K = ⊥, Jφ→ ψK = ¬JφK∨JψK,
and Jφ ◦ ψK = JφK ◦ JψK for ◦ ∈ {∧,∨,I,−−I,I−−}. For a valuation on a resource

algebra A we similarly obtain an interpretation J−K for BBI on A: in this case we

set Jφ ∗ ψK = JφK I JψK, Jφ−∗ ψK = JφK−−IJψK and JIK = I.

An interpretation J−K on a layered (resource) algebra satisfies φ if JφK = >. φ

is valid on layered algebras if it is satisfied under all interpretations. By forming

Lindenbaum-Tarski algebras from the Hilbert-type systems given in Figures 2 and

4 we obtain soundness and completeness for this semantics.

Theorem 3.2 For all formulae φ of LGL (BBI), φ ` ψ is provable in LGLH

(BBIH) iff, for all algebraic interpretations J−K, JφK ≤ JψK. 2

We now move to the relational structures generalizing the semantics of LGL

and BBI.

Definition 3.3

(i) A layered frame X is a pair X = (X,R), where X is a set and R is a ternary

relation on X.
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(ii) A resource frame X is a triple X = (X,R,E), where (X,R) is a layered frame,

E ⊆ X and, for all x, y, z, t ∈ X, the following properties are satisfied:
• (Assoc) ∃t′(Rxyt′ and Rt′zt) iff ∃t′(Ryzt′ and Rxt′t);
• (Comm) Rxyz iff Ryxz;
• (Unit) ∃e ∈ E : RexxA and ∀e ∈ E : Rexy implies x = y. 2

It is straightforward to see that these definitions generalize the structures defined

in Section 2 to interpret LGL and BBI. Given a scaffold (G, X, E), we obtain a

layered frame (X,RE) by defining REHKG iffH @EK ↓ andH @EK = G. Similarly,

for a partial resource monoid (Res, ◦, e), we obtain a resource frame (Res,R◦, {e})
by defining R◦r0r1r iff r ∈ r0 ◦ r1. Using these substitutitions one can reconfigure

the semantics given in Figures 3 and 5 to give a satisfaction relation � on frames.

For BBI, we make one additional adjustment to take care of the move from a single

unit e to a set of units E: x � I iff x ∈ E.

Resource frames are the weakest relational structures that can soundly and com-

pletely interpret BBI, a fact that is formally captured by the duality theorem 3.12.

The notion is closely related to two other types of relational structure from the

BBI literature – multi-unit separation algebras [22] and relational frames [26] –

and coincides with two others, BBI frames [9] and non-deterministic monoids [27].

Resource frames have multiple units like multi-unit separation algebras, but drop

the cancellativity requirement of the partial composition. In contrast, they are

distinguished from relational frames because of the fact they have multiple units.

These distinctions are crucial for what follows: the representation and duality

theorems do not hold when we restrict to frames satisfying either of these properties.

This is also witnessed by the fact that BBI is not expressive enough to distinguish

between cancellative/non-cancellative models and single unit/multi-unit models [9],

all of which define the same notion of validity [27].

To obtain categories LayFr and ResFr we define morphisms for frames.

Definition 3.4 (cf. [9]) Given layered frames X and X ′, a layered p-morphism

f : X → X ′ is a function f : X → X ′ satisfying the following:

(i) ∀x, y, z, if Rxyz, then R′f(x)f(y)f(z);

(ii) ∀x′, y′, z, if R′x′y′f(z), then ∃x, y ∈ X s.t. Rxyz, f(x) = x′ and f(y) = y′;

(iii) ∀x′, y, z′, if R′x′f(y)z′, then ∃x, z ∈ X s.t. Rxyz, f(x) = x′ and f(z) = z′;

(iv) ∀x, y′, z′, if R′f(x)y′z′, then ∃y, z ∈ X s.t. Rxyz, f(y) = y′ and f(z) = z′.

A resource p-morphism f : X → X ′ between resource frames X and X ′ is a layered

p-morphism that additionally satisfies

(v) ∀x, x ∈ E iff f(x) ∈ E′. 2

3.1 Representation and Duality

We now give representation and duality theorems for layered and resource algebras.

As a corollary, we obtain the equivalence of the relational semantics to the algebraic

semantics, as well as its completeness with respect to the Hilbert systems of Section

2. The soundness and completeness of resource semantics can thus be understood

as a consequence of this topological duality.
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Definition 3.5 Given a layered frame X , the complex algebra of X is given by

Com(X ) = (P(X),∩,∪, \, X, ∅,IR,−−IR,I−−R), where IR,−−IR and I−−R are defined

as follows:

A IR B = {z | there exists x ∈ A, y ∈ B s.t. Rxyz}

A−−IRB = {x | for all y, z ∈ X, if Rxyz and y ∈ A, then z ∈ B}

AI−−RB = {x | for all y, z ∈ X, if Ryxz and y ∈ A, then z ∈ B}.

For a resource frame X , the complex algebra Com(X ) is given by extending the

complex algebra of the underlying layered frame with the set E. 2

Lemma 3.6 The complex algebra Com(X ) of a layered (resource) frame X is a

layered (resource) algebra. 2

We can also define a layered (resource) frame from any layered (resource) algebra.

We first recall the notion of (ultra)filter. A filter on a Boolean algebra A is a subset

F ⊆ A satisfying, for all x, y ∈ A, (i) x ∈ F and x ≤ y implies y ∈ F ; (ii) x, y ∈ F
implies x ∧ y ∈ F . It is proper if ⊥ 6∈ F . An ultrafilter is a proper filter that

additionally satisfies (iii) x ∨ y ∈ F implies x ∈ F or y ∈ F . An ultrafilter of a

layered (resource) algebra A is an ultrafilter of its underlying Boolean algebra.

Definition 3.7 Given a layered algebra A, the ultrafilter frame Ult(A) is defined

Ult(A) = (Uf(A), RUlt(A)), where Uf(A) is the set of ultrafilters on A and RUlt(A) is

defined by RUlt(A)F0F1F2 iff, for all x ∈ F0 and y ∈ F1, x I y ∈ F2. For a resource

algebra A, the ultrafilter frame is given by extending Ult(A) by ERUlt(A)
= {F ∈

Uf(A) | I ∈ F}. 2

Lemma 3.8 Given a layered (resource) algebra A, the ultrafilter frame Ult(A) is a

layered (resource) frame. 2

We now extend the Stone representation theorem for Boolean algebras to take

account of the additional residuated structure of layered/resource algebras. For

layered algebras this is not a new result exactly: it can be derived as a specific case

of an analogous theorem for Boolean gaggles ([4], Theorem 1.4.16) and is related

to the representation theorem for Boolean algebras with operators ([33]), though it

notably uses only one relation R for the operator I and its non-operator adjoints

−−I and I−−. Its relation to the existing semantics of LGL is new, however. See

Appendix A for the proof.

Theorem 3.9 (Representation Theorem for Layered/Resource Algebras)

Every layered algebra is isomorphic to a subalgebra of a complex algebra. Specifi-

cally, the map hA : A → Com(Ult(A)) given by hA(a) = {F ∈ Uf(A) | a ∈ F} is

an embedding. 2

Now given an interpretation J−K on a layered (resource) algebra A we can give

a valuation VJ−K on the ultrafilter frame by VJ−K(p) = hA(JpK). Similarly, any

valuation V on a layered (resource) frame X generates an interpretation on its

complex algebra. As hA is a homomorphism and the definition of the operations of
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the complex algebra matches the clauses for the relational semantics, we obtain the

following corollary.

Corollary 3.10

(i) For all formulae φ of LGL (BBI), φ is satisfiable/valid on layered (resource)

algebras iff φ is satisfiable/valid on layered (resource) frames.

(ii) The relational semantics of LGL (BBI) is sound and complete. 2

Similarly to Stone’s representation theorem, our results extend to categorical

dualities. As with the representation theorem, for layered algebras this is not a

new result: it can be obtained as a specific case of the duality theorem for Boolean

gaggles ([4], Theorem 9.2.22).

Definition 3.11

(i) A layered space is a structure X = (X,O, R) such that

(a) (X,O) is a Stone space [32] and (X,R) a layered frame,

(b) the clopen sets of (X,O), CL(X), are closed under IR,−−IR and I−−R, and

(c) if Rxyz does not hold, then there exist clopen sets O0 and O1 such that

x ∈ O0, y ∈ O1 and z 6∈ O0 IR O1.

(ii) A resource space is a structure X = (X,O, R,E) such that (X,O, R) is a

layered space, (X,R,E) is a resource frame and E is a clopen set. 2

A morphism of layered (resource) spaces f : X → X ′ is thus a continuous layered

(resource) p-morphism. This yields categories LaySp and ResSp. Given a layered

(resource) algebra A, we can equip its ultrafilter frame with the topology generated

by the base {hA(a) | a ∈ A}. This yields a layered (resource) space and underpins

the categorical duality: a proof can be found in Appendix B.

Theorem 3.12 (Duality Theorem for Layered/Resource Algebras) The cat-

egories LayAlg (ResAlg) and LaySp (ResSp) are dually equivalent. 2

4 A Duality Theorem For Separation Logic

We now extend the duality theorem for resource algebras to the algebraic and rela-

tional structures suitable for interpreting Separation Logic. First, we must consider

first-order BBI (FOBBI). A Hilbert-type proof system is obtained by extending

that given for BBI in Section 2 with the usual rules for quantifiers (see, e.g., [40]).

Second, to give the semantics for the quantifiers of FOBBI, we must expand our

definitions from the propositional case with category-theoretic structure. As these

semantic structures support it, we consider a many-sorted first-order logic. We start

on the algebraic side with resource hyperdoctrines.

Definition 4.1 (cf. [3]) A resource hyperdoctrine is a tuple

(P : Cop → Poset, (=X)X∈Ob(C), (∃XΓ,∀XΓ)Γ,X∈Ob(C)) such that,

(i) C is a category with finite products;

10
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(ii) P : Cop → Poset is a functor such that, for each object X in C, P(X) is a

resource algebra, and, for each morphism f in C, P(f) is a homomorphism;

(iii) For each object X in C and each diagonal morphism ∆X : X → X ×X in C,

=X∈ P(X ×X) is such that, for all a ∈ P(X ×X), > ≤ P(∆X)(a) iff =X≤ a;

(iv) For each pair of objects Γ, X in C and each projection πΓ,X : Γ×X → Γ in C,

∃XΓ and ∀XΓ are monotone maps ∃XΓ : P(Γ ×X) → P(Γ) and ∀XΓ : P(Γ ×
X) → P(Γ) such that, for all a, b ∈ P(Γ), ∃XΓ(a) ≤ b iff a ≤ P(πΓ,X)(b) and

P(πΓ,X)(b) ≤ a iff b ≤ ∀XΓ(a). This assignment of morphisms is additionally

natural in Γ: given a morphism s : Γ→ Γ′, the following diagrams commute:

P(Γ′ ×X) P(Γ×X)

P(Γ′) P(Γ)

P(s×idX)

∃XΓ′ ∃XΓ

P(s)

P(Γ′ ×X) P(Γ×X)

P(Γ′) P(Γ)

P(s×idX)

∀XΓ′ ∀XΓ

P(s)

2

Resource hyperdoctrines have appeared elsewhere in the literature as BI hyper-

doctrines where they were used to prove the existence of models of higher-order

variants of Separation Logic [3]. The Boolean quantale [29] and formal power series

[23] approaches to algebraic Separation Logic are instantiations of this structure.

To specify an interpretation J−K of FOBBI in a resource hyperdoctrine, P, we

assign each type X an object JXK of C, and for each context Γ = {v1 : X1, . . . , vn :

Xn} we have JΓK = JX1K× · · · × JXnK. Each function symbol f : X1 × · · ·Xn → X

is assigned a morphism JfK : JX1K× · · · JXnK→ JXK. This allows us to inductively

assign every term of type X in context Γ a morphism JtK : JΓK→ JXK in the standard

way (see [37]). We additionally assign, for each m-ary predicate symbol P of type

X1, . . . , Xm, JP K ∈ P(JX1K× · · · × JXmK). Then the structure of the hyperdoctrine

allows us to extend J−K to FOBBI formulae φ in context Γ as follows:

JPt1 . . . tmK = P(〈Jt1K, . . . , JtmK〉)(JP K) Jt =X t′K = P(〈JtK, Jt′K〉)(=JXK)

JCK = CP(JΓK) Jφ ◦ ψK = JφK ◦P(JΓK) JψK JQv : XφK = QJXKJΓK(JφK)

where C ∈ {>,⊥, I}, ◦ ∈ {∧,∨,→, ∗,−∗} and Q ∈ {∃,∀}). Substitution of terms is

given by Jφ(t/x)K = P(JtK)(JφK). φ is satisfied by an interpretation J−K if JφK = >.

φ is valid if it is satisfied by all interpretations.

Theorem 4.2 [37,3] FOBBI is sound and complete on resource hyperdoctrines.2

On the relational side, we introduce a new structure: indexed resource frames.

This definition is adapted from the notion of indexed Stone space presented in [18] as

a topological dual for Boolean hyperdoctrines. In contrast to the duality presented

there, we additionally consider (typed) equality and universal quantification.

Definition 4.3 An indexed resource frame is a functor R : C→ ResFr such that

(i) C is a category with finite products;

(ii) For all objects Γ,Γ′ and X in C, all morphisms s : Γ → Γ′ and all product

projections πΓ,X , the following square is a quasi-pullback:

11
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x, J−K �Γ Pt1 . . . tm iff R(〈Jt1K, . . . , JtmK〉)(x) ∈ JP K
x, J−K �Γ t =X t′ iff R(〈JtK, Jt′K〉)(x) ∈ Ran(R(∆JXK))

x, J−K �Γ > always x, J−K �Γ ⊥ never

x, J−K �Γ φ ∧ ψ iff x, J−K �Γ φ and x, J−K �Γ ψ

x, J−K �Γ φ ∨ ψ iff x, J−K �Γ φ or x, J−K �Γ ψ

x, J−K �Γ φ→ ψ iff x, J−K 6�Γ φ or x, J−K �Γ ψ

x, J−K �Γ I iff x ∈ ER(JΓK)
x, J−K �Γ φ ∗ ψ iff there exists y, z ∈ R(JΓK) such that RR(JΓK)yzx and

y, J−K �Γ φ and z, J−K �Γ ψ

x, J−K �Γ φ−∗ ψ iff, for all y, z ∈ R(JΓK), if RR(JΓK)yxz and

y, J−K �Γ φ, then z, J−K �Γ ψ

x, J−K �Γ ∃vn+1 :Xφ iff there exists x′ ∈ R(JΓK× JXK) such that

R(πJΓK,JXK)(x
′) = x and x′, J−K �Γ∪{vn+1:X} φ

x, J−K �Γ ∀vn+1 :Xφ iff, for all x′ ∈ R(JΓK× JXK), if R(πJΓK,JXK)(x
′) = x,

then x′, J−K �Γ∪{vn+1:X} φ

Fig. 7. Satisfaction on indexed resource frames for FOBBI

R(Γ×X) R(Γ)

R(Γ′ ×X) R(Γ′)

R(πΓ,X)

R(s×idX) R(s)

R(πΓ′,X)

Given an arbitrary indexed resource frame R : C → ResFr and an object X we

denote the resource frame at X by R(X) = (R(X), RR(X), ER(X)). 2

We now give a truth-functional semantics for FOBBI on indexed resource

frames. An interpretation J−K is given in precisely the same way as for resource

hyperdoctrines, except for the key difference that each m-ary predicate symbol P

of type X1, . . . , Xm, is assigned JP K ⊆ R(JX1K× · · · × JXmK).
Then for formulae φ of FOBBI in context Γ with x ∈ R(JΓK) the satisfac-

tion relation �Γ is inductively defined in Fig 7. There, Ran(R(∆JXK)) = {y | ∃z :

R(∆JXK)(z) = y}. We note that bound variables are renamed to be fresh through-

out, in an order determined by quantifier depth.

4.1 The Pointer Model as an Indexed Resource Frame

Although at first sight it doesn’t seem so, indexed resource frames and the seman-

tics based upon them are a generalization of the standard store–heap semantics of

Separation Logic.

Consider the resource frame Heap = (H,], {[ ]}), where H is the set of heaps,

[ ] is the empty heap and ] is defined by ]h0h1h2 iff h0#h1 and h0 · h1 = h2. This

is the resource frame corresponding to the partial monoid of heaps.

We define an indexed resource frame Store : Set → ResFr by Store(X) = (X ×
H,]X , X × {[ ]}), where ]X(x0, h0)(x1, h1)(x2, h2) iff x0 = x1 = x2 and ]h0h1h2,

and Store(f : X → Y )(x, h) = (f(x), h). It is straightforward to see this defines

a functor: for arbitrary X, Store(X) inherits the resource frame properties from

Heap and for arbitrary f : X → Y , Store(f) is trivially a resource p-morphism as

12
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it is identity on the structure that determines the back and forth conditions. The

quasi-pullback property is also satisfied so this defines an indexed resource frame.

The interpretation J−K on Store that yields the stanard model of Separation

Logic is as follows. We have one type Val and we set JValK = Z, with the arithmetic

operations J+K, J−K : JValK2 → JValK defined as one would expect. Term morphisms

JtK : JValKn → JValK in context Γ = {v1, . . . vn} are then defined as usual, with each

constant n assigned the morphism JnK : JΓK {∗} JValK.n Finally, the

points-to predicate 7→ is assigned

J7→K = {((a, a′), h) | dom(h) = {a} and h(a) = a′} ⊆ Store(JValK2).

In the indexed resource frame Store : Set → ResFr with the interpretation just

defined, a store is represented as an n-place vector of values over JValK. That is,

the store s = {(v1, a1), . . . , (vn, an)} is given by the element (a1, . . . , an) ∈ JValKn.

By a simple inductive argument we have the following result:

Theorem 4.4 For all formulae φ of pointer logic, all stores s ={(v1, a1),. . .,(vn, an)}
and all heaps h, s, h � φ iff ((a1, . . . , an), h), J−K �Γ φ. 2

The notion of indexed resource frame and its associated semantics are therefore

a natural generalization of the standard Separation Logic model.

4.2 Equivalence of Semantics and Duality

We now extend the results given for resource algebras to resource hyperdoctrines.

To do so we give analogous structures to complex algebras and ultrafilter frames.

To specify complex hyperdoctrines we first require an auxillary definition. Given a

function f : X → Y , the dual image f∗ : P(X) → P(Y ) is defined f∗(A) = {x |
for all y : if f(y) = x, then y ∈ A}.

Definition 4.5 Given an indexed resource frame R : C → ResFr, the complex

hyperdoctrine of R, Com(R(−)) : Cop → ResAlg is defined by extending Definition

3.5 to morphisms with Com(R(f)) = (R(f))−1 and setting Ran(R(∆X)) as =X ,

the direct image R(πΓ,X) as ∃XΓ, and R(πΓ,X)∗ as ∀XΓ. 2

Lemma 4.6 Given an indexed resource frame R : C→ ResFr, the complex hyper-

doctrine Com(R(−)) is a resource hyperdoctrine. 2

Definition 4.7 Given a resource hyperdoctrine P : Cop → Poset the indexed ul-

trafilter frame Ult(P(−)) : C → ResFr is given by extending Definition 3.7 to

morphisms by setting Ult(P(f)) = (P(f))−1. 2

Lemma 4.8 Given a resource hyperdoctrine P : Cop → Poset the indexed ultrafilter

frame Ult(P(−)) is an indexed resource frame. 2

Given an interpretation J−K on an indexed resource frame R we immediately

obtain an interpretation on its complex hyperdoctrine, as for each m-ary predicate

symbol P of type X1, . . . , Xm, JP K is an element of Com(R(JJX1K×· · ·×JXmKK), as

required. Correspondingly, given an interpretation J−K on a resource hyperdoctrine

P, we automatically obtain an interpretation J̃−K on its indexed ultrafilter frame.

13
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J̃−K is the same as J−K except J̃P K = hP(JX1K×···×JXmK)(JP K) for m-ary predicate

symbols of type X1, . . . , Xm.

Theorem 4.9 (i) For all formulae φ of FOBBI: φ is satisfiable (valid) on re-

source hyperdoctrines iff φ is satisfiable (valid) on indexed resource frames.

(ii) The indexed resource frame semantics of FOBBI is sound and complete. 2

This can be strengthened to prove a duality theorem for resource hyperdoctrines.

First we augment Definition 4.3 with topological structure.

Definition 4.10 An indexed resource space is a functor R : C→ ResSp such that

(i) C is a category with finite products,

(ii) Ran(R(∆X)) is clopen, and

(iii) for all objects Γ,Γ′ and X in C, all morphisms s : Γ → Γ′ and all product

projections πΓ,X , the following square is a quasi-pullback:

R(Γ×X) R(Γ)

R(Γ′ ×X) R(Γ′)

R(πΓ,X)

R(s×idX) R(s)

R(πΓ′,X)

With the additional conditions that R(πΓ,X) maps open sets to open sets and

R(πΓ,X)∗ maps closed sets to closed sets. 2

We can now combine BBI duality with the transformations between indexed

resource frames and resource hyperdoctrines to give a dual equivalence of categories.

First, we give notions of morphism for resource hyperdoctrines and indexed resource

frames to obtain categories ResHyp and IndResSp. For hyperdoctrines, we adapt

the definition of coherent hyperdoctrine morphism given in [19].

Definition 4.11 Given resource hyperdoctrines P : Cop → Poset and P′ : Dop →
Poset, a resource hyperdoctrine morphism (K, τ) : P→ P′ is a pair such that

(i) K : C→ D is a finite product preserving functor,

(ii) τ : P→ P′ ◦K is a natural transformation,

(iii) for all objects X in C: τX×X(=X) = =′K(X)

(iv) for all objects Γ and X in C, the following squares commute:

P(Γ×X) P′(K(Γ)×K(X))

P(Γ) P′(K(Γ))

τΓ×X

∃XΓ ∃′K(X)K(Γ)

τΓ

P(Γ×X) P′(K(Γ)×K(X))

P(Γ) P′(K(Γ))

τΓ×X

∀XΓ ∀′K(X)K(Γ)

τΓ

The composition of the resource hyperdoctrine morphisms (K, τ) : P → P′ and

(K ′, τ ′) : P′ → P′′ is given by (K ′ ◦K, τ ′K(−) ◦ τ). 2

Definition 4.12 Given indexed resource spaces R : C → ResSp and R′ : D →
ResSp, an indexed resource space morphism (L, λ) : R → R′ is a pair (L, λ) such

that

(i) L : D→ C is a finite product preserving functor,
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(ii) λ : R ◦ L→ R′ is a natural transformation,

(iii) (Lift Property) if there exist x and y such that λX×X(x) = R′(∆X)(y), then

there exists y′ such that R(L(∆X))(y′) = x, and

(iv) for all objects Γ and X in C, the following square is a quasi-pullback:

R(L(Γ)× L(X)) R(Γ×X)

R(L(Γ)) R(Γ)

λΓ×X

R(L(πΓ,X)) R′(πΓ,X)

λΓ

The composition of the indexed resource space morphisms (L, λ) : R → R′ and

(L′, λ′) : R′ → R′′ is given by (L ◦ L′, λ′ ◦ λL′(−)). 2

Duality is given on objects by composing a resource hyperdoctrine/indexed re-

source frame with the corresponding functor from BBI duality. On morphisms, we

take the inverse image of the natural transformation in both resource hyperdoctrine

and indexed resource frame morphisms. A full proof can be found in the appendix.

Theorem 4.13 (Duality Theorem for Resource Hyperdoctrines) The cate-

gories ResHyp and IndResSp are dually equivalent. 2

5 Conclusions and Further Work

We have given a systematic treatment of Stone-type duality for the structures that

interpret bunched logics, starting with the weakest systems, recovering the familiar

BBI, and concluding with Separation Logic. Our results encompass all the known

existing algebraic approaches to Separation Logic and prove them sound with re-

spect to the standard store-heap semantics. As corollaries, we uniformly recover

soundness and completeness theorems for the systems we consider.

We have also obtained analogous results for the intuitionistic variant of LGL

(ILGL, developed in [21]), BI [36] and intuitionistic FOBBI, of which intuitionistic

Separation Logic [30] is a specific model. Our theorems can also be extended to

the bunched logics with additional multiplicatives corresponding to negation and

disjunction: dMBI [6], CBI [7] and the full range of sub-classical bunched logics

[10]. These results will be presented elsewhere. We conjecture that the treatment

can additionally encompass a range of bunched modal and epistemic systems (e.g.,

[20], [9], and [25]), as well as higher-order variants of Separation Logic via general

hyperdoctrines [3]. We believe this treatment will simplify completeness arguments

for bunched logics by providing a modular framework within which existing results

can be extended. More generally, the notion of indexed resource frame and its

associated completeness argument can easily be adapted for a wide range of non-

classical predicate logics.

We identify two areas of interest for further work. First, in extending our frame-

work to encompass the breadth of the bunched logic literature we hope to give an

account of multiplicative (or bunched) modalities [20] and quantification [17], areas

which have yet to be explored algebraically. This would require the formulation

of resource algebra with operators and a reformulation of resource hyperdoctrine in

which the operators and adjoints (respectively) satisfy certain compatibility condi-
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tions with the monoidal structure of resource algebras. We believe the present work

provides the mathematical foundation to explore these ideas.

Second, we conjecture that our approach can be extended to account for the

operational semantics of program execution given by Hoare triples. As a conse-

quence, we aim to interpret computational approaches to the Frame Rule such as

bi-abduction [11] within our semantics. We believe the evident extension of our

framework with the duality-theoretic approach to Hoare logic [5] can facilitate this.

We wish to investigate if the duality theorems can be used to bring algebraic or

topological methods to bear on these important properties of Separation Logic.
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A Proof of Theorem 3.9: Representation Theorem for
Layered/Resource Algebras

In this section we give a proof of Theorem 3.9. We first prove the result for layered

algebras, then strengthen it to resource algebras. To begin we require some auxil-

liary notions and results. First, that the following properties hold for the residuated

structure of a layered algebra.

Proposition A.1 (cf. [31]) Let A be a layered algebra. Then, for all a, b, a′, b′ ∈ A
and X,Y ⊆ A, we have

(i) If a ≤ a′ and b ≤ b′ then a I b ≤ a′ I b′;
(ii) If

∨
X and

∨
Y exist then

∨
x∈X,y∈Y x I y exists and (

∨
X) I (

∨
Y ) =∨

x∈X,y∈Y x I y;

(iii) If a = ⊥ or b = ⊥ then a I b = ⊥;

(iv) If
∨
X exists then for any z ∈ A:

∧
x∈X x−−I z and

∧
x∈X xI−− z exist with∧

x∈X x−−I z =
∨
X −−I z and

∧
x∈X xI−− z =

∨
X I−− z

(v) If
∧
X exists then for any z ∈ A

∧
x∈X z−−Ix and

∧
x∈X zI−−x exist with∧

x∈X z−−Ix = z−−I
∧
X and

∧
x∈X zI−−x = zI−−

∧
X;

(vi) a−−I> = aI−−> = ⊥−−I a = ⊥I−− a = >. 2

We introduce the following notation. Given a Boolean algebra A and a set

X ⊆ A, [X) = {a | ∃x1, . . . , xn ∈ X : x1 ∧ · · · ∧ xn ≤ a}. This gives the least

filter containing X. In the case that X = {x} we write [x). Finally, we define

[X, a) = [X ∪ {a}).

Proposition A.2 (cf. [24]) Let A be a Boolean algebra, F ⊆ A a filter, a ∈ A

and f : A→ A′ a homomorphism.

(i) [F ) = {x | ∃y ∈ F : y ≤ x};
(ii) [F, a) = {x | ∃y ∈ F : y ∧ a ≤ b}.
(iii) [f(F )) = {x′ | ∃y ∈ F : f(y) ≤ x′} 2

We also have the dual notion of (ultra)filter, (prime) ideal, given by substituting

∧ and ∨ and reversing the order in the defining conditions of (ultra)filter). We can

do the same for the least filter notation [X) to give the least ideal containing a

set X. We denote this by (X], (a] and (X, a]. The dual statements of properties

(i) - (iii) of Proposition A.2 hold for these sets. Crucially, for a prime ideal I, the

complement I is an ultrafilter.

We now give the representation theorem for layered algebras.

Proof. (Representation Theorem for Layered Algebras) That hA is injective and

homomorphic on the Boolean algebra reduct of A is simply the Stone representation

theorem. It remains to show that this is the case for the residuated structure.

We restrict ourselves to the case for −−I as the others are somewhat similar. We

must show hA(a−−I b) = hA(a)−−IRUlt(A)
hA(b). To do so we consider three cases:

a = ⊥, b = > and a 6= ⊥, b 6= >. First, suppose a = ⊥. By Proposition A.1 (vi),

a−−I b = > so h(a−−I b) = Uf(A). As there are no ultrafilters F with a = ⊥ ∈ F ,
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the antecedent of the defining condition of hA(a)−−IRUlt(A)
hA(b) is false in every

case. We thus have hA(a)−−IRUlt(A)
hA(b) = Uf(A), as the defining condition is

vacuously true for every ultrafilter. The next case, b = >, is essentially the same.

Finally, we consider the case in which a 6= ⊥ and b 6= >. We split this into two

subcases: a−−I b 6= ⊥ and a−−I b = ⊥. We first assume a−−I b 6= ⊥. For the inclusion

hA(a−−I b) ⊆ hA(a)−−IRUlt(A)
hA(b): if a−−I b ∈ F and RUlt(A)FF0F1 holds with

F0 ∈ hA(a) then we have (a−−I b) I a ∈ F1. By residuation we have (a−−I b) I a ≤ b
so by upwards-closure of F1, b ∈ F1. Hence F ∈ hA(a)−−IRUlt(A)

hA(b), as required.

For the inclusion hA(a)−−IRUlt(A)
hA(b) ⊆ hA(a−−I b), we reason contrapositively

and assume a−−I b 6∈ F . Consider the filter α = [a) and the ideal β = (b]. By

assumption these are both proper. Further, we claim for all x ∈ F and y ∈ α, we

have x I y ∈ β. Suppose not: then as y ≤ a and x I y ≤ b we have x I a ≤ x I
y ≤ b by Proposition A.1 (i). Hence, by residuation and filter-hood, x ≤ a−−I b ∈ F ,

a contradiction.

Thus the following set is non-empty:E = {〈α, β〉 |
α is a proper filter, β is a proper ideal, a ∈ α, b ∈ β,∀x ∈ F, y ∈ α, x I y ∈ β}.
Now E equipped with component-wise inclusion is a partial order. Clearly every

chain of this partial order has an upper bound given by taking the union of each

component, so we may apply Zorn’s lemma to obtain a maximum 〈Fmax, Imax〉.
We claim Fmax is an ultrafilter and Imax is a prime ideal.

For Fmax, assume for contradiction there exists x ∨ y ∈ F0 with x, y 6∈ F0.

Consider [Fmax, x), [Fmax, y) ⊃ Fmax. First note that these both define proper

filters. Suppose (wlog.) that [Fmax, x) fails to be proper. Then there exists z ∈
Fmax such that z ∧ x = ⊥. Thus z ∧ (x ∨ y) = (z ∧ x) ∨ (z ∧ y) = ⊥ ∨ (z ∧ y) =

z ∧ y ∈ Fmax. By upwards-closure y ∈ Fmax, contradicting our assumption. They

also trivially satisfy a ∈ [Fmax, x), [Fmax, y).

Hence 〈[Fmax, x), Imax〉, 〈[Fmax, y), Imax〉 6∈ E can only be true if there exist

a0, a
′
0 ∈ F , a1 ∈ [Fmax, x) and a′1 ∈ [Fmax, y) such that a0 I a1, a

′
0 I a′1 ∈ Imax.

This entails (by Proposition A.2 (ii)) that there exist c, c′ ∈ Fmax such that x∧c ≤ a1

and y ∧ c′ ≤ a′1. Set a′′ = a0 ∧ a′0 and c′′ = c ∧ c′.
By the downwards-closure of Imax, we have a′′ I (x ∧ c′′), a′′ I (y ∧ c′′) ∈ Imax.

Hence (a′′ I (x ∧ c′′)) ∨ (a′′ I (y ∧ c′′)) ∈ Imax by idealhood, so, by Prop A.1 (ii),

we have a′′ I ((x ∨ y) ∧ c′′) ∈ Imax. However, a′′ ∈ F and ((x ∨ y) ∧ c′′) ∈ Fmax
so by the assumption that 〈Fmax, Imax〉 ∈ E we have a′′ I ((x ∨ y) ∧ c′′) ∈ Imax, a

contradiction. Hence x ∈ F0 or y ∈ F0, and F0 is an ultrafilter.

Next we show Imax is a prime ideal. For contradiction, assume x ∧ y ∈ Imax
but x, y 6∈ Imax. Consider (Imax, x], (Imax, y] ⊃ Imax. By a similar argument to the

case for Fmax, 〈Fmax, (Imax, x]〉, 〈Fmax, (Imax, y]〉 6∈ E can only be true if there exist

a0, a
′
0 ∈ F and a1, a

′
1 ∈ Fmax such that a0 I a1 ∈ (Imax, x] and a′0 I a

′
1 ∈ (Imax, y]

Then, by the dual statement of Prop A.2 (ii), there thus exist c, c′ ∈ I1 such that

a0 I a′0 ≤ x ∨ c and a′0 I a
′
1 ≤ y ∨ c: set a′′ = a1 ∧ a′1 and c′′ = c ∨ c′.

By Prop A.1 (i) we have a0 I a′′ ≤ c′′ ∨ x and a′0 I a′′ ≤ c′′ ∨ y. Hence

by residuation and filterhood of F we have (a′′−−I(c′′ ∨ x)) ∧ (a′′−−I(c′′ ∨ y)) ∈
F . By Prop A.1 (v) a′′−−I(c′′ ∨ (x ∧ y)) ∈ F . Since 〈Fmax, Imax〉 ∈ E, we have

(a′′−−I(c′′ ∨ (x ∧ y)) I a′′ ∈ Imax. By upwards-closure of Imax, we then have

c′′ ∨ (x ∧ y) ∈ Imax, but c′′, (x ∧ y) ∈ I1 so c′′ ∨ (x ∧ y) ∈ Imax by idealhood, a
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contradiction. Hence x ∈ Imax or y ∈ Imax, and Imax is a prime ideal.

Thus we have ultrafilters F0 = Fmax and F1 = Imax such that RUlt(A)FF0F1

and F0 ∈ hA(a) but F1 6∈ hA(b), thus F 6∈ hA(a)−−IRUlt(A)
hA(b).

The final subcase is a−−I b = ⊥. In this case, hA(a−−I b) = ∅. Given an arbitrary

ultrafilter F , it follows that a−−I b = ⊥ 6∈ F . Hence we directly prove the existence

of ultrafilters F0 and F1 satisfying RUlt(A)FF0F1, F0 ∈ hA(a), and F1 6∈ hA(b) by

running through the argument of the second inclusion of the previous subcase. This

is sufficient to show hA(a)−−IRUlt(A)
hA(b) = ∅.

This exhausts the possible cases. Hence hA(a−−I b) = hA(a)−−IRUlt(A)
hA(b), as

required. 2

To see that this additionally holds for resource algebras it is sufficient to invoke

Lemma 3.8, which states that the ultrafilter frame of a resource algebra is a resource

frame. This is proved in a similar fashion to the representation theorem for layered

algebras.

Proof. (Lemma 3.8). (Comm) is trivial so we attend only to (Assoc) and (Unit).

For (Assoc): suppose for ultrafilters F0, F1, F2, F3 there exists F4 such that

RUlt(A)F0F1F4 and RUlt(A)F4F2F3. Consider the set α = {a | ∃b ∈ F1, c ∈ F2 :

b I c ≤ a}. α is a filter: upwards-closure is immediate and closure under meets

follows from the fact that if b I c ≤ a and b′ I c′ ≤ a′ then (b∧b′) I (c∧c′) ≤ a∧a′,
a consequence of Prop A.1.

It is also proper. Suppose not: then there exist b ∈ F1 and c ∈ F2 such that

b I c = ⊥. Then, for arbitrary a ∈ F0, we have a I b ∈ F4, so (a I b) I c =

a I (b I c) = a I ⊥ = ⊥ ∈ F3 (by Prop A.1 (iii)), contradicting that F3 is an

ultrafilter.

Now α clearly has the property that, for all b ∈ F1 and all c ∈ F2, b I c ∈ α.

We also have that, for all a ∈ F0 and all d ∈ α, a I d ∈ F3. To see this, let a

and d be as stated. Then there exist b ∈ F1 and c ∈ F2 such that b I c ≤ d. Now

(a I b) I c = a I (b I c) ≤ a I d. Since a I b ∈ F4 we have (a I b) I c ∈ F3. By

filterhood of F3, we thus have a I d ∈ F3.

We can thus obtain an ultrafilter F ′4 such that RUlt(A)F1F2F
′
4 and RUlt(A)F0F

′
4F3

in the same manner as the argument given in the final case of the representation

theorem for layered algebras. The other direction is similar.

For (Unit), let F be arbitary and consider β = [I). Now, for all a ∈ β and all

b ∈ F , we have a I b ∈ F : we know I ≤ a so b = I I b ≤ a I b by Prop A.1 (i) and

by upwards-closure of F we have a I b ∈ F . Unless I = ⊥, β is also a proper filter.

However, in that case, for all a ∈ A, we have a = a I I = a I ⊥ = ⊥ so A is the

degenerate singleton resource algebra and so Ult(A) is the degenerate empty frame

and trivially satisfies all the conditions. Hence we may assume β is proper. Then

we can extend to an ultrafilter Fe ∈ EUlt(A) with the property that RUlt(A)FeFF

by another argument similar to that given for the final case of the representation

theorem for layered algebras. Finally, if RUlt(A)FeF0F1 for Fe ∈ ERUlt(A)
then, in

particular, as I ∈ Fe, for all a ∈ F0 we have I I a = a ∈ F1. Hence F0 ⊆ F1. As

ultrafilters of Boolean algebras are maximal filters, it follows that F0 = F1. 2

Now the proof that the complex algebra of a resource frame is a resource algebra
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is a straightforward consequence of the properties (Assoc), (Comm) and (Unit). The

representation theorem for resource algebras is then an immediate consequence of

the representation theorem for layered algebras, together with the fact that hA(I) =

ERUlt(A)
by definition. 2

B Proof of Theorem 3.12: Duality Theorem for Lay-
ered/Resource Algebras

We first give the duality theorem for layered algebras.

Proof. (Duality Theorem for Layered Algebras) We define functors F : LayAlgop →
LaySp and G : LaySpop → LayAlg as follows:

• F(A) = (Uf(A),O({hA(a) | a ∈ A}), RUlt(A));

• F(f : A→ A′) = f−1 : F(A′)→ F(A);

• G(X ) = (CL(X),∩,∪, \, X, ∅,IR,−−IR,I−−R);

• G(g : X → X ′) = g−1 : G(X ′)→ G(X ).

Where O({hA(a) | a ∈ A}) is the topology generated by the base {hA(a) | a ∈ A}
and CL(X) denotes the clopen sets of (X,O). Ignoring the relation RUlt(A) and

the associated operations IR,−−IR,I−−R, these are precisely the functors yielding

the duality between Boolean algebras and Stone spaces. We must verify that the

additional structure is as required.

Lemma B.1 The functor F is well-defined.

Proof. That F(A) is a Stone space follows immediately from Stone duality and

RUlt(A) is clearly a ternary relation. That CL(X) is closed under IRUlt(A)
,−−IRUlt(A)

and I−−RUlt(A)
can be obtained from Theorem 3.9 and the fact that, by Stone duality,

every clopen set is of the form hA(a) for a ∈ A. For the final condition, suppose

RUlt(A)F0F1F2 does not hold. Then there exists a ∈ F0 and b ∈ F1 such that

a I b 6∈ F2. Setting O1 = hA(a) and O2 = hA(b) is then sufficient. It follows that

F(A) is a layered space.

That F(f) maps ultrafilters to ultrafilters and it continuous is given by Stone

duality. We must verify the p-morphism conditions of Definition 3.4 for F(f) to

show it is a layered space morphism: (i) is trivial, so we attend to (iii), leaving the

similar (ii) and (iv) to the reader. Suppose RUlt(A)F0F(f)(F ′1)F2. We note that an

equivalent characterization of RUlt(A) is

RUlt(A)F0F1F2 iff ∀x, y : if x ∈ F0 and y 6∈ F2 then xI−− y 6∈ F1.

So consider α = [f [F0]) and β = (f [F2]]. We have that F0 ⊆ f−1(α) and f−1(β) ⊆
F2. We use the equivalent characterization to show these are proper. Suppose

⊥ ∈ α. Then, by Prop A.2 (iii) there exists a ∈ F0 such that f(a) = ⊥. Let

b 6∈ F2 be arbitrary. Then aI−− b 6∈ F(f)(F ′1). Hence f(aI−− b) = f(a)I−− f(b) =

⊥I−− f(b) = > 6∈ F ′1, a contradiction. The case for β is similar.

Now let a ∈ α and b ∈ F ′1 and suppose for contradiction that a I b ∈ β. Then

there exist c0 ∈ F0 and c2 6∈ F2 such that f(c0) ≤ a and a I b ≤ f(c2). It follows
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that c0I−− c2 6∈ F(f)(F ′1) so f(c0)I−− f(c2) 6∈ F ′1. However, f(c0) I b ≤ a I b ≤
f(c2) implies b ≤ f(c0)I−− f(c2) ∈ F ′1, a contradiction. Hence for all a ∈ α and all

b ∈ F ′1: a I b ∈ β.

We can thus run through an argument similar to the final case of the repre-

sentation theorem for layered algebras (given in Appendix A) to obtain ultrafilters

satisfying RUlt(A′)F
′
0F
′
1F
′
2 with F0 ⊆ F(f)(F ′0) and F(f)(F ′2) ⊆ F2. Maximality of

ultrafilters makes these inclusions equalities. Thus these ultrafilters are the wit-

nesses we require for property (iii). 2

Lemma B.2 The functor G is well-defined.

Proof. That G(X ) is a layered algebra is a straightforward consquence of Stone du-

ality and Lemma 3.6. Further, Stone duality gives us that G(g) is a homomorphism

on the Boolean algebra reducts of the algebras and it is a consequence of conditions

(2), (3), and (4) that G(g) respects IR′ , I−−R′ and −−IR′ , respectively. We show the

case for IR′ . Suppose x ∈ g−1(O0 IR′ O1). Then there exists y′ ∈ O0, z′ ∈ O1 such

that R′y′z′g(x). Since g is a layered p-morphism there exist y, z such that Ryzx

with g(y) = y′ and g(z) = z′. Hence x ∈ g−1(O0) IR g−1(O1). For the other in-

clusion, assume there exists y ∈ g−1(O0) and z ∈ Rg−1(O1) such that Ryzx. Then

since g is a layered p-morphism R′g(y)g(z)g(x), and by assumption g(y) ∈ O0 and

g(z) ∈ O1. Hence x ∈ g−1(O0 IR′ O1). 2

It now remains to define natural isomorphisms ε : IdLayAlg → GF and η :

IdLaySp → FG. We define these by:

• εA(a) = hA(a)

• ηX (x) = {O ∈ CL(X) | x ∈ O}

These are precisely the transformations given for Stone duality. That result, and

Theorem 3.9 give us everything here except for the fact that ηX is additionally a

relational isomorphism – Rxyz iff RUlt(G(X ))ηX (x)ηX (y)ηX (z) – but this is a simple

matter of unpacking the definitions and invoking property (c) of the definition of

layered space. 2

Proof. (Duality Theorem for Resource Algebras) We define functors F : ResAlg→
ResSp and G : ResSp→ ResAlg as follows:

• F(A) = (Uf(A),O({hA(a) | a ∈ F}), RUlt(A), EUlt(A));

• F(f : A→ A′) = f−1 : F(A′)→ F(A);

• G(X ) = (CL(X),∩,∪, \, X, ∅,IR,−−IR, E);

• G(g : X → X ′) = g−1 : G(X ′)→ G(X ).

where O({hA(a) | a ∈ A}) is the topology generated by the base {hA(a) | a ∈ A}
and CL(X) denotes the clopen sets of (X,O) once again.

This is an obvious extension of LGL duality, and the fact that these functors

are well defined is a straightforward consequence of the preceeding arguments.

Lemma B.3 The functor F is well-defined.

Proof. EUlt(A) = hA(I), which is a clopen set by Stone duality, and

(Uf(A), RUlt(A), EUlt(A)) is a resource frame by Lemma 3.8, the proof of which
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is given in Appendix A. Hence by LGL duality F(A) is a resource space.

To see that F(f) is a continuous resource p-morphism, note that all but property

(v) are given by Lemma B.1. This remaining property is a trivial consequence of

the fact that f(I) = I′. 2

We also straightforwardly obtain:

Lemma B.4 The functor G is well-defined. 2

The natural isomorphisms ε and η defined in the duality theorem for layered

algebras suffice once again. The only new detail to verify is that ηX is also a

relational isomorphism for E, but this is simple: x ∈ E iff E ∈ ηX (x) iff ηX (x) ∈
EUlt(G(X )). 2

C Proof of Theorem 4.13: Duality Theorem for Re-
source Hyperdoctrines

Proof. (Lemma 4.6) Adjointness of =X , ∃XΓ and ∀XΓ is a straightforward con-

sequence of the definitions, so we attend to naturality, restricting ourselves to the

case for ∀XΓ. Let s : Γ→ Γ′ be a morphism in C and suppose A ⊆ R(Γ′ ×X). We

must show R(s)−1(R(πΓ′,X)∗(A)) = R(πΓ,X)∗(R(s× idX)−1(A).

First, suppose x ∈ R(s)−1(R(πΓ′,X)∗(A)). Then, if y is such that R(πΓ′,X)(y) =

R(s)(x), it follows y ∈ A. Now let y be such that R(πΓ,X)(y) = x. Then

R(s)(R(πΓ,X)(y)) = R(πΓ′,X)(R(s× idX)(y) = R(s)(x). Hence R(s× idX)(y) ∈ A
so x ∈ R(πΓ,X)∗(R(s× idX)−1(A)).

Now suppose x ∈ R(πΓ,X)∗(R(s × idX)−1(A)). Suppose y is such that

R(πΓ′,X)(y) = R(s)(x). Then, by the quasi-pullback square, there exists z such

that R(s× idX)(z) = y and R(πΓ′,X)(z) = x. By assumption, z ∈ R(s× idX)−1(A)

so y ∈ A and therefore x ∈ R(s)−1(R(πΓ′,X)∗(A)). 2

Proof. (Lemma 4.8) We must verify the quasi-pullback property. So assume we

have objects Γ,Γ′ and X in C and a morphism s : Γ → Γ′. Suppose F and G are

such that P(πΓ′,X)−1(F ) = P(s)−1(G) and consider the filter α = [P(s × idX)(F )).

We note that α is proper: otherwise, there exists a ∈ F such that P(s× idX)(a) =

⊥. By adjointness and naturality ∃XΓ(P(s × idX)(a)) = ⊥ = P(s)(∃XΓ′(a)). So

∃XΓ′(a) 6∈ P(s)−1(G) = P(πΓ′,X)−1(F ). But adjointness and filterhood gives a ≤
P(πΓ′,X)(∃XΓ′(a)) ∈ F , a contradiction.

We also have that F ⊆ P(s× idX)−1(α) and P(πΓ,X)−1(α) ⊆ G. The former is

immediate. For the latter, assume a ∈ P(πΓ,X)−1(α). Then there exists b ∈ F such

that P(s × idX)(b) ≤ P(πΓ,X(a)). By naturality and adjointness P(s)(∃XΓ′(b)) =

∃XΓ(P(s× idX)(b) ≤ a. By adjointness and filterhood ∃XΓ′(b) ∈ P(πΓ′,X)−1(F ) =

P(s)−1(G). Hence, by filterhood, a ∈ G.

By an argument similar to that given in the representation theorem for layered

algebras (Appendix A), we obtain an ultrafilter F ′ satisfying these properties. By

maximality of ultrafilters the inclusions are equalities, and we are done. 2

Proof. (Theorem 4.13: Duality Theorem for Resource Hyperdoctrines) We now

define the functors F : ResHyp → IndResSp and G : IndResSp → ResHyp. The
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functors F : ResAlg → ResSp and G : ResSp → ResAlg are as in BBI duality

(Appendix B):

• F (P) = F ◦ P;

• F ((K, τ)) = (K, τ−1).

• G (R)=(G ◦ R, (Ran(R(∆X)))X∈C, (R(πΓ,X),R(πΓ,X)∗)X,Γ∈C)

• G ((L, λ)) = (L, λ−1).

Lemma C.1 The functor F : ResHyp→ IndResSp is well-defined.

Proof. Let P be a resource hyperdoctrine. By BBI duality F (P) : C→ ResSp is a

well-defined functor. Lemma 4.8 shows the appropriate squares are quasi-pullbacks,

and Ran(P(∆X)−1) = hP(X×X)(=X) and is therefore clopen by Stone duality.

It thus remains to verify that P(πΓ,X)−1 is an open map and (P(πΓ,X)−1)∗ is a

closed map. We attend to the latter; the other case is similar. As the sets hP(Γ×X)(a)

give a closed base for F (P(Γ×X)) and the dual image commutes with intersection,

it is sufficient to show (P(πΓ,X)−1)∗(hP(Γ×X)(a)) is closed for arbitrary a ∈ P(Γ×X).

This is trivially satisfied in the cases a = >,⊥ so we attend to a 6= >,⊥.

Let F ∈ (P(πΓ,X)−1)∗(hP(Γ×X)(a)) (wlog we may assume the set is non-

empty). Then there exists F ′ such that P(πΓ,X)−1(F ′) = F and a 6∈ F ′: that

is, ¬a ∈ F ′. By adjointness ∃XΓ(¬a) ∈ F . We claim that hP(Γ)(∃XΓ(¬a)) ⊆
(P(πΓ,X)−1)∗(hP(Γ×X)(a)), thus (P(πΓ,X)−1)∗(hP(Γ×X)(a)) is closed.

To see this is the case, consider G such that ∃XΓ(¬a) ∈ G. We show there exists

G′ such that P(πΓ,X)−1(G′) = G and a 6∈ G. Consider α = [¬a). By adjointness

P(πΓ,X)−1(α) ⊆ G and since a 6= >,⊥ we have α proper and a 6∈ α. We thus extend

α to an ultrafilter with these properties in the manner of Theorem 3.9, completing

the argument.

Now we must show F ((K, τ)) is an indexed resource space morphism for any

resource hyperdoctrine morphism (K, τ). K is a finite product-preserving by as-

sumption, and naturality of τ−1 is inherited. Further, by BBI duality, since each

component τX was a homomorphism, each component τ−1
X is a continuous resource

p-morphism. Finally, the lift property and the quasi-pullback square are both veri-

fied in much the same way as in the proof for Lemma 4.8. 2

Lemma C.2 The functor G : IndResSp→ ResHyp is well-defined.

Proof. Let X be an indexed resource space. By BBI duality, G (X ) : Cop → Poset

is a well-defined functor of the right sort. For all objects X, Ran(R(∆X)) is assumed

to be clopen so Ran(R(∆X)) ∈ G (X )(X ×X) and Lemma 4.6 gives adjointnesss.

We also have that R(πΓ,X) is an open map. Since it is a continuous map from

a compact space to a Hausdorff space it is also a closed map by the closed map

lemma so it is in fact a monotone map R(πΓ,X) : G (X )(Γ × X) → G (X )(Γ),

as required. The adjointness and naturality properties are then given by Lemma

4.6. Similarly, since for any continuous map f , the dual image f∗ is an open map

it follows that R(πΓ,X)∗ maps clopens to clopens and is thus a monotone map

R(πΓ,X)∗ : G (X )(Γ×X)→ G (X )(Γ). Lemma 4.6 again suffices for adjointness and

naturality.
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It remains to prove that G ((L, λ)) = (L, λ−1) is a resource hyperdoctrine mor-

phism for any indexed resource frame morphism (L, λ). Clearly L is a finite prod-

uct preserving functor by assumption, and λ−1 inherits the natural transformation

properties from λ. That =X is preserved follows from the lift property. Finally, the

argument that the naturality squares for ∃XΓ and ∀XΓ are quasi-pullbacks is much

the same as that given in the proof of Lemma 4.6. 2

Now consider Υ : IdResHyp → G F defined ΥP = (Id, εP(−)), where ε is as de-

fined for BBI duality in Appendix B. We show this is a natural isomorphism. First,

we must show that each component is indeed a resource hyperdoctrine morphism.

Clearly Id is a functor and εP(−) is a natural transformation of the right sort. As pre-

viously noted εP(X×X)(=X) = hP(X×X)(=X) = Ran(P(∆X)−1) so =X preservation

is taken care of.

We now show commutativity with ∃XΓ, leaving the similar case for ∀XΓ to

the reader. This reduces to showing that, given an ultrafilter F of P(Γ) and a ∈
P(Γ ×X): ∃XΓ(a) ∈ F iff there exists G such that a ∈ G and P(πΓ,X)−1(G) = F .

In the right-to-left direction we have that a ≤ P (πΓ,X)(∃XΓ)(a) by adjointness so

∃XΓ(a) ∈ P(πΓ,X)−1(G) = F . In the left-to-right direction, consider α = [a). This

filter is proper, as otherwise a = ⊥, which would mean ∃XΓ(a) = ⊥ ∈ F . α also has

the properties that a ∈ α and by adjointness P(πΓ,X)−1(α) ⊆ F . We can thus once

again extend to an ultrafilter G with these properties and maximality of ultrafilters

gives the required equality.

Hence Υ is well defined. Further, by BBI duality it is a natural isomorphism,

as it inherits the required properties from the fact that each εP(−) is a natural

isomorphism.

We now consider Ω : IdIndResSp → FG defined ΩR = (Id, ηR(−)) where η is

as defined for BBI duality in Appendix B. We show that this too is a natural

isomorphism.

To see each component is an indexed resource space morphism we check the lift

property and that the requisite squares are quasi-pullbacks. First, the lift prop-

erty. Suppose we have x ∈ R(X × X) and F ∈ FG (X) such that ηR(X×X)(x) =

((∆X)−1(F ))−1. Then for any clopen set O we have x ∈ O iff R(∆X)−1(O) ∈ F .

Set x′ to be such that ηR(X)(x
′) = F : such an x′ exists by BBI duality. Then we

have for any clopen set that x ∈ O iff R(∆X)(x′) ∈ O. Suppose for contradiction

x 6= R(∆X)(x′). As the underlying topological space is totally disconnected (cf.

[32], there exists a clopen set separating them: a contradiction. Hence x′ is as

required. The argument for the quasi-pullback squares is essentially the same.

Once again, Ω is a natural isomorphism as each component is a natural isomor-

phism by BBI duality. F , G , Υ and Ω thus constitute the dual equivalence of

categories. 2
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